You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

791 lines
32 KiB

//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides X86 specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86ATTInstPrinter.h"
#include "X86BaseInfo.h"
#include "X86IntelInstPrinter.h"
#include "X86MCAsmInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_MC_DESC
#define GET_INSTRINFO_MC_HELPERS
#include "X86GenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "X86GenSubtargetInfo.inc"
std::string X86_MC::ParseX86Triple(const Triple &TT) {
std::string FS;
// SSE2 should default to enabled in 64-bit mode, but can be turned off
// explicitly.
if (TT.isArch64Bit())
FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
else if (TT.getEnvironment() != Triple::CODE16)
FS = "-64bit-mode,+32bit-mode,-16bit-mode";
else
FS = "-64bit-mode,-32bit-mode,+16bit-mode";
return FS;
}
unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
if (TT.getArch() == Triple::x86_64)
return DWARFFlavour::X86_64;
if (TT.isOSDarwin())
return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
if (TT.isOSCygMing())
// Unsupported by now, just quick fallback
return DWARFFlavour::X86_32_Generic;
return DWARFFlavour::X86_32_Generic;
}
bool X86_MC::hasLockPrefix(const MCInst &MI) {
return MI.getFlags() & X86::IP_HAS_LOCK;
}
void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
// FIXME: TableGen these.
for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
unsigned SEH = MRI->getEncodingValue(Reg);
MRI->mapLLVMRegToSEHReg(Reg, SEH);
}
// Mapping from CodeView to MC register id.
static const struct {
codeview::RegisterId CVReg;
MCPhysReg Reg;
} RegMap[] = {
{codeview::RegisterId::AL, X86::AL},
{codeview::RegisterId::CL, X86::CL},
{codeview::RegisterId::DL, X86::DL},
{codeview::RegisterId::BL, X86::BL},
{codeview::RegisterId::AH, X86::AH},
{codeview::RegisterId::CH, X86::CH},
{codeview::RegisterId::DH, X86::DH},
{codeview::RegisterId::BH, X86::BH},
{codeview::RegisterId::AX, X86::AX},
{codeview::RegisterId::CX, X86::CX},
{codeview::RegisterId::DX, X86::DX},
{codeview::RegisterId::BX, X86::BX},
{codeview::RegisterId::SP, X86::SP},
{codeview::RegisterId::BP, X86::BP},
{codeview::RegisterId::SI, X86::SI},
{codeview::RegisterId::DI, X86::DI},
{codeview::RegisterId::EAX, X86::EAX},
{codeview::RegisterId::ECX, X86::ECX},
{codeview::RegisterId::EDX, X86::EDX},
{codeview::RegisterId::EBX, X86::EBX},
{codeview::RegisterId::ESP, X86::ESP},
{codeview::RegisterId::EBP, X86::EBP},
{codeview::RegisterId::ESI, X86::ESI},
{codeview::RegisterId::EDI, X86::EDI},
{codeview::RegisterId::EFLAGS, X86::EFLAGS},
{codeview::RegisterId::ST0, X86::FP0},
{codeview::RegisterId::ST1, X86::FP1},
{codeview::RegisterId::ST2, X86::FP2},
{codeview::RegisterId::ST3, X86::FP3},
{codeview::RegisterId::ST4, X86::FP4},
{codeview::RegisterId::ST5, X86::FP5},
{codeview::RegisterId::ST6, X86::FP6},
{codeview::RegisterId::ST7, X86::FP7},
{codeview::RegisterId::MM0, X86::MM0},
{codeview::RegisterId::MM1, X86::MM1},
{codeview::RegisterId::MM2, X86::MM2},
{codeview::RegisterId::MM3, X86::MM3},
{codeview::RegisterId::MM4, X86::MM4},
{codeview::RegisterId::MM5, X86::MM5},
{codeview::RegisterId::MM6, X86::MM6},
{codeview::RegisterId::MM7, X86::MM7},
{codeview::RegisterId::XMM0, X86::XMM0},
{codeview::RegisterId::XMM1, X86::XMM1},
{codeview::RegisterId::XMM2, X86::XMM2},
{codeview::RegisterId::XMM3, X86::XMM3},
{codeview::RegisterId::XMM4, X86::XMM4},
{codeview::RegisterId::XMM5, X86::XMM5},
{codeview::RegisterId::XMM6, X86::XMM6},
{codeview::RegisterId::XMM7, X86::XMM7},
{codeview::RegisterId::XMM8, X86::XMM8},
{codeview::RegisterId::XMM9, X86::XMM9},
{codeview::RegisterId::XMM10, X86::XMM10},
{codeview::RegisterId::XMM11, X86::XMM11},
{codeview::RegisterId::XMM12, X86::XMM12},
{codeview::RegisterId::XMM13, X86::XMM13},
{codeview::RegisterId::XMM14, X86::XMM14},
{codeview::RegisterId::XMM15, X86::XMM15},
{codeview::RegisterId::SIL, X86::SIL},
{codeview::RegisterId::DIL, X86::DIL},
{codeview::RegisterId::BPL, X86::BPL},
{codeview::RegisterId::SPL, X86::SPL},
{codeview::RegisterId::RAX, X86::RAX},
{codeview::RegisterId::RBX, X86::RBX},
{codeview::RegisterId::RCX, X86::RCX},
{codeview::RegisterId::RDX, X86::RDX},
{codeview::RegisterId::RSI, X86::RSI},
{codeview::RegisterId::RDI, X86::RDI},
{codeview::RegisterId::RBP, X86::RBP},
{codeview::RegisterId::RSP, X86::RSP},
{codeview::RegisterId::R8, X86::R8},
{codeview::RegisterId::R9, X86::R9},
{codeview::RegisterId::R10, X86::R10},
{codeview::RegisterId::R11, X86::R11},
{codeview::RegisterId::R12, X86::R12},
{codeview::RegisterId::R13, X86::R13},
{codeview::RegisterId::R14, X86::R14},
{codeview::RegisterId::R15, X86::R15},
{codeview::RegisterId::R8B, X86::R8B},
{codeview::RegisterId::R9B, X86::R9B},
{codeview::RegisterId::R10B, X86::R10B},
{codeview::RegisterId::R11B, X86::R11B},
{codeview::RegisterId::R12B, X86::R12B},
{codeview::RegisterId::R13B, X86::R13B},
{codeview::RegisterId::R14B, X86::R14B},
{codeview::RegisterId::R15B, X86::R15B},
{codeview::RegisterId::R8W, X86::R8W},
{codeview::RegisterId::R9W, X86::R9W},
{codeview::RegisterId::R10W, X86::R10W},
{codeview::RegisterId::R11W, X86::R11W},
{codeview::RegisterId::R12W, X86::R12W},
{codeview::RegisterId::R13W, X86::R13W},
{codeview::RegisterId::R14W, X86::R14W},
{codeview::RegisterId::R15W, X86::R15W},
{codeview::RegisterId::R8D, X86::R8D},
{codeview::RegisterId::R9D, X86::R9D},
{codeview::RegisterId::R10D, X86::R10D},
{codeview::RegisterId::R11D, X86::R11D},
{codeview::RegisterId::R12D, X86::R12D},
{codeview::RegisterId::R13D, X86::R13D},
{codeview::RegisterId::R14D, X86::R14D},
{codeview::RegisterId::R15D, X86::R15D},
{codeview::RegisterId::AMD64_YMM0, X86::YMM0},
{codeview::RegisterId::AMD64_YMM1, X86::YMM1},
{codeview::RegisterId::AMD64_YMM2, X86::YMM2},
{codeview::RegisterId::AMD64_YMM3, X86::YMM3},
{codeview::RegisterId::AMD64_YMM4, X86::YMM4},
{codeview::RegisterId::AMD64_YMM5, X86::YMM5},
{codeview::RegisterId::AMD64_YMM6, X86::YMM6},
{codeview::RegisterId::AMD64_YMM7, X86::YMM7},
{codeview::RegisterId::AMD64_YMM8, X86::YMM8},
{codeview::RegisterId::AMD64_YMM9, X86::YMM9},
{codeview::RegisterId::AMD64_YMM10, X86::YMM10},
{codeview::RegisterId::AMD64_YMM11, X86::YMM11},
{codeview::RegisterId::AMD64_YMM12, X86::YMM12},
{codeview::RegisterId::AMD64_YMM13, X86::YMM13},
{codeview::RegisterId::AMD64_YMM14, X86::YMM14},
{codeview::RegisterId::AMD64_YMM15, X86::YMM15},
{codeview::RegisterId::AMD64_YMM16, X86::YMM16},
{codeview::RegisterId::AMD64_YMM17, X86::YMM17},
{codeview::RegisterId::AMD64_YMM18, X86::YMM18},
{codeview::RegisterId::AMD64_YMM19, X86::YMM19},
{codeview::RegisterId::AMD64_YMM20, X86::YMM20},
{codeview::RegisterId::AMD64_YMM21, X86::YMM21},
{codeview::RegisterId::AMD64_YMM22, X86::YMM22},
{codeview::RegisterId::AMD64_YMM23, X86::YMM23},
{codeview::RegisterId::AMD64_YMM24, X86::YMM24},
{codeview::RegisterId::AMD64_YMM25, X86::YMM25},
{codeview::RegisterId::AMD64_YMM26, X86::YMM26},
{codeview::RegisterId::AMD64_YMM27, X86::YMM27},
{codeview::RegisterId::AMD64_YMM28, X86::YMM28},
{codeview::RegisterId::AMD64_YMM29, X86::YMM29},
{codeview::RegisterId::AMD64_YMM30, X86::YMM30},
{codeview::RegisterId::AMD64_YMM31, X86::YMM31},
{codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
{codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
{codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
{codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
{codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
{codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
{codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
{codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
{codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
{codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
{codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
{codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
{codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
{codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
{codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
{codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
{codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
{codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
{codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
{codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
{codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
{codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
{codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
{codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
{codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
{codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
{codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
{codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
{codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
{codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
{codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
{codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
{codeview::RegisterId::AMD64_K0, X86::K0},
{codeview::RegisterId::AMD64_K1, X86::K1},
{codeview::RegisterId::AMD64_K2, X86::K2},
{codeview::RegisterId::AMD64_K3, X86::K3},
{codeview::RegisterId::AMD64_K4, X86::K4},
{codeview::RegisterId::AMD64_K5, X86::K5},
{codeview::RegisterId::AMD64_K6, X86::K6},
{codeview::RegisterId::AMD64_K7, X86::K7},
{codeview::RegisterId::AMD64_XMM16, X86::XMM16},
{codeview::RegisterId::AMD64_XMM17, X86::XMM17},
{codeview::RegisterId::AMD64_XMM18, X86::XMM18},
{codeview::RegisterId::AMD64_XMM19, X86::XMM19},
{codeview::RegisterId::AMD64_XMM20, X86::XMM20},
{codeview::RegisterId::AMD64_XMM21, X86::XMM21},
{codeview::RegisterId::AMD64_XMM22, X86::XMM22},
{codeview::RegisterId::AMD64_XMM23, X86::XMM23},
{codeview::RegisterId::AMD64_XMM24, X86::XMM24},
{codeview::RegisterId::AMD64_XMM25, X86::XMM25},
{codeview::RegisterId::AMD64_XMM26, X86::XMM26},
{codeview::RegisterId::AMD64_XMM27, X86::XMM27},
{codeview::RegisterId::AMD64_XMM28, X86::XMM28},
{codeview::RegisterId::AMD64_XMM29, X86::XMM29},
{codeview::RegisterId::AMD64_XMM30, X86::XMM30},
{codeview::RegisterId::AMD64_XMM31, X86::XMM31},
};
for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
}
MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
StringRef CPU, StringRef FS) {
std::string ArchFS = X86_MC::ParseX86Triple(TT);
assert(!ArchFS.empty() && "Failed to parse X86 triple");
if (!FS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
if (CPU.empty())
CPU = "generic";
return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
}
static MCInstrInfo *createX86MCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitX86MCInstrInfo(X);
return X;
}
static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
unsigned RA = (TT.getArch() == Triple::x86_64)
? X86::RIP // Should have dwarf #16.
: X86::EIP; // Should have dwarf #8.
MCRegisterInfo *X = new MCRegisterInfo();
InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
X86_MC::getDwarfRegFlavour(TT, true), RA);
X86_MC::initLLVMToSEHAndCVRegMapping(X);
return X;
}
static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
const Triple &TheTriple,
const MCTargetOptions &Options) {
bool is64Bit = TheTriple.getArch() == Triple::x86_64;
MCAsmInfo *MAI;
if (TheTriple.isOSBinFormatMachO()) {
if (is64Bit)
MAI = new X86_64MCAsmInfoDarwin(TheTriple);
else
MAI = new X86MCAsmInfoDarwin(TheTriple);
} else if (TheTriple.isOSBinFormatELF()) {
// Force the use of an ELF container.
MAI = new X86ELFMCAsmInfo(TheTriple);
} else if (TheTriple.isWindowsMSVCEnvironment() ||
TheTriple.isWindowsCoreCLREnvironment()) {
if (Options.getAssemblyLanguage().equals_lower("masm"))
MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
else
MAI = new X86MCAsmInfoMicrosoft(TheTriple);
} else if (TheTriple.isOSCygMing() ||
TheTriple.isWindowsItaniumEnvironment()) {
MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
} else {
// The default is ELF.
MAI = new X86ELFMCAsmInfo(TheTriple);
}
// Initialize initial frame state.
// Calculate amount of bytes used for return address storing
int stackGrowth = is64Bit ? -8 : -4;
// Initial state of the frame pointer is esp+stackGrowth.
unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
MAI->addInitialFrameState(Inst);
// Add return address to move list
unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
MAI->addInitialFrameState(Inst2);
return MAI;
}
static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI) {
if (SyntaxVariant == 0)
return new X86ATTInstPrinter(MAI, MII, MRI);
if (SyntaxVariant == 1)
return new X86IntelInstPrinter(MAI, MII, MRI);
return nullptr;
}
static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
MCContext &Ctx) {
// Default to the stock relocation info.
return llvm::createMCRelocationInfo(TheTriple, Ctx);
}
namespace llvm {
namespace X86_MC {
class X86MCInstrAnalysis : public MCInstrAnalysis {
X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
virtual ~X86MCInstrAnalysis() = default;
public:
X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
#define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
#include "X86GenSubtargetInfo.inc"
bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
APInt &Mask) const override;
std::vector<std::pair<uint64_t, uint64_t>>
findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
uint64_t GotSectionVA,
const Triple &TargetTriple) const override;
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
uint64_t &Target) const override;
Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
uint64_t Addr,
uint64_t Size) const override;
};
#define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
#include "X86GenSubtargetInfo.inc"
bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
const MCInst &Inst,
APInt &Mask) const {
const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
unsigned NumDefs = Desc.getNumDefs();
unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
"Unexpected number of bits in the mask!");
bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
auto ClearsSuperReg = [=](unsigned RegID) {
// On X86-64, a general purpose integer register is viewed as a 64-bit
// register internal to the processor.
// An update to the lower 32 bits of a 64 bit integer register is
// architecturally defined to zero extend the upper 32 bits.
if (GR32RC.contains(RegID))
return true;
// Early exit if this instruction has no vex/evex/xop prefix.
if (!HasEVEX && !HasVEX && !HasXOP)
return false;
// All VEX and EVEX encoded instructions are defined to zero the high bits
// of the destination register up to VLMAX (i.e. the maximum vector register
// width pertaining to the instruction).
// We assume the same behavior for XOP instructions too.
return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
};
Mask.clearAllBits();
for (unsigned I = 0, E = NumDefs; I < E; ++I) {
const MCOperand &Op = Inst.getOperand(I);
if (ClearsSuperReg(Op.getReg()))
Mask.setBit(I);
}
for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
const MCPhysReg Reg = Desc.getImplicitDefs()[I];
if (ClearsSuperReg(Reg))
Mask.setBit(NumDefs + I);
}
return Mask.getBoolValue();
}
static std::vector<std::pair<uint64_t, uint64_t>>
findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
uint64_t GotPltSectionVA) {
// Do a lightweight parsing of PLT entries.
std::vector<std::pair<uint64_t, uint64_t>> Result;
for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
// Recognize a jmp.
if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
// The jmp instruction at the beginning of each PLT entry jumps to the
// address of the base of the .got.plt section plus the immediate.
uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
Result.push_back(
std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
Byte += 6;
} else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
// The jmp instruction at the beginning of each PLT entry jumps to the
// immediate.
uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
Byte += 6;
} else
Byte++;
}
return Result;
}
static std::vector<std::pair<uint64_t, uint64_t>>
findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
// Do a lightweight parsing of PLT entries.
std::vector<std::pair<uint64_t, uint64_t>> Result;
for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
// Recognize a jmp.
if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
// The jmp instruction at the beginning of each PLT entry jumps to the
// address of the next instruction plus the immediate.
uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
Result.push_back(
std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
Byte += 6;
} else
Byte++;
}
return Result;
}
std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
switch (TargetTriple.getArch()) {
case Triple::x86:
return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
case Triple::x86_64:
return findX86_64PltEntries(PltSectionVA, PltContents);
default:
return {};
}
}
bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
uint64_t Size, uint64_t &Target) const {
if (Inst.getNumOperands() == 0 ||
Info->get(Inst.getOpcode()).OpInfo[0].OperandType != MCOI::OPERAND_PCREL)
return false;
Target = Addr + Size + Inst.getOperand(0).getImm();
return true;
}
Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
const MCInst &Inst, uint64_t Addr, uint64_t Size) const {
const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
if (MemOpStart == -1)
return None;
MemOpStart += X86II::getOperandBias(MCID);
const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
!Disp.isImm())
return None;
// RIP-relative addressing.
if (BaseReg.getReg() == X86::RIP)
return Addr + Size + Disp.getImm();
return None;
}
} // end of namespace X86_MC
} // end of namespace llvm
static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
return new X86_MC::X86MCInstrAnalysis(Info);
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
// Register the MC asm info.
RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(*T,
X86_MC::createX86MCSubtargetInfo);
// Register the MC instruction analyzer.
TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
// Register the code emitter.
TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
// Register the obj target streamer.
TargetRegistry::RegisterObjectTargetStreamer(*T,
createX86ObjectTargetStreamer);
// Register the asm target streamer.
TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
// Register the MC relocation info.
TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
}
// Register the asm backend.
TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
createX86_32AsmBackend);
TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
createX86_64AsmBackend);
}
MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
bool High) {
switch (Size) {
default: return X86::NoRegister;
case 8:
if (High) {
switch (Reg.id()) {
default: return getX86SubSuperRegisterOrZero(Reg, 64);
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SP;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AH;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DH;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CH;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BH;
}
} else {
switch (Reg.id()) {
default: return X86::NoRegister;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AL;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DL;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CL;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BL;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SIL;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DIL;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BPL;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SPL;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8B;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9B;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10B;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11B;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12B;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13B;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14B;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15B;
}
}
case 16:
switch (Reg.id()) {
default: return X86::NoRegister;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8W;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9W;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10W;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11W;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12W;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13W;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14W;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15W;
}
case 32:
switch (Reg.id()) {
default: return X86::NoRegister;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::EAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::EDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::ECX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::EBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::ESI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::EDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::EBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::ESP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8D;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9D;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10D;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11D;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12D;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13D;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14D;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15D;
}
case 64:
switch (Reg.id()) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::RAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::RDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::RCX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::RBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::RSI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::RDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::RBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::RSP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15;
}
}
}
MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
assert(Res != X86::NoRegister && "Unexpected register or VT");
return Res;
}