You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1227 lines
42 KiB

//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the X86 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#include "X86MCTargetDesc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
namespace X86 {
// Enums for memory operand decoding. Each memory operand is represented with
// a 5 operand sequence in the form:
// [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
// These enums help decode this.
enum {
AddrBaseReg = 0,
AddrScaleAmt = 1,
AddrIndexReg = 2,
AddrDisp = 3,
/// AddrSegmentReg - The operand # of the segment in the memory operand.
AddrSegmentReg = 4,
/// AddrNumOperands - Total number of operands in a memory reference.
AddrNumOperands = 5
};
/// AVX512 static rounding constants. These need to match the values in
/// avx512fintrin.h.
enum STATIC_ROUNDING {
TO_NEAREST_INT = 0,
TO_NEG_INF = 1,
TO_POS_INF = 2,
TO_ZERO = 3,
CUR_DIRECTION = 4,
NO_EXC = 8
};
/// The constants to describe instr prefixes if there are
enum IPREFIXES {
IP_NO_PREFIX = 0,
IP_HAS_OP_SIZE = 1U << 0,
IP_HAS_AD_SIZE = 1U << 1,
IP_HAS_REPEAT_NE = 1U << 2,
IP_HAS_REPEAT = 1U << 3,
IP_HAS_LOCK = 1U << 4,
IP_HAS_NOTRACK = 1U << 5,
IP_USE_VEX = 1U << 6,
IP_USE_VEX2 = 1U << 7,
IP_USE_VEX3 = 1U << 8,
IP_USE_EVEX = 1U << 9,
IP_USE_DISP8 = 1U << 10,
IP_USE_DISP32 = 1U << 11,
};
enum OperandType : unsigned {
/// AVX512 embedded rounding control. This should only have values 0-3.
OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
OPERAND_COND_CODE,
};
// X86 specific condition code. These correspond to X86_*_COND in
// X86InstrInfo.td. They must be kept in synch.
enum CondCode {
COND_O = 0,
COND_NO = 1,
COND_B = 2,
COND_AE = 3,
COND_E = 4,
COND_NE = 5,
COND_BE = 6,
COND_A = 7,
COND_S = 8,
COND_NS = 9,
COND_P = 10,
COND_NP = 11,
COND_L = 12,
COND_GE = 13,
COND_LE = 14,
COND_G = 15,
LAST_VALID_COND = COND_G,
// Artificial condition codes. These are used by analyzeBranch
// to indicate a block terminated with two conditional branches that together
// form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
// which can't be represented on x86 with a single condition. These
// are never used in MachineInstrs and are inverses of one another.
COND_NE_OR_P,
COND_E_AND_NP,
COND_INVALID
};
// The classification for the first instruction in macro fusion.
enum class FirstMacroFusionInstKind {
// TEST
Test,
// CMP
Cmp,
// AND
And,
// ADD, SUB
AddSub,
// INC, DEC
IncDec,
// Not valid as a first macro fusion instruction
Invalid
};
enum class SecondMacroFusionInstKind {
// JA, JB and variants.
AB,
// JE, JL, JG and variants.
ELG,
// JS, JP, JO and variants
SPO,
// Not a fusible jump.
Invalid,
};
/// \returns the type of the first instruction in macro-fusion.
inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
switch (Opcode) {
default:
return FirstMacroFusionInstKind::Invalid;
// TEST
case X86::TEST16i16:
case X86::TEST16mr:
case X86::TEST16ri:
case X86::TEST16rr:
case X86::TEST32i32:
case X86::TEST32mr:
case X86::TEST32ri:
case X86::TEST32rr:
case X86::TEST64i32:
case X86::TEST64mr:
case X86::TEST64ri32:
case X86::TEST64rr:
case X86::TEST8i8:
case X86::TEST8mr:
case X86::TEST8ri:
case X86::TEST8rr:
return FirstMacroFusionInstKind::Test;
case X86::AND16i16:
case X86::AND16ri:
case X86::AND16ri8:
case X86::AND16rm:
case X86::AND16rr:
case X86::AND16rr_REV:
case X86::AND32i32:
case X86::AND32ri:
case X86::AND32ri8:
case X86::AND32rm:
case X86::AND32rr:
case X86::AND32rr_REV:
case X86::AND64i32:
case X86::AND64ri32:
case X86::AND64ri8:
case X86::AND64rm:
case X86::AND64rr:
case X86::AND64rr_REV:
case X86::AND8i8:
case X86::AND8ri:
case X86::AND8ri8:
case X86::AND8rm:
case X86::AND8rr:
case X86::AND8rr_REV:
return FirstMacroFusionInstKind::And;
// CMP
case X86::CMP16i16:
case X86::CMP16mr:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP16rm:
case X86::CMP16rr:
case X86::CMP16rr_REV:
case X86::CMP32i32:
case X86::CMP32mr:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP32rm:
case X86::CMP32rr:
case X86::CMP32rr_REV:
case X86::CMP64i32:
case X86::CMP64mr:
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP64rm:
case X86::CMP64rr:
case X86::CMP64rr_REV:
case X86::CMP8i8:
case X86::CMP8mr:
case X86::CMP8ri:
case X86::CMP8ri8:
case X86::CMP8rm:
case X86::CMP8rr:
case X86::CMP8rr_REV:
return FirstMacroFusionInstKind::Cmp;
// ADD
case X86::ADD16i16:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16rm:
case X86::ADD16rr:
case X86::ADD16rr_REV:
case X86::ADD32i32:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32rm:
case X86::ADD32rr:
case X86::ADD32rr_REV:
case X86::ADD64i32:
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64rm:
case X86::ADD64rr:
case X86::ADD64rr_REV:
case X86::ADD8i8:
case X86::ADD8ri:
case X86::ADD8ri8:
case X86::ADD8rm:
case X86::ADD8rr:
case X86::ADD8rr_REV:
// SUB
case X86::SUB16i16:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB16rm:
case X86::SUB16rr:
case X86::SUB16rr_REV:
case X86::SUB32i32:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB32rm:
case X86::SUB32rr:
case X86::SUB32rr_REV:
case X86::SUB64i32:
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB64rm:
case X86::SUB64rr:
case X86::SUB64rr_REV:
case X86::SUB8i8:
case X86::SUB8ri:
case X86::SUB8ri8:
case X86::SUB8rm:
case X86::SUB8rr:
case X86::SUB8rr_REV:
return FirstMacroFusionInstKind::AddSub;
// INC
case X86::INC16r:
case X86::INC16r_alt:
case X86::INC32r:
case X86::INC32r_alt:
case X86::INC64r:
case X86::INC8r:
// DEC
case X86::DEC16r:
case X86::DEC16r_alt:
case X86::DEC32r:
case X86::DEC32r_alt:
case X86::DEC64r:
case X86::DEC8r:
return FirstMacroFusionInstKind::IncDec;
}
}
/// \returns the type of the second instruction in macro-fusion.
inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
if (CC == X86::COND_INVALID)
return SecondMacroFusionInstKind::Invalid;
switch (CC) {
default:
return SecondMacroFusionInstKind::Invalid;
// JE,JZ
case X86::COND_E:
// JNE,JNZ
case X86::COND_NE:
// JL,JNGE
case X86::COND_L:
// JLE,JNG
case X86::COND_LE:
// JG,JNLE
case X86::COND_G:
// JGE,JNL
case X86::COND_GE:
return SecondMacroFusionInstKind::ELG;
// JB,JC
case X86::COND_B:
// JNA,JBE
case X86::COND_BE:
// JA,JNBE
case X86::COND_A:
// JAE,JNC,JNB
case X86::COND_AE:
return SecondMacroFusionInstKind::AB;
// JS
case X86::COND_S:
// JNS
case X86::COND_NS:
// JP,JPE
case X86::COND_P:
// JNP,JPO
case X86::COND_NP:
// JO
case X86::COND_O:
// JNO
case X86::COND_NO:
return SecondMacroFusionInstKind::SPO;
}
}
/// \param FirstKind kind of the first instruction in macro fusion.
/// \param SecondKind kind of the second instruction in macro fusion.
///
/// \returns true if the two instruction can be macro fused.
inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
SecondMacroFusionInstKind SecondKind) {
switch (FirstKind) {
case X86::FirstMacroFusionInstKind::Test:
case X86::FirstMacroFusionInstKind::And:
return true;
case X86::FirstMacroFusionInstKind::Cmp:
case X86::FirstMacroFusionInstKind::AddSub:
return SecondKind == X86::SecondMacroFusionInstKind::AB ||
SecondKind == X86::SecondMacroFusionInstKind::ELG;
case X86::FirstMacroFusionInstKind::IncDec:
return SecondKind == X86::SecondMacroFusionInstKind::ELG;
case X86::FirstMacroFusionInstKind::Invalid:
return false;
}
llvm_unreachable("unknown fusion type");
}
/// Defines the possible values of the branch boundary alignment mask.
enum AlignBranchBoundaryKind : uint8_t {
AlignBranchNone = 0,
AlignBranchFused = 1U << 0,
AlignBranchJcc = 1U << 1,
AlignBranchJmp = 1U << 2,
AlignBranchCall = 1U << 3,
AlignBranchRet = 1U << 4,
AlignBranchIndirect = 1U << 5
};
/// Defines the encoding values for segment override prefix.
enum EncodingOfSegmentOverridePrefix : uint8_t {
CS_Encoding = 0x2E,
DS_Encoding = 0x3E,
ES_Encoding = 0x26,
FS_Encoding = 0x64,
GS_Encoding = 0x65,
SS_Encoding = 0x36
};
/// Given a segment register, return the encoding of the segment override
/// prefix for it.
inline EncodingOfSegmentOverridePrefix
getSegmentOverridePrefixForReg(unsigned Reg) {
switch (Reg) {
default:
llvm_unreachable("Unknown segment register!");
case X86::CS:
return CS_Encoding;
case X86::DS:
return DS_Encoding;
case X86::ES:
return ES_Encoding;
case X86::FS:
return FS_Encoding;
case X86::GS:
return GS_Encoding;
case X86::SS:
return SS_Encoding;
}
}
} // end namespace X86;
/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
/// Target Operand Flag enum.
enum TOF {
//===------------------------------------------------------------------===//
// X86 Specific MachineOperand flags.
MO_NO_FLAG,
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
/// relocation of:
/// SYMBOL_LABEL + [. - PICBASELABEL]
MO_GOT_ABSOLUTE_ADDRESS,
/// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
/// immediate should get the value of the symbol minus the PIC base label:
/// SYMBOL_LABEL - PICBASELABEL
MO_PIC_BASE_OFFSET,
/// MO_GOT - On a symbol operand this indicates that the immediate is the
/// offset to the GOT entry for the symbol name from the base of the GOT.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOT
MO_GOT,
/// MO_GOTOFF - On a symbol operand this indicates that the immediate is
/// the offset to the location of the symbol name from the base of the GOT.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTOFF
MO_GOTOFF,
/// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
/// offset to the GOT entry for the symbol name from the current code
/// location.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTPCREL
MO_GOTPCREL,
/// MO_PLT - On a symbol operand this indicates that the immediate is
/// offset to the PLT entry of symbol name from the current code location.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @PLT
MO_PLT,
/// MO_TLSGD - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index structure that contains
/// the module number and variable offset for the symbol. Used in the
/// general dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSGD
MO_TLSGD,
/// MO_TLSLD - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index for the module that
/// contains the symbol. When this index is passed to a call to
/// __tls_get_addr, the function will return the base address of the TLS
/// block for the symbol. Used in the x86-64 local dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSLD
MO_TLSLD,
/// MO_TLSLDM - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index for the module that
/// contains the symbol. When this index is passed to a call to
/// ___tls_get_addr, the function will return the base address of the TLS
/// block for the symbol. Used in the IA32 local dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSLDM
MO_TLSLDM,
/// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the thread-pointer offset for the
/// symbol. Used in the x86-64 initial exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTTPOFF
MO_GOTTPOFF,
/// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
/// the absolute address of the GOT entry with the negative thread-pointer
/// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
/// model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @INDNTPOFF
MO_INDNTPOFF,
/// MO_TPOFF - On a symbol operand this indicates that the immediate is
/// the thread-pointer offset for the symbol. Used in the x86-64 local
/// exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TPOFF
MO_TPOFF,
/// MO_DTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS offset of the symbol. Used
/// in the local dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @DTPOFF
MO_DTPOFF,
/// MO_NTPOFF - On a symbol operand this indicates that the immediate is
/// the negative thread-pointer offset for the symbol. Used in the IA32
/// local exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @NTPOFF
MO_NTPOFF,
/// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the negative thread-pointer offset for
/// the symbol. Used in the PIC IA32 initial exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTNTPOFF
MO_GOTNTPOFF,
/// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "__imp_FOO" symbol. This is used for
/// dllimport linkage on windows.
MO_DLLIMPORT,
/// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
/// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
MO_DARWIN_NONLAZY,
/// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
/// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
/// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
MO_DARWIN_NONLAZY_PIC_BASE,
/// MO_TLVP - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// This is the TLS offset for the Darwin TLS mechanism.
MO_TLVP,
/// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
/// is some TLS offset from the picbase.
///
/// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
MO_TLVP_PIC_BASE,
/// MO_SECREL - On a symbol operand this indicates that the immediate is
/// the offset from beginning of section.
///
/// This is the TLS offset for the COFF/Windows TLS mechanism.
MO_SECREL,
/// MO_ABS8 - On a symbol operand this indicates that the symbol is known
/// to be an absolute symbol in range [0,128), so we can use the @ABS8
/// symbol modifier.
MO_ABS8,
/// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
/// reference is actually to the ".refptr.FOO" symbol. This is used for
/// stub symbols on windows.
MO_COFFSTUB,
};
enum : uint64_t {
//===------------------------------------------------------------------===//
// Instruction encodings. These are the standard/most common forms for X86
// instructions.
//
// PseudoFrm - This represents an instruction that is a pseudo instruction
// or one that has not been implemented yet. It is illegal to code generate
// it, but tolerated for intermediate implementation stages.
Pseudo = 0,
/// Raw - This form is for instructions that don't have any operands, so
/// they are just a fixed opcode value, like 'leave'.
RawFrm = 1,
/// AddRegFrm - This form is used for instructions like 'push r32' that have
/// their one register operand added to their opcode.
AddRegFrm = 2,
/// RawFrmMemOffs - This form is for instructions that store an absolute
/// memory offset as an immediate with a possible segment override.
RawFrmMemOffs = 3,
/// RawFrmSrc - This form is for instructions that use the source index
/// register SI/ESI/RSI with a possible segment override.
RawFrmSrc = 4,
/// RawFrmDst - This form is for instructions that use the destination index
/// register DI/EDI/RDI.
RawFrmDst = 5,
/// RawFrmDstSrc - This form is for instructions that use the source index
/// register SI/ESI/RSI with a possible segment override, and also the
/// destination index register DI/EDI/RDI.
RawFrmDstSrc = 6,
/// RawFrmImm8 - This is used for the ENTER instruction, which has two
/// immediates, the first of which is a 16-bit immediate (specified by
/// the imm encoding) and the second is a 8-bit fixed value.
RawFrmImm8 = 7,
/// RawFrmImm16 - This is used for CALL FAR instructions, which have two
/// immediates, the first of which is a 16 or 32-bit immediate (specified by
/// the imm encoding) and the second is a 16-bit fixed value. In the AMD
/// manual, this operand is described as pntr16:32 and pntr16:16
RawFrmImm16 = 8,
/// AddCCFrm - This form is used for Jcc that encode the condition code
/// in the lower 4 bits of the opcode.
AddCCFrm = 9,
/// PrefixByte - This form is used for instructions that represent a prefix
/// byte like data16 or rep.
PrefixByte = 10,
/// MRM[0-7][rm] - These forms are used to represent instructions that use
/// a Mod/RM byte, and use the middle field to hold extended opcode
/// information. In the intel manual these are represented as /0, /1, ...
///
// Instructions operate on a register Reg/Opcode operand not the r/m field.
MRMr0 = 21,
/// MRMSrcMem - But force to use the SIB field.
MRMSrcMemFSIB = 22,
/// MRMDestMem - But force to use the SIB field.
MRMDestMemFSIB = 23,
/// MRMDestMem - This form is used for instructions that use the Mod/RM byte
/// to specify a destination, which in this case is memory.
///
MRMDestMem = 24,
/// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
/// to specify a source, which in this case is memory.
///
MRMSrcMem = 25,
/// MRMSrcMem4VOp3 - This form is used for instructions that encode
/// operand 3 with VEX.VVVV and load from memory.
///
MRMSrcMem4VOp3 = 26,
/// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
/// byte to specify the fourth source, which in this case is memory.
///
MRMSrcMemOp4 = 27,
/// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
/// byte to specify the operands and also encodes a condition code.
///
MRMSrcMemCC = 28,
/// MRMXm - This form is used for instructions that use the Mod/RM byte
/// to specify a memory source, but doesn't use the middle field. And has
/// a condition code.
///
MRMXmCC = 30,
/// MRMXm - This form is used for instructions that use the Mod/RM byte
/// to specify a memory source, but doesn't use the middle field.
///
MRMXm = 31,
// Next, instructions that operate on a memory r/m operand...
MRM0m = 32, MRM1m = 33, MRM2m = 34, MRM3m = 35, // Format /0 /1 /2 /3
MRM4m = 36, MRM5m = 37, MRM6m = 38, MRM7m = 39, // Format /4 /5 /6 /7
/// MRMDestReg - This form is used for instructions that use the Mod/RM byte
/// to specify a destination, which in this case is a register.
///
MRMDestReg = 40,
/// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
/// to specify a source, which in this case is a register.
///
MRMSrcReg = 41,
/// MRMSrcReg4VOp3 - This form is used for instructions that encode
/// operand 3 with VEX.VVVV and do not load from memory.
///
MRMSrcReg4VOp3 = 42,
/// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
/// byte to specify the fourth source, which in this case is a register.
///
MRMSrcRegOp4 = 43,
/// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
/// byte to specify the operands and also encodes a condition code
///
MRMSrcRegCC = 44,
/// MRMXCCr - This form is used for instructions that use the Mod/RM byte
/// to specify a register source, but doesn't use the middle field. And has
/// a condition code.
///
MRMXrCC = 46,
/// MRMXr - This form is used for instructions that use the Mod/RM byte
/// to specify a register source, but doesn't use the middle field.
///
MRMXr = 47,
// Instructions that operate on a register r/m operand...
MRM0r = 48, MRM1r = 49, MRM2r = 50, MRM3r = 51, // Format /0 /1 /2 /3
MRM4r = 52, MRM5r = 53, MRM6r = 54, MRM7r = 55, // Format /4 /5 /6 /7
// Instructions that operate that have mod=11 and an opcode but ignore r/m.
MRM0X = 56, MRM1X = 57, MRM2X = 58, MRM3X = 59, // Format /0 /1 /2 /3
MRM4X = 60, MRM5X = 61, MRM6X = 62, MRM7X = 63, // Format /4 /5 /6 /7
/// MRM_XX - A mod/rm byte of exactly 0xXX.
MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
FormMask = 127,
//===------------------------------------------------------------------===//
// Actual flags...
// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
// prefix in 16-bit mode.
OpSizeShift = 7,
OpSizeMask = 0x3 << OpSizeShift,
OpSizeFixed = 0 << OpSizeShift,
OpSize16 = 1 << OpSizeShift,
OpSize32 = 2 << OpSizeShift,
// AsSize - AdSizeX implies this instruction determines its need of 0x67
// prefix from a normal ModRM memory operand. The other types indicate that
// an operand is encoded with a specific width and a prefix is needed if
// it differs from the current mode.
AdSizeShift = OpSizeShift + 2,
AdSizeMask = 0x3 << AdSizeShift,
AdSizeX = 0 << AdSizeShift,
AdSize16 = 1 << AdSizeShift,
AdSize32 = 2 << AdSizeShift,
AdSize64 = 3 << AdSizeShift,
//===------------------------------------------------------------------===//
// OpPrefix - There are several prefix bytes that are used as opcode
// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
// no prefix.
//
OpPrefixShift = AdSizeShift + 2,
OpPrefixMask = 0x3 << OpPrefixShift,
// PD - Prefix code for packed double precision vector floating point
// operations performed in the SSE registers.
PD = 1 << OpPrefixShift,
// XS, XD - These prefix codes are for single and double precision scalar
// floating point operations performed in the SSE registers.
XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
//===------------------------------------------------------------------===//
// OpMap - This field determines which opcode map this instruction
// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
//
OpMapShift = OpPrefixShift + 2,
OpMapMask = 0x7 << OpMapShift,
// OB - OneByte - Set if this instruction has a one byte opcode.
OB = 0 << OpMapShift,
// TB - TwoByte - Set if this instruction has a two byte opcode, which
// starts with a 0x0F byte before the real opcode.
TB = 1 << OpMapShift,
// T8, TA - Prefix after the 0x0F prefix.
T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
// XOP8 - Prefix to include use of imm byte.
XOP8 = 4 << OpMapShift,
// XOP9 - Prefix to exclude use of imm byte.
XOP9 = 5 << OpMapShift,
// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
XOPA = 6 << OpMapShift,
/// ThreeDNow - This indicates that the instruction uses the
/// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
/// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
/// storing a classifier in the imm8 field. To simplify our implementation,
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
ThreeDNow = 7 << OpMapShift,
//===------------------------------------------------------------------===//
// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
// They are used to specify GPRs and SSE registers, 64-bit operand size,
// etc. We only cares about REX.W and REX.R bits and only the former is
// statically determined.
//
REXShift = OpMapShift + 3,
REX_W = 1 << REXShift,
//===------------------------------------------------------------------===//
// This three-bit field describes the size of an immediate operand. Zero is
// unused so that we can tell if we forgot to set a value.
ImmShift = REXShift + 1,
ImmMask = 15 << ImmShift,
Imm8 = 1 << ImmShift,
Imm8PCRel = 2 << ImmShift,
Imm8Reg = 3 << ImmShift,
Imm16 = 4 << ImmShift,
Imm16PCRel = 5 << ImmShift,
Imm32 = 6 << ImmShift,
Imm32PCRel = 7 << ImmShift,
Imm32S = 8 << ImmShift,
Imm64 = 9 << ImmShift,
//===------------------------------------------------------------------===//
// FP Instruction Classification... Zero is non-fp instruction.
// FPTypeMask - Mask for all of the FP types...
FPTypeShift = ImmShift + 4,
FPTypeMask = 7 << FPTypeShift,
// NotFP - The default, set for instructions that do not use FP registers.
NotFP = 0 << FPTypeShift,
// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
ZeroArgFP = 1 << FPTypeShift,
// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
OneArgFP = 2 << FPTypeShift,
// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
// result back to ST(0). For example, fcos, fsqrt, etc.
//
OneArgFPRW = 3 << FPTypeShift,
// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
// explicit argument, storing the result to either ST(0) or the implicit
// argument. For example: fadd, fsub, fmul, etc...
TwoArgFP = 4 << FPTypeShift,
// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
// explicit argument, but have no destination. Example: fucom, fucomi, ...
CompareFP = 5 << FPTypeShift,
// CondMovFP - "2 operand" floating point conditional move instructions.
CondMovFP = 6 << FPTypeShift,
// SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
SpecialFP = 7 << FPTypeShift,
// Lock prefix
LOCKShift = FPTypeShift + 3,
LOCK = 1 << LOCKShift,
// REP prefix
REPShift = LOCKShift + 1,
REP = 1 << REPShift,
// Execution domain for SSE instructions.
// 0 means normal, non-SSE instruction.
SSEDomainShift = REPShift + 1,
// Encoding
EncodingShift = SSEDomainShift + 2,
EncodingMask = 0x3 << EncodingShift,
// VEX - encoding using 0xC4/0xC5
VEX = 1 << EncodingShift,
/// XOP - Opcode prefix used by XOP instructions.
XOP = 2 << EncodingShift,
// VEX_EVEX - Specifies that this instruction use EVEX form which provides
// syntax support up to 32 512-bit register operands and up to 7 16-bit
// mask operands as well as source operand data swizzling/memory operand
// conversion, eviction hint, and rounding mode.
EVEX = 3 << EncodingShift,
// Opcode
OpcodeShift = EncodingShift + 2,
/// VEX_W - Has a opcode specific functionality, but is used in the same
/// way as REX_W is for regular SSE instructions.
VEX_WShift = OpcodeShift + 8,
VEX_W = 1ULL << VEX_WShift,
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
/// and the additional register is encoded in VEX_VVVV prefix.
VEX_4VShift = VEX_WShift + 1,
VEX_4V = 1ULL << VEX_4VShift,
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
/// instruction uses 256-bit wide registers. This is usually auto detected
/// if a VR256 register is used, but some AVX instructions also have this
/// field marked when using a f256 memory references.
VEX_LShift = VEX_4VShift + 1,
VEX_L = 1ULL << VEX_LShift,
// EVEX_K - Set if this instruction requires masking
EVEX_KShift = VEX_LShift + 1,
EVEX_K = 1ULL << EVEX_KShift,
// EVEX_Z - Set if this instruction has EVEX.Z field set.
EVEX_ZShift = EVEX_KShift + 1,
EVEX_Z = 1ULL << EVEX_ZShift,
// EVEX_L2 - Set if this instruction has EVEX.L' field set.
EVEX_L2Shift = EVEX_ZShift + 1,
EVEX_L2 = 1ULL << EVEX_L2Shift,
// EVEX_B - Set if this instruction has EVEX.B field set.
EVEX_BShift = EVEX_L2Shift + 1,
EVEX_B = 1ULL << EVEX_BShift,
// The scaling factor for the AVX512's 8-bit compressed displacement.
CD8_Scale_Shift = EVEX_BShift + 1,
CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
/// Explicitly specified rounding control
EVEX_RCShift = CD8_Scale_Shift + 7,
EVEX_RC = 1ULL << EVEX_RCShift,
// NOTRACK prefix
NoTrackShift = EVEX_RCShift + 1,
NOTRACK = 1ULL << NoTrackShift,
// Force VEX encoding
ExplicitVEXShift = NoTrackShift + 1,
ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
};
/// \returns true if the instruction with given opcode is a prefix.
inline bool isPrefix(uint64_t TSFlags) {
return (TSFlags & X86II::FormMask) == PrefixByte;
}
/// \returns true if the instruction with given opcode is a pseudo.
inline bool isPseudo(uint64_t TSFlags) {
return (TSFlags & X86II::FormMask) == Pseudo;
}
/// \returns the "base" X86 opcode for the specified machine
/// instruction.
inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
return TSFlags >> X86II::OpcodeShift;
}
inline bool hasImm(uint64_t TSFlags) {
return (TSFlags & X86II::ImmMask) != 0;
}
/// Decode the "size of immediate" field from the TSFlags field of the
/// specified instruction.
inline unsigned getSizeOfImm(uint64_t TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: llvm_unreachable("Unknown immediate size");
case X86II::Imm8:
case X86II::Imm8PCRel:
case X86II::Imm8Reg: return 1;
case X86II::Imm16:
case X86II::Imm16PCRel: return 2;
case X86II::Imm32:
case X86II::Imm32S:
case X86II::Imm32PCRel: return 4;
case X86II::Imm64: return 8;
}
}
/// \returns true if the immediate of the specified instruction's TSFlags
/// indicates that it is pc relative.
inline bool isImmPCRel(uint64_t TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: llvm_unreachable("Unknown immediate size");
case X86II::Imm8PCRel:
case X86II::Imm16PCRel:
case X86II::Imm32PCRel:
return true;
case X86II::Imm8:
case X86II::Imm8Reg:
case X86II::Imm16:
case X86II::Imm32:
case X86II::Imm32S:
case X86II::Imm64:
return false;
}
}
/// \returns true if the immediate of the specified instruction's
/// TSFlags indicates that it is signed.
inline bool isImmSigned(uint64_t TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: llvm_unreachable("Unknown immediate signedness");
case X86II::Imm32S:
return true;
case X86II::Imm8:
case X86II::Imm8PCRel:
case X86II::Imm8Reg:
case X86II::Imm16:
case X86II::Imm16PCRel:
case X86II::Imm32:
case X86II::Imm32PCRel:
case X86II::Imm64:
return false;
}
}
/// Compute whether all of the def operands are repeated in the uses and
/// therefore should be skipped.
/// This determines the start of the unique operand list. We need to determine
/// if all of the defs have a corresponding tied operand in the uses.
/// Unfortunately, the tied operand information is encoded in the uses not
/// the defs so we have to use some heuristics to find which operands to
/// query.
inline unsigned getOperandBias(const MCInstrDesc& Desc) {
unsigned NumDefs = Desc.getNumDefs();
unsigned NumOps = Desc.getNumOperands();
switch (NumDefs) {
default: llvm_unreachable("Unexpected number of defs");
case 0:
return 0;
case 1:
// Common two addr case.
if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
return 1;
// Check for AVX-512 scatter which has a TIED_TO in the second to last
// operand.
if (NumOps == 8 &&
Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
return 1;
return 0;
case 2:
// XCHG/XADD have two destinations and two sources.
if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
return 2;
// Check for gather. AVX-512 has the second tied operand early. AVX2
// has it as the last op.
if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
(Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
return 2;
return 0;
}
}
/// The function returns the MCInst operand # for the first field of the
/// memory operand. If the instruction doesn't have a
/// memory operand, this returns -1.
///
/// Note that this ignores tied operands. If there is a tied register which
/// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
/// counted as one operand.
///
inline int getMemoryOperandNo(uint64_t TSFlags) {
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
switch (TSFlags & X86II::FormMask) {
default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
case X86II::Pseudo:
case X86II::RawFrm:
case X86II::AddRegFrm:
case X86II::RawFrmImm8:
case X86II::RawFrmImm16:
case X86II::RawFrmMemOffs:
case X86II::RawFrmSrc:
case X86II::RawFrmDst:
case X86II::RawFrmDstSrc:
case X86II::AddCCFrm:
case X86II::PrefixByte:
return -1;
case X86II::MRMDestMem:
case X86II::MRMDestMemFSIB:
return 0;
case X86II::MRMSrcMem:
case X86II::MRMSrcMemFSIB:
// Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
// mask register.
return 1 + HasVEX_4V + HasEVEX_K;
case X86II::MRMSrcMem4VOp3:
// Skip registers encoded in reg.
return 1 + HasEVEX_K;
case X86II::MRMSrcMemOp4:
// Skip registers encoded in reg, VEX_VVVV, and I8IMM.
return 3;
case X86II::MRMSrcMemCC:
// Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
// mask register.
return 1;
case X86II::MRMDestReg:
case X86II::MRMSrcReg:
case X86II::MRMSrcReg4VOp3:
case X86II::MRMSrcRegOp4:
case X86II::MRMSrcRegCC:
case X86II::MRMXrCC:
case X86II::MRMr0:
case X86II::MRMXr:
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
return -1;
case X86II::MRM0X: case X86II::MRM1X:
case X86II::MRM2X: case X86II::MRM3X:
case X86II::MRM4X: case X86II::MRM5X:
case X86II::MRM6X: case X86II::MRM7X:
return -1;
case X86II::MRMXmCC:
case X86II::MRMXm:
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m:
// Start from 0, skip registers encoded in VEX_VVVV or a mask register.
return 0 + HasVEX_4V + HasEVEX_K;
case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
case X86II::MRM_FF:
return -1;
}
}
/// \returns true if the MachineOperand is a x86-64 extended (r8 or
/// higher) register, e.g. r8, xmm8, xmm13, etc.
inline bool isX86_64ExtendedReg(unsigned RegNo) {
if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
(RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
(RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
return true;
switch (RegNo) {
default: break;
case X86::R8: case X86::R9: case X86::R10: case X86::R11:
case X86::R12: case X86::R13: case X86::R14: case X86::R15:
case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
return true;
}
return false;
}
/// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
/// registers, e.g. zmm21, etc.
static inline bool is32ExtendedReg(unsigned RegNo) {
return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
(RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
(RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
}
inline bool isX86_64NonExtLowByteReg(unsigned reg) {
return (reg == X86::SPL || reg == X86::BPL ||
reg == X86::SIL || reg == X86::DIL);
}
/// \returns true if this is a masked instruction.
inline bool isKMasked(uint64_t TSFlags) {
return (TSFlags & X86II::EVEX_K) != 0;
}
/// \returns true if this is a merge masked instruction.
inline bool isKMergeMasked(uint64_t TSFlags) {
return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
}
}
} // end namespace llvm;
#endif