You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

229 lines
7.7 KiB

//===-- SISchedule.td - SI Scheduling definitions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// MachineModel definitions for Southern Islands (SI)
//
//===----------------------------------------------------------------------===//
def : PredicateProlog<[{
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(SchedModel->getInstrInfo());
(void)TII;
}]>;
def WriteBranch : SchedWrite;
def WriteExport : SchedWrite;
def WriteLDS : SchedWrite;
def WriteSALU : SchedWrite;
def WriteSMEM : SchedWrite;
def WriteVMEM : SchedWrite;
def WriteBarrier : SchedWrite;
def MIVGPRRead : SchedRead;
def MIMFMARead : SchedRead;
// Normal 16 or 32 bit VALU instructions
def Write32Bit : SchedWrite;
// Conversion to or from F32 (but not converting F64 to or from F32)
def WriteFloatCvt : SchedWrite;
// F16 or F32 transcendental instructions (these are quarter rate)
def WriteTrans32 : SchedWrite;
// Other quarter rate VALU instructions
def WriteQuarterRate32 : SchedWrite;
def WriteFloatFMA : SchedWrite;
// Slow quarter rate f64 instruction.
def WriteDouble : SchedWrite;
// half rate f64 instruction (same as v_add_f64)
def WriteDoubleAdd : SchedWrite;
// Conversion to or from f64 instruction
def WriteDoubleCvt : SchedWrite;
// F64 "transcendental" (actually only reciprocal and/or square root)
// instructions
def WriteTrans64 : SchedWrite;
// Half rate 64-bit instructions.
def Write64Bit : SchedWrite;
// mAI multipass instructions.
def Write2PassMAI : SchedWrite;
def Write8PassMAI : SchedWrite;
def Write16PassMAI : SchedWrite;
// FIXME: Should there be a class for instructions which are VALU
// instructions and have VALU rates, but write to the SALU (i.e. VOPC
// instructions)
class SISchedMachineModel : SchedMachineModel {
let CompleteModel = 1;
// MicroOpBufferSize = 1 means that instructions will always be added
// the ready queue when they become available. This exposes them
// to the register pressure analysis.
let MicroOpBufferSize = 1;
let IssueWidth = 1;
let PostRAScheduler = 1;
// FIXME:Approximate 2 * branch cost. Try to hack around bad
// early-ifcvt heuristics. These need improvement to avoid the OOE
// heuristics.
int MispredictPenalty = 20;
}
def SIFullSpeedModel : SISchedMachineModel;
def SIQuarterSpeedModel : SISchedMachineModel;
def GFX10SpeedModel : SISchedMachineModel;
// XXX: Are the resource counts correct?
def HWBranch : ProcResource<1> {
let BufferSize = 1;
}
def HWExport : ProcResource<1> {
let BufferSize = 7; // Taken from S_WAITCNT
}
def HWLGKM : ProcResource<1> {
let BufferSize = 31; // Taken from S_WAITCNT
}
def HWSALU : ProcResource<1> {
let BufferSize = 1;
}
def HWVMEM : ProcResource<1> {
let BufferSize = 15; // Taken from S_WAITCNT
}
def HWVALU : ProcResource<1> {
let BufferSize = 1;
}
def HWRC : ProcResource<1> { // Register destination cache
let BufferSize = 1;
}
def HWXDL : ProcResource<1> { // MFMA CU
let BufferSize = 0;
}
class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources,
int latency> : WriteRes<write, resources> {
let Latency = latency;
}
class HWVALUWriteRes<SchedWrite write, int latency> :
HWWriteRes<write, [HWVALU], latency>;
def PredMIReadVGPR : SchedPredicate<[{TII->hasVGPRUses(*MI)}]>;
def MIReadVGPR : SchedReadVariant<[
SchedVar<PredMIReadVGPR, [MIVGPRRead]>,
SchedVar<NoSchedPred, [ReadDefault]>]>;
// The latency numbers are taken from AMD Accelerated Parallel Processing
// guide. They may not be accurate.
// The latency values are 1 / (operations / cycle) / 4.
multiclass SICommonWriteRes {
def : HWWriteRes<WriteBranch, [HWBranch], 8>;
def : HWWriteRes<WriteExport, [HWExport], 4>;
def : HWWriteRes<WriteLDS, [HWLGKM], 5>; // Can be between 2 and 64
def : HWWriteRes<WriteSALU, [HWSALU], 1>;
def : HWWriteRes<WriteSMEM, [HWLGKM], 5>;
def : HWWriteRes<WriteVMEM, [HWVMEM], 80>;
def : HWWriteRes<WriteBarrier, [HWBranch], 500>; // XXX: Guessed ???
def : HWVALUWriteRes<Write32Bit, 1>;
def : HWVALUWriteRes<Write64Bit, 2>;
def : HWVALUWriteRes<WriteFloatCvt, 4>;
def : HWVALUWriteRes<WriteTrans32, 4>;
def : HWVALUWriteRes<WriteQuarterRate32, 4>;
let ResourceCycles = [2] in
def : HWWriteRes<Write2PassMAI, [HWXDL], 2>;
let ResourceCycles = [8] in
def : HWWriteRes<Write8PassMAI, [HWXDL], 8>;
let ResourceCycles = [16] in
def : HWWriteRes<Write16PassMAI, [HWXDL], 16>;
def : ReadAdvance<MIVGPRRead, -2>;
def : InstRW<[Write64Bit, MIReadVGPR], (instregex "^V_ACCVGPR_WRITE_B32$")>;
// Technically mfma reads can be from 0 to 4 cycles but that does not make
// sense to model because its register setup is huge. In particular if we
// properly model read advance as -2 for a vgpr read it will result in a
// bad scheduling of acc writes before that mfma. To avoid it we would
// need to consume 2 or 4 more vgprs to be initialized before the acc
// write sequence. Just assume worst case here.
def : ReadAdvance<MIMFMARead, -4>;
def : InstRW<[Write2PassMAI, MIMFMARead], (instregex "^V_MFMA_..._4X4X")>;
def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_..._16X16X")>;
def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_..._32X32X")>;
}
def PredIsVGPR32Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) <= 32}]>;
def PredIsVGPR64Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) > 32}]>;
def WriteCopy : SchedWriteVariant<[
SchedVar<PredIsVGPR32Copy, [Write32Bit]>,
SchedVar<PredIsVGPR64Copy, [Write64Bit]>,
SchedVar<NoSchedPred, [WriteSALU]>]>;
let SchedModel = SIFullSpeedModel in {
defm : SICommonWriteRes;
def : HWVALUWriteRes<WriteFloatFMA, 1>;
def : HWVALUWriteRes<WriteDouble, 4>;
def : HWVALUWriteRes<WriteDoubleAdd, 2>;
def : HWVALUWriteRes<WriteDoubleCvt, 4>;
def : HWVALUWriteRes<WriteTrans64, 4>;
def : InstRW<[WriteCopy], (instrs COPY)>;
} // End SchedModel = SIFullSpeedModel
let SchedModel = SIQuarterSpeedModel in {
defm : SICommonWriteRes;
def : HWVALUWriteRes<WriteFloatFMA, 16>;
def : HWVALUWriteRes<WriteDouble, 16>;
def : HWVALUWriteRes<WriteDoubleAdd, 8>;
def : HWVALUWriteRes<WriteDoubleCvt, 4>;
def : HWVALUWriteRes<WriteTrans64, 16>;
def : InstRW<[WriteCopy], (instrs COPY)>;
} // End SchedModel = SIQuarterSpeedModel
let SchedModel = GFX10SpeedModel in {
// The latency values are 1 / (operations / cycle).
// Add 1 stall cycle for VGPR read.
def : HWWriteRes<Write32Bit, [HWVALU, HWRC], 5>;
def : HWWriteRes<WriteFloatCvt, [HWVALU, HWRC], 5>;
def : HWWriteRes<Write64Bit, [HWVALU, HWRC], 6>;
def : HWWriteRes<WriteTrans32, [HWVALU, HWRC], 10>;
def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC], 8>;
def : HWWriteRes<WriteFloatFMA, [HWVALU, HWRC], 5>;
def : HWWriteRes<WriteDouble, [HWVALU, HWRC], 22>;
def : HWWriteRes<WriteDoubleAdd, [HWVALU, HWRC], 22>;
def : HWWriteRes<WriteDoubleCvt, [HWVALU, HWRC], 22>;
def : HWWriteRes<WriteTrans64, [HWVALU, HWRC], 24>;
def : HWWriteRes<WriteBranch, [HWBranch], 32>;
def : HWWriteRes<WriteExport, [HWExport, HWRC], 16>;
def : HWWriteRes<WriteLDS, [HWLGKM, HWRC], 20>;
def : HWWriteRes<WriteSALU, [HWSALU, HWRC], 2>;
def : HWWriteRes<WriteSMEM, [HWLGKM, HWRC], 20>;
def : HWWriteRes<WriteVMEM, [HWVMEM, HWRC], 320>;
def : HWWriteRes<WriteBarrier, [HWBranch], 2000>;
def : InstRW<[WriteCopy], (instrs COPY)>;
} // End SchedModel = GFX10SpeedModel