You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1351 lines
52 KiB

//===- ir.c - Simple test of C APIs ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM
// Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/* RUN: mlir-capi-ir-test 2>&1 | FileCheck %s
*/
#include "mlir-c/IR.h"
#include "mlir-c/AffineExpr.h"
#include "mlir-c/AffineMap.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
#include "mlir-c/Diagnostics.h"
#include "mlir-c/Registration.h"
#include "mlir-c/StandardDialect.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void populateLoopBody(MlirContext ctx, MlirBlock loopBody,
MlirLocation location, MlirBlock funcBody) {
MlirValue iv = mlirBlockGetArgument(loopBody, 0);
MlirValue funcArg0 = mlirBlockGetArgument(funcBody, 0);
MlirValue funcArg1 = mlirBlockGetArgument(funcBody, 1);
MlirType f32Type =
mlirTypeParseGet(ctx, mlirStringRefCreateFromCString("f32"));
MlirOperationState loadLHSState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.load"), location);
MlirValue loadLHSOperands[] = {funcArg0, iv};
mlirOperationStateAddOperands(&loadLHSState, 2, loadLHSOperands);
mlirOperationStateAddResults(&loadLHSState, 1, &f32Type);
MlirOperation loadLHS = mlirOperationCreate(&loadLHSState);
mlirBlockAppendOwnedOperation(loopBody, loadLHS);
MlirOperationState loadRHSState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.load"), location);
MlirValue loadRHSOperands[] = {funcArg1, iv};
mlirOperationStateAddOperands(&loadRHSState, 2, loadRHSOperands);
mlirOperationStateAddResults(&loadRHSState, 1, &f32Type);
MlirOperation loadRHS = mlirOperationCreate(&loadRHSState);
mlirBlockAppendOwnedOperation(loopBody, loadRHS);
MlirOperationState addState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.addf"), location);
MlirValue addOperands[] = {mlirOperationGetResult(loadLHS, 0),
mlirOperationGetResult(loadRHS, 0)};
mlirOperationStateAddOperands(&addState, 2, addOperands);
mlirOperationStateAddResults(&addState, 1, &f32Type);
MlirOperation add = mlirOperationCreate(&addState);
mlirBlockAppendOwnedOperation(loopBody, add);
MlirOperationState storeState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.store"), location);
MlirValue storeOperands[] = {mlirOperationGetResult(add, 0), funcArg0, iv};
mlirOperationStateAddOperands(&storeState, 3, storeOperands);
MlirOperation store = mlirOperationCreate(&storeState);
mlirBlockAppendOwnedOperation(loopBody, store);
MlirOperationState yieldState = mlirOperationStateGet(
mlirStringRefCreateFromCString("scf.yield"), location);
MlirOperation yield = mlirOperationCreate(&yieldState);
mlirBlockAppendOwnedOperation(loopBody, yield);
}
MlirModule makeAndDumpAdd(MlirContext ctx, MlirLocation location) {
MlirModule moduleOp = mlirModuleCreateEmpty(location);
MlirBlock moduleBody = mlirModuleGetBody(moduleOp);
MlirType memrefType =
mlirTypeParseGet(ctx, mlirStringRefCreateFromCString("memref<?xf32>"));
MlirType funcBodyArgTypes[] = {memrefType, memrefType};
MlirRegion funcBodyRegion = mlirRegionCreate();
MlirBlock funcBody = mlirBlockCreate(
sizeof(funcBodyArgTypes) / sizeof(MlirType), funcBodyArgTypes);
mlirRegionAppendOwnedBlock(funcBodyRegion, funcBody);
MlirAttribute funcTypeAttr = mlirAttributeParseGet(
ctx,
mlirStringRefCreateFromCString("(memref<?xf32>, memref<?xf32>) -> ()"));
MlirAttribute funcNameAttr =
mlirAttributeParseGet(ctx, mlirStringRefCreateFromCString("\"add\""));
MlirNamedAttribute funcAttrs[] = {
mlirNamedAttributeGet(mlirStringRefCreateFromCString("type"),
funcTypeAttr),
mlirNamedAttributeGet(mlirStringRefCreateFromCString("sym_name"),
funcNameAttr)};
MlirOperationState funcState =
mlirOperationStateGet(mlirStringRefCreateFromCString("func"), location);
mlirOperationStateAddAttributes(&funcState, 2, funcAttrs);
mlirOperationStateAddOwnedRegions(&funcState, 1, &funcBodyRegion);
MlirOperation func = mlirOperationCreate(&funcState);
mlirBlockInsertOwnedOperation(moduleBody, 0, func);
MlirType indexType =
mlirTypeParseGet(ctx, mlirStringRefCreateFromCString("index"));
MlirAttribute indexZeroLiteral =
mlirAttributeParseGet(ctx, mlirStringRefCreateFromCString("0 : index"));
MlirNamedAttribute indexZeroValueAttr = mlirNamedAttributeGet(
mlirStringRefCreateFromCString("value"), indexZeroLiteral);
MlirOperationState constZeroState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.constant"), location);
mlirOperationStateAddResults(&constZeroState, 1, &indexType);
mlirOperationStateAddAttributes(&constZeroState, 1, &indexZeroValueAttr);
MlirOperation constZero = mlirOperationCreate(&constZeroState);
mlirBlockAppendOwnedOperation(funcBody, constZero);
MlirValue funcArg0 = mlirBlockGetArgument(funcBody, 0);
MlirValue constZeroValue = mlirOperationGetResult(constZero, 0);
MlirValue dimOperands[] = {funcArg0, constZeroValue};
MlirOperationState dimState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.dim"), location);
mlirOperationStateAddOperands(&dimState, 2, dimOperands);
mlirOperationStateAddResults(&dimState, 1, &indexType);
MlirOperation dim = mlirOperationCreate(&dimState);
mlirBlockAppendOwnedOperation(funcBody, dim);
MlirRegion loopBodyRegion = mlirRegionCreate();
MlirBlock loopBody = mlirBlockCreate(/*nArgs=*/1, &indexType);
mlirRegionAppendOwnedBlock(loopBodyRegion, loopBody);
MlirAttribute indexOneLiteral =
mlirAttributeParseGet(ctx, mlirStringRefCreateFromCString("1 : index"));
MlirNamedAttribute indexOneValueAttr = mlirNamedAttributeGet(
mlirStringRefCreateFromCString("value"), indexOneLiteral);
MlirOperationState constOneState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.constant"), location);
mlirOperationStateAddResults(&constOneState, 1, &indexType);
mlirOperationStateAddAttributes(&constOneState, 1, &indexOneValueAttr);
MlirOperation constOne = mlirOperationCreate(&constOneState);
mlirBlockAppendOwnedOperation(funcBody, constOne);
MlirValue dimValue = mlirOperationGetResult(dim, 0);
MlirValue constOneValue = mlirOperationGetResult(constOne, 0);
MlirValue loopOperands[] = {constZeroValue, dimValue, constOneValue};
MlirOperationState loopState = mlirOperationStateGet(
mlirStringRefCreateFromCString("scf.for"), location);
mlirOperationStateAddOperands(&loopState, 3, loopOperands);
mlirOperationStateAddOwnedRegions(&loopState, 1, &loopBodyRegion);
MlirOperation loop = mlirOperationCreate(&loopState);
mlirBlockAppendOwnedOperation(funcBody, loop);
populateLoopBody(ctx, loopBody, location, funcBody);
MlirOperationState retState = mlirOperationStateGet(
mlirStringRefCreateFromCString("std.return"), location);
MlirOperation ret = mlirOperationCreate(&retState);
mlirBlockAppendOwnedOperation(funcBody, ret);
MlirOperation module = mlirModuleGetOperation(moduleOp);
mlirOperationDump(module);
// clang-format off
// CHECK: module {
// CHECK: func @add(%[[ARG0:.*]]: memref<?xf32>, %[[ARG1:.*]]: memref<?xf32>) {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[DIM:.*]] = dim %[[ARG0]], %[[C0]] : memref<?xf32>
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: scf.for %[[I:.*]] = %[[C0]] to %[[DIM]] step %[[C1]] {
// CHECK: %[[LHS:.*]] = load %[[ARG0]][%[[I]]] : memref<?xf32>
// CHECK: %[[RHS:.*]] = load %[[ARG1]][%[[I]]] : memref<?xf32>
// CHECK: %[[SUM:.*]] = addf %[[LHS]], %[[RHS]] : f32
// CHECK: store %[[SUM]], %[[ARG0]][%[[I]]] : memref<?xf32>
// CHECK: }
// CHECK: return
// CHECK: }
// CHECK: }
// clang-format on
return moduleOp;
}
struct OpListNode {
MlirOperation op;
struct OpListNode *next;
};
typedef struct OpListNode OpListNode;
struct ModuleStats {
unsigned numOperations;
unsigned numAttributes;
unsigned numBlocks;
unsigned numRegions;
unsigned numValues;
unsigned numBlockArguments;
unsigned numOpResults;
};
typedef struct ModuleStats ModuleStats;
int collectStatsSingle(OpListNode *head, ModuleStats *stats) {
MlirOperation operation = head->op;
stats->numOperations += 1;
stats->numValues += mlirOperationGetNumResults(operation);
stats->numAttributes += mlirOperationGetNumAttributes(operation);
unsigned numRegions = mlirOperationGetNumRegions(operation);
stats->numRegions += numRegions;
intptr_t numResults = mlirOperationGetNumResults(operation);
for (intptr_t i = 0; i < numResults; ++i) {
MlirValue result = mlirOperationGetResult(operation, i);
if (!mlirValueIsAOpResult(result))
return 1;
if (mlirValueIsABlockArgument(result))
return 2;
if (!mlirOperationEqual(operation, mlirOpResultGetOwner(result)))
return 3;
if (i != mlirOpResultGetResultNumber(result))
return 4;
++stats->numOpResults;
}
for (unsigned i = 0; i < numRegions; ++i) {
MlirRegion region = mlirOperationGetRegion(operation, i);
for (MlirBlock block = mlirRegionGetFirstBlock(region);
!mlirBlockIsNull(block); block = mlirBlockGetNextInRegion(block)) {
++stats->numBlocks;
intptr_t numArgs = mlirBlockGetNumArguments(block);
stats->numValues += numArgs;
for (intptr_t j = 0; j < numArgs; ++j) {
MlirValue arg = mlirBlockGetArgument(block, j);
if (!mlirValueIsABlockArgument(arg))
return 5;
if (mlirValueIsAOpResult(arg))
return 6;
if (!mlirBlockEqual(block, mlirBlockArgumentGetOwner(arg)))
return 7;
if (j != mlirBlockArgumentGetArgNumber(arg))
return 8;
++stats->numBlockArguments;
}
for (MlirOperation child = mlirBlockGetFirstOperation(block);
!mlirOperationIsNull(child);
child = mlirOperationGetNextInBlock(child)) {
OpListNode *node = malloc(sizeof(OpListNode));
node->op = child;
node->next = head->next;
head->next = node;
}
}
}
return 0;
}
int collectStats(MlirOperation operation) {
OpListNode *head = malloc(sizeof(OpListNode));
head->op = operation;
head->next = NULL;
ModuleStats stats;
stats.numOperations = 0;
stats.numAttributes = 0;
stats.numBlocks = 0;
stats.numRegions = 0;
stats.numValues = 0;
stats.numBlockArguments = 0;
stats.numOpResults = 0;
do {
int retval = collectStatsSingle(head, &stats);
if (retval)
return retval;
OpListNode *next = head->next;
free(head);
head = next;
} while (head);
if (stats.numValues != stats.numBlockArguments + stats.numOpResults)
return 100;
fprintf(stderr, "@stats\n");
fprintf(stderr, "Number of operations: %u\n", stats.numOperations);
fprintf(stderr, "Number of attributes: %u\n", stats.numAttributes);
fprintf(stderr, "Number of blocks: %u\n", stats.numBlocks);
fprintf(stderr, "Number of regions: %u\n", stats.numRegions);
fprintf(stderr, "Number of values: %u\n", stats.numValues);
fprintf(stderr, "Number of block arguments: %u\n", stats.numBlockArguments);
fprintf(stderr, "Number of op results: %u\n", stats.numOpResults);
// clang-format off
// CHECK-LABEL: @stats
// CHECK: Number of operations: 13
// CHECK: Number of attributes: 4
// CHECK: Number of blocks: 3
// CHECK: Number of regions: 3
// CHECK: Number of values: 9
// CHECK: Number of block arguments: 3
// CHECK: Number of op results: 6
// clang-format on
return 0;
}
static void printToStderr(MlirStringRef str, void *userData) {
(void)userData;
fwrite(str.data, 1, str.length, stderr);
}
static void printFirstOfEach(MlirContext ctx, MlirOperation operation) {
// Assuming we are given a module, go to the first operation of the first
// function.
MlirRegion region = mlirOperationGetRegion(operation, 0);
MlirBlock block = mlirRegionGetFirstBlock(region);
operation = mlirBlockGetFirstOperation(block);
region = mlirOperationGetRegion(operation, 0);
MlirOperation parentOperation = operation;
block = mlirRegionGetFirstBlock(region);
operation = mlirBlockGetFirstOperation(block);
// Verify that parent operation and block report correctly.
fprintf(stderr, "Parent operation eq: %d\n",
mlirOperationEqual(mlirOperationGetParentOperation(operation),
parentOperation));
fprintf(stderr, "Block eq: %d\n",
mlirBlockEqual(mlirOperationGetBlock(operation), block));
// CHECK: Parent operation eq: 1
// CHECK: Block eq: 1
// In the module we created, the first operation of the first function is
// an "std.dim", which has an attribute and a single result that we can
// use to test the printing mechanism.
mlirBlockPrint(block, printToStderr, NULL);
fprintf(stderr, "\n");
fprintf(stderr, "First operation: ");
mlirOperationPrint(operation, printToStderr, NULL);
fprintf(stderr, "\n");
// clang-format off
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[DIM:.*]] = dim %{{.*}}, %[[C0]] : memref<?xf32>
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: scf.for %[[I:.*]] = %[[C0]] to %[[DIM]] step %[[C1]] {
// CHECK: %[[LHS:.*]] = load %{{.*}}[%[[I]]] : memref<?xf32>
// CHECK: %[[RHS:.*]] = load %{{.*}}[%[[I]]] : memref<?xf32>
// CHECK: %[[SUM:.*]] = addf %[[LHS]], %[[RHS]] : f32
// CHECK: store %[[SUM]], %{{.*}}[%[[I]]] : memref<?xf32>
// CHECK: }
// CHECK: return
// CHECK: First operation: {{.*}} = constant 0 : index
// clang-format on
// Get the operation name and print it.
MlirIdentifier ident = mlirOperationGetName(operation);
MlirStringRef identStr = mlirIdentifierStr(ident);
fprintf(stderr, "Operation name: '");
for (size_t i = 0; i < identStr.length; ++i)
fputc(identStr.data[i], stderr);
fprintf(stderr, "'\n");
// CHECK: Operation name: 'std.constant'
// Get the identifier again and verify equal.
MlirIdentifier identAgain = mlirIdentifierGet(ctx, identStr);
fprintf(stderr, "Identifier equal: %d\n",
mlirIdentifierEqual(ident, identAgain));
// CHECK: Identifier equal: 1
// Get the block terminator and print it.
MlirOperation terminator = mlirBlockGetTerminator(block);
fprintf(stderr, "Terminator: ");
mlirOperationPrint(terminator, printToStderr, NULL);
fprintf(stderr, "\n");
// CHECK: Terminator: return
// Get the attribute by index.
MlirNamedAttribute namedAttr0 = mlirOperationGetAttribute(operation, 0);
fprintf(stderr, "Get attr 0: ");
mlirAttributePrint(namedAttr0.attribute, printToStderr, NULL);
fprintf(stderr, "\n");
// CHECK: Get attr 0: 0 : index
// Now re-get the attribute by name.
MlirAttribute attr0ByName =
mlirOperationGetAttributeByName(operation, namedAttr0.name);
fprintf(stderr, "Get attr 0 by name: ");
mlirAttributePrint(attr0ByName, printToStderr, NULL);
fprintf(stderr, "\n");
// CHECK: Get attr 0 by name: 0 : index
// Get a non-existing attribute and assert that it is null (sanity).
fprintf(stderr, "does_not_exist is null: %d\n",
mlirAttributeIsNull(mlirOperationGetAttributeByName(
operation, mlirStringRefCreateFromCString("does_not_exist"))));
// CHECK: does_not_exist is null: 1
// Get result 0 and its type.
MlirValue value = mlirOperationGetResult(operation, 0);
fprintf(stderr, "Result 0: ");
mlirValuePrint(value, printToStderr, NULL);
fprintf(stderr, "\n");
fprintf(stderr, "Value is null: %d\n", mlirValueIsNull(value));
// CHECK: Result 0: {{.*}} = constant 0 : index
// CHECK: Value is null: 0
MlirType type = mlirValueGetType(value);
fprintf(stderr, "Result 0 type: ");
mlirTypePrint(type, printToStderr, NULL);
fprintf(stderr, "\n");
// CHECK: Result 0 type: index
// Set a custom attribute.
mlirOperationSetAttributeByName(operation,
mlirStringRefCreateFromCString("custom_attr"),
mlirBoolAttrGet(ctx, 1));
fprintf(stderr, "Op with set attr: ");
mlirOperationPrint(operation, printToStderr, NULL);
fprintf(stderr, "\n");
// CHECK: Op with set attr: {{.*}} {custom_attr = true}
// Remove the attribute.
fprintf(stderr, "Remove attr: %d\n",
mlirOperationRemoveAttributeByName(
operation, mlirStringRefCreateFromCString("custom_attr")));
fprintf(stderr, "Remove attr again: %d\n",
mlirOperationRemoveAttributeByName(
operation, mlirStringRefCreateFromCString("custom_attr")));
fprintf(stderr, "Removed attr is null: %d\n",
mlirAttributeIsNull(mlirOperationGetAttributeByName(
operation, mlirStringRefCreateFromCString("custom_attr"))));
// CHECK: Remove attr: 1
// CHECK: Remove attr again: 0
// CHECK: Removed attr is null: 1
// Add a large attribute to verify printing flags.
int64_t eltsShape[] = {4};
int32_t eltsData[] = {1, 2, 3, 4};
mlirOperationSetAttributeByName(
operation, mlirStringRefCreateFromCString("elts"),
mlirDenseElementsAttrInt32Get(
mlirRankedTensorTypeGet(1, eltsShape, mlirIntegerTypeGet(ctx, 32)), 4,
eltsData));
MlirOpPrintingFlags flags = mlirOpPrintingFlagsCreate();
mlirOpPrintingFlagsElideLargeElementsAttrs(flags, 2);
mlirOpPrintingFlagsPrintGenericOpForm(flags);
mlirOpPrintingFlagsEnableDebugInfo(flags, /*prettyForm=*/0);
mlirOpPrintingFlagsUseLocalScope(flags);
fprintf(stderr, "Op print with all flags: ");
mlirOperationPrintWithFlags(operation, flags, printToStderr, NULL);
fprintf(stderr, "\n");
// clang-format off
// CHECK: Op print with all flags: %{{.*}} = "std.constant"() {elts = opaque<"", "0xDEADBEEF"> : tensor<4xi32>, value = 0 : index} : () -> index loc(unknown)
// clang-format on
mlirOpPrintingFlagsDestroy(flags);
}
static int constructAndTraverseIr(MlirContext ctx) {
MlirLocation location = mlirLocationUnknownGet(ctx);
MlirModule moduleOp = makeAndDumpAdd(ctx, location);
MlirOperation module = mlirModuleGetOperation(moduleOp);
int errcode = collectStats(module);
if (errcode)
return errcode;
printFirstOfEach(ctx, module);
mlirModuleDestroy(moduleOp);
return 0;
}
/// Creates an operation with a region containing multiple blocks with
/// operations and dumps it. The blocks and operations are inserted using
/// block/operation-relative API and their final order is checked.
static void buildWithInsertionsAndPrint(MlirContext ctx) {
MlirLocation loc = mlirLocationUnknownGet(ctx);
MlirRegion owningRegion = mlirRegionCreate();
MlirBlock nullBlock = mlirRegionGetFirstBlock(owningRegion);
MlirOperationState state = mlirOperationStateGet(
mlirStringRefCreateFromCString("insertion.order.test"), loc);
mlirOperationStateAddOwnedRegions(&state, 1, &owningRegion);
MlirOperation op = mlirOperationCreate(&state);
MlirRegion region = mlirOperationGetRegion(op, 0);
// Use integer types of different bitwidth as block arguments in order to
// differentiate blocks.
MlirType i1 = mlirIntegerTypeGet(ctx, 1);
MlirType i2 = mlirIntegerTypeGet(ctx, 2);
MlirType i3 = mlirIntegerTypeGet(ctx, 3);
MlirType i4 = mlirIntegerTypeGet(ctx, 4);
MlirBlock block1 = mlirBlockCreate(1, &i1);
MlirBlock block2 = mlirBlockCreate(1, &i2);
MlirBlock block3 = mlirBlockCreate(1, &i3);
MlirBlock block4 = mlirBlockCreate(1, &i4);
// Insert blocks so as to obtain the 1-2-3-4 order,
mlirRegionInsertOwnedBlockBefore(region, nullBlock, block3);
mlirRegionInsertOwnedBlockBefore(region, block3, block2);
mlirRegionInsertOwnedBlockAfter(region, nullBlock, block1);
mlirRegionInsertOwnedBlockAfter(region, block3, block4);
MlirOperationState op1State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op1"), loc);
MlirOperationState op2State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op2"), loc);
MlirOperationState op3State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op3"), loc);
MlirOperationState op4State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op4"), loc);
MlirOperationState op5State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op5"), loc);
MlirOperationState op6State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op6"), loc);
MlirOperationState op7State =
mlirOperationStateGet(mlirStringRefCreateFromCString("dummy.op7"), loc);
MlirOperation op1 = mlirOperationCreate(&op1State);
MlirOperation op2 = mlirOperationCreate(&op2State);
MlirOperation op3 = mlirOperationCreate(&op3State);
MlirOperation op4 = mlirOperationCreate(&op4State);
MlirOperation op5 = mlirOperationCreate(&op5State);
MlirOperation op6 = mlirOperationCreate(&op6State);
MlirOperation op7 = mlirOperationCreate(&op7State);
// Insert operations in the first block so as to obtain the 1-2-3-4 order.
MlirOperation nullOperation = mlirBlockGetFirstOperation(block1);
assert(mlirOperationIsNull(nullOperation));
mlirBlockInsertOwnedOperationBefore(block1, nullOperation, op3);
mlirBlockInsertOwnedOperationBefore(block1, op3, op2);
mlirBlockInsertOwnedOperationAfter(block1, nullOperation, op1);
mlirBlockInsertOwnedOperationAfter(block1, op3, op4);
// Append operations to the rest of blocks to make them non-empty and thus
// printable.
mlirBlockAppendOwnedOperation(block2, op5);
mlirBlockAppendOwnedOperation(block3, op6);
mlirBlockAppendOwnedOperation(block4, op7);
mlirOperationDump(op);
mlirOperationDestroy(op);
// clang-format off
// CHECK-LABEL: "insertion.order.test"
// CHECK: ^{{.*}}(%{{.*}}: i1
// CHECK: "dummy.op1"
// CHECK-NEXT: "dummy.op2"
// CHECK-NEXT: "dummy.op3"
// CHECK-NEXT: "dummy.op4"
// CHECK: ^{{.*}}(%{{.*}}: i2
// CHECK: "dummy.op5"
// CHECK: ^{{.*}}(%{{.*}}: i3
// CHECK: "dummy.op6"
// CHECK: ^{{.*}}(%{{.*}}: i4
// CHECK: "dummy.op7"
// clang-format on
}
/// Dumps instances of all builtin types to check that C API works correctly.
/// Additionally, performs simple identity checks that a builtin type
/// constructed with C API can be inspected and has the expected type. The
/// latter achieves full coverage of C API for builtin types. Returns 0 on
/// success and a non-zero error code on failure.
static int printBuiltinTypes(MlirContext ctx) {
// Integer types.
MlirType i32 = mlirIntegerTypeGet(ctx, 32);
MlirType si32 = mlirIntegerTypeSignedGet(ctx, 32);
MlirType ui32 = mlirIntegerTypeUnsignedGet(ctx, 32);
if (!mlirTypeIsAInteger(i32) || mlirTypeIsAF32(i32))
return 1;
if (!mlirTypeIsAInteger(si32) || !mlirIntegerTypeIsSigned(si32))
return 2;
if (!mlirTypeIsAInteger(ui32) || !mlirIntegerTypeIsUnsigned(ui32))
return 3;
if (mlirTypeEqual(i32, ui32) || mlirTypeEqual(i32, si32))
return 4;
if (mlirIntegerTypeGetWidth(i32) != mlirIntegerTypeGetWidth(si32))
return 5;
fprintf(stderr, "@types\n");
mlirTypeDump(i32);
fprintf(stderr, "\n");
mlirTypeDump(si32);
fprintf(stderr, "\n");
mlirTypeDump(ui32);
fprintf(stderr, "\n");
// CHECK-LABEL: @types
// CHECK: i32
// CHECK: si32
// CHECK: ui32
// Index type.
MlirType index = mlirIndexTypeGet(ctx);
if (!mlirTypeIsAIndex(index))
return 6;
mlirTypeDump(index);
fprintf(stderr, "\n");
// CHECK: index
// Floating-point types.
MlirType bf16 = mlirBF16TypeGet(ctx);
MlirType f16 = mlirF16TypeGet(ctx);
MlirType f32 = mlirF32TypeGet(ctx);
MlirType f64 = mlirF64TypeGet(ctx);
if (!mlirTypeIsABF16(bf16))
return 7;
if (!mlirTypeIsAF16(f16))
return 9;
if (!mlirTypeIsAF32(f32))
return 10;
if (!mlirTypeIsAF64(f64))
return 11;
mlirTypeDump(bf16);
fprintf(stderr, "\n");
mlirTypeDump(f16);
fprintf(stderr, "\n");
mlirTypeDump(f32);
fprintf(stderr, "\n");
mlirTypeDump(f64);
fprintf(stderr, "\n");
// CHECK: bf16
// CHECK: f16
// CHECK: f32
// CHECK: f64
// None type.
MlirType none = mlirNoneTypeGet(ctx);
if (!mlirTypeIsANone(none))
return 12;
mlirTypeDump(none);
fprintf(stderr, "\n");
// CHECK: none
// Complex type.
MlirType cplx = mlirComplexTypeGet(f32);
if (!mlirTypeIsAComplex(cplx) ||
!mlirTypeEqual(mlirComplexTypeGetElementType(cplx), f32))
return 13;
mlirTypeDump(cplx);
fprintf(stderr, "\n");
// CHECK: complex<f32>
// Vector (and Shaped) type. ShapedType is a common base class for vectors,
// memrefs and tensors, one cannot create instances of this class so it is
// tested on an instance of vector type.
int64_t shape[] = {2, 3};
MlirType vector =
mlirVectorTypeGet(sizeof(shape) / sizeof(int64_t), shape, f32);
if (!mlirTypeIsAVector(vector) || !mlirTypeIsAShaped(vector))
return 14;
if (!mlirTypeEqual(mlirShapedTypeGetElementType(vector), f32) ||
!mlirShapedTypeHasRank(vector) || mlirShapedTypeGetRank(vector) != 2 ||
mlirShapedTypeGetDimSize(vector, 0) != 2 ||
mlirShapedTypeIsDynamicDim(vector, 0) ||
mlirShapedTypeGetDimSize(vector, 1) != 3 ||
!mlirShapedTypeHasStaticShape(vector))
return 15;
mlirTypeDump(vector);
fprintf(stderr, "\n");
// CHECK: vector<2x3xf32>
// Ranked tensor type.
MlirType rankedTensor =
mlirRankedTensorTypeGet(sizeof(shape) / sizeof(int64_t), shape, f32);
if (!mlirTypeIsATensor(rankedTensor) ||
!mlirTypeIsARankedTensor(rankedTensor))
return 16;
mlirTypeDump(rankedTensor);
fprintf(stderr, "\n");
// CHECK: tensor<2x3xf32>
// Unranked tensor type.
MlirType unrankedTensor = mlirUnrankedTensorTypeGet(f32);
if (!mlirTypeIsATensor(unrankedTensor) ||
!mlirTypeIsAUnrankedTensor(unrankedTensor) ||
mlirShapedTypeHasRank(unrankedTensor))
return 17;
mlirTypeDump(unrankedTensor);
fprintf(stderr, "\n");
// CHECK: tensor<*xf32>
// MemRef type.
MlirType memRef = mlirMemRefTypeContiguousGet(
f32, sizeof(shape) / sizeof(int64_t), shape, 2);
if (!mlirTypeIsAMemRef(memRef) ||
mlirMemRefTypeGetNumAffineMaps(memRef) != 0 ||
mlirMemRefTypeGetMemorySpace(memRef) != 2)
return 18;
mlirTypeDump(memRef);
fprintf(stderr, "\n");
// CHECK: memref<2x3xf32, 2>
// Unranked MemRef type.
MlirType unrankedMemRef = mlirUnrankedMemRefTypeGet(f32, 4);
if (!mlirTypeIsAUnrankedMemRef(unrankedMemRef) ||
mlirTypeIsAMemRef(unrankedMemRef) ||
mlirUnrankedMemrefGetMemorySpace(unrankedMemRef) != 4)
return 19;
mlirTypeDump(unrankedMemRef);
fprintf(stderr, "\n");
// CHECK: memref<*xf32, 4>
// Tuple type.
MlirType types[] = {unrankedMemRef, f32};
MlirType tuple = mlirTupleTypeGet(ctx, 2, types);
if (!mlirTypeIsATuple(tuple) || mlirTupleTypeGetNumTypes(tuple) != 2 ||
!mlirTypeEqual(mlirTupleTypeGetType(tuple, 0), unrankedMemRef) ||
!mlirTypeEqual(mlirTupleTypeGetType(tuple, 1), f32))
return 20;
mlirTypeDump(tuple);
fprintf(stderr, "\n");
// CHECK: tuple<memref<*xf32, 4>, f32>
// Function type.
MlirType funcInputs[2] = {mlirIndexTypeGet(ctx), mlirIntegerTypeGet(ctx, 1)};
MlirType funcResults[3] = {mlirIntegerTypeGet(ctx, 16),
mlirIntegerTypeGet(ctx, 32),
mlirIntegerTypeGet(ctx, 64)};
MlirType funcType = mlirFunctionTypeGet(ctx, 2, funcInputs, 3, funcResults);
if (mlirFunctionTypeGetNumInputs(funcType) != 2)
return 21;
if (mlirFunctionTypeGetNumResults(funcType) != 3)
return 22;
if (!mlirTypeEqual(funcInputs[0], mlirFunctionTypeGetInput(funcType, 0)) ||
!mlirTypeEqual(funcInputs[1], mlirFunctionTypeGetInput(funcType, 1)))
return 23;
if (!mlirTypeEqual(funcResults[0], mlirFunctionTypeGetResult(funcType, 0)) ||
!mlirTypeEqual(funcResults[1], mlirFunctionTypeGetResult(funcType, 1)) ||
!mlirTypeEqual(funcResults[2], mlirFunctionTypeGetResult(funcType, 2)))
return 24;
mlirTypeDump(funcType);
fprintf(stderr, "\n");
// CHECK: (index, i1) -> (i16, i32, i64)
return 0;
}
void callbackSetFixedLengthString(const char *data, intptr_t len,
void *userData) {
strncpy(userData, data, len);
}
bool stringIsEqual(const char *lhs, MlirStringRef rhs) {
if (strlen(lhs) != rhs.length) {
return false;
}
return !strncmp(lhs, rhs.data, rhs.length);
}
int printBuiltinAttributes(MlirContext ctx) {
MlirAttribute floating =
mlirFloatAttrDoubleGet(ctx, mlirF64TypeGet(ctx), 2.0);
if (!mlirAttributeIsAFloat(floating) ||
fabs(mlirFloatAttrGetValueDouble(floating) - 2.0) > 1E-6)
return 1;
fprintf(stderr, "@attrs\n");
mlirAttributeDump(floating);
// CHECK-LABEL: @attrs
// CHECK: 2.000000e+00 : f64
// Exercise mlirAttributeGetType() just for the first one.
MlirType floatingType = mlirAttributeGetType(floating);
mlirTypeDump(floatingType);
// CHECK: f64
MlirAttribute integer = mlirIntegerAttrGet(mlirIntegerTypeGet(ctx, 32), 42);
if (!mlirAttributeIsAInteger(integer) ||
mlirIntegerAttrGetValueInt(integer) != 42)
return 2;
mlirAttributeDump(integer);
// CHECK: 42 : i32
MlirAttribute boolean = mlirBoolAttrGet(ctx, 1);
if (!mlirAttributeIsABool(boolean) || !mlirBoolAttrGetValue(boolean))
return 3;
mlirAttributeDump(boolean);
// CHECK: true
const char data[] = "abcdefghijklmnopqestuvwxyz";
MlirAttribute opaque =
mlirOpaqueAttrGet(ctx, mlirStringRefCreateFromCString("std"), 3, data,
mlirNoneTypeGet(ctx));
if (!mlirAttributeIsAOpaque(opaque) ||
!stringIsEqual("std", mlirOpaqueAttrGetDialectNamespace(opaque)))
return 4;
MlirStringRef opaqueData = mlirOpaqueAttrGetData(opaque);
if (opaqueData.length != 3 ||
strncmp(data, opaqueData.data, opaqueData.length))
return 5;
mlirAttributeDump(opaque);
// CHECK: #std.abc
MlirAttribute string =
mlirStringAttrGet(ctx, mlirStringRefCreate(data + 3, 2));
if (!mlirAttributeIsAString(string))
return 6;
MlirStringRef stringValue = mlirStringAttrGetValue(string);
if (stringValue.length != 2 ||
strncmp(data + 3, stringValue.data, stringValue.length))
return 7;
mlirAttributeDump(string);
// CHECK: "de"
MlirAttribute flatSymbolRef =
mlirFlatSymbolRefAttrGet(ctx, mlirStringRefCreate(data + 5, 3));
if (!mlirAttributeIsAFlatSymbolRef(flatSymbolRef))
return 8;
MlirStringRef flatSymbolRefValue =
mlirFlatSymbolRefAttrGetValue(flatSymbolRef);
if (flatSymbolRefValue.length != 3 ||
strncmp(data + 5, flatSymbolRefValue.data, flatSymbolRefValue.length))
return 9;
mlirAttributeDump(flatSymbolRef);
// CHECK: @fgh
MlirAttribute symbols[] = {flatSymbolRef, flatSymbolRef};
MlirAttribute symbolRef =
mlirSymbolRefAttrGet(ctx, mlirStringRefCreate(data + 8, 2), 2, symbols);
if (!mlirAttributeIsASymbolRef(symbolRef) ||
mlirSymbolRefAttrGetNumNestedReferences(symbolRef) != 2 ||
!mlirAttributeEqual(mlirSymbolRefAttrGetNestedReference(symbolRef, 0),
flatSymbolRef) ||
!mlirAttributeEqual(mlirSymbolRefAttrGetNestedReference(symbolRef, 1),
flatSymbolRef))
return 10;
MlirStringRef symbolRefLeaf = mlirSymbolRefAttrGetLeafReference(symbolRef);
MlirStringRef symbolRefRoot = mlirSymbolRefAttrGetRootReference(symbolRef);
if (symbolRefLeaf.length != 3 ||
strncmp(data + 5, symbolRefLeaf.data, symbolRefLeaf.length) ||
symbolRefRoot.length != 2 ||
strncmp(data + 8, symbolRefRoot.data, symbolRefRoot.length))
return 11;
mlirAttributeDump(symbolRef);
// CHECK: @ij::@fgh::@fgh
MlirAttribute type = mlirTypeAttrGet(mlirF32TypeGet(ctx));
if (!mlirAttributeIsAType(type) ||
!mlirTypeEqual(mlirF32TypeGet(ctx), mlirTypeAttrGetValue(type)))
return 12;
mlirAttributeDump(type);
// CHECK: f32
MlirAttribute unit = mlirUnitAttrGet(ctx);
if (!mlirAttributeIsAUnit(unit))
return 13;
mlirAttributeDump(unit);
// CHECK: unit
int64_t shape[] = {1, 2};
int bools[] = {0, 1};
uint32_t uints32[] = {0u, 1u};
int32_t ints32[] = {0, 1};
uint64_t uints64[] = {0u, 1u};
int64_t ints64[] = {0, 1};
float floats[] = {0.0f, 1.0f};
double doubles[] = {0.0, 1.0};
MlirAttribute boolElements = mlirDenseElementsAttrBoolGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1)), 2, bools);
MlirAttribute uint32Elements = mlirDenseElementsAttrUInt32Get(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeUnsignedGet(ctx, 32)), 2,
uints32);
MlirAttribute int32Elements = mlirDenseElementsAttrInt32Get(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 32)), 2,
ints32);
MlirAttribute uint64Elements = mlirDenseElementsAttrUInt64Get(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeUnsignedGet(ctx, 64)), 2,
uints64);
MlirAttribute int64Elements = mlirDenseElementsAttrInt64Get(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 64)), 2,
ints64);
MlirAttribute floatElements = mlirDenseElementsAttrFloatGet(
mlirRankedTensorTypeGet(2, shape, mlirF32TypeGet(ctx)), 2, floats);
MlirAttribute doubleElements = mlirDenseElementsAttrDoubleGet(
mlirRankedTensorTypeGet(2, shape, mlirF64TypeGet(ctx)), 2, doubles);
if (!mlirAttributeIsADenseElements(boolElements) ||
!mlirAttributeIsADenseElements(uint32Elements) ||
!mlirAttributeIsADenseElements(int32Elements) ||
!mlirAttributeIsADenseElements(uint64Elements) ||
!mlirAttributeIsADenseElements(int64Elements) ||
!mlirAttributeIsADenseElements(floatElements) ||
!mlirAttributeIsADenseElements(doubleElements))
return 14;
if (mlirDenseElementsAttrGetBoolValue(boolElements, 1) != 1 ||
mlirDenseElementsAttrGetUInt32Value(uint32Elements, 1) != 1 ||
mlirDenseElementsAttrGetInt32Value(int32Elements, 1) != 1 ||
mlirDenseElementsAttrGetUInt64Value(uint64Elements, 1) != 1 ||
mlirDenseElementsAttrGetInt64Value(int64Elements, 1) != 1 ||
fabsf(mlirDenseElementsAttrGetFloatValue(floatElements, 1) - 1.0f) >
1E-6f ||
fabs(mlirDenseElementsAttrGetDoubleValue(doubleElements, 1) - 1.0) > 1E-6)
return 15;
mlirAttributeDump(boolElements);
mlirAttributeDump(uint32Elements);
mlirAttributeDump(int32Elements);
mlirAttributeDump(uint64Elements);
mlirAttributeDump(int64Elements);
mlirAttributeDump(floatElements);
mlirAttributeDump(doubleElements);
// CHECK: dense<{{\[}}[false, true]]> : tensor<1x2xi1>
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui32>
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi32>
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui64>
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi64>
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf32>
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf64>
MlirAttribute splatBool = mlirDenseElementsAttrBoolSplatGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1)), 1);
MlirAttribute splatUInt32 = mlirDenseElementsAttrUInt32SplatGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 32)), 1);
MlirAttribute splatInt32 = mlirDenseElementsAttrInt32SplatGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 32)), 1);
MlirAttribute splatUInt64 = mlirDenseElementsAttrUInt64SplatGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 64)), 1);
MlirAttribute splatInt64 = mlirDenseElementsAttrInt64SplatGet(
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 64)), 1);
MlirAttribute splatFloat = mlirDenseElementsAttrFloatSplatGet(
mlirRankedTensorTypeGet(2, shape, mlirF32TypeGet(ctx)), 1.0f);
MlirAttribute splatDouble = mlirDenseElementsAttrDoubleSplatGet(
mlirRankedTensorTypeGet(2, shape, mlirF64TypeGet(ctx)), 1.0);
if (!mlirAttributeIsADenseElements(splatBool) ||
!mlirDenseElementsAttrIsSplat(splatBool) ||
!mlirAttributeIsADenseElements(splatUInt32) ||
!mlirDenseElementsAttrIsSplat(splatUInt32) ||
!mlirAttributeIsADenseElements(splatInt32) ||
!mlirDenseElementsAttrIsSplat(splatInt32) ||
!mlirAttributeIsADenseElements(splatUInt64) ||
!mlirDenseElementsAttrIsSplat(splatUInt64) ||
!mlirAttributeIsADenseElements(splatInt64) ||
!mlirDenseElementsAttrIsSplat(splatInt64) ||
!mlirAttributeIsADenseElements(splatFloat) ||
!mlirDenseElementsAttrIsSplat(splatFloat) ||
!mlirAttributeIsADenseElements(splatDouble) ||
!mlirDenseElementsAttrIsSplat(splatDouble))
return 16;
if (mlirDenseElementsAttrGetBoolSplatValue(splatBool) != 1 ||
mlirDenseElementsAttrGetUInt32SplatValue(splatUInt32) != 1 ||
mlirDenseElementsAttrGetInt32SplatValue(splatInt32) != 1 ||
mlirDenseElementsAttrGetUInt64SplatValue(splatUInt64) != 1 ||
mlirDenseElementsAttrGetInt64SplatValue(splatInt64) != 1 ||
fabsf(mlirDenseElementsAttrGetFloatSplatValue(splatFloat) - 1.0f) >
1E-6f ||
fabs(mlirDenseElementsAttrGetDoubleSplatValue(splatDouble) - 1.0) > 1E-6)
return 17;
uint32_t *uint32RawData =
(uint32_t *)mlirDenseElementsAttrGetRawData(uint32Elements);
int32_t *int32RawData =
(int32_t *)mlirDenseElementsAttrGetRawData(int32Elements);
uint64_t *uint64RawData =
(uint64_t *)mlirDenseElementsAttrGetRawData(uint64Elements);
int64_t *int64RawData =
(int64_t *)mlirDenseElementsAttrGetRawData(int64Elements);
float *floatRawData =
(float *)mlirDenseElementsAttrGetRawData(floatElements);
double *doubleRawData =
(double *)mlirDenseElementsAttrGetRawData(doubleElements);
if (uint32RawData[0] != 0u || uint32RawData[1] != 1u ||
int32RawData[0] != 0 || int32RawData[1] != 1 ||
uint64RawData[0] != 0u || uint64RawData[1] != 1u ||
int64RawData[0] != 0 || int64RawData[1] != 1 ||
floatRawData[0] != 0.0f || floatRawData[1] != 1.0f ||
doubleRawData[0] != 0.0 || doubleRawData[1] != 1.0)
return 18;
mlirAttributeDump(splatBool);
mlirAttributeDump(splatUInt32);
mlirAttributeDump(splatInt32);
mlirAttributeDump(splatUInt64);
mlirAttributeDump(splatInt64);
mlirAttributeDump(splatFloat);
mlirAttributeDump(splatDouble);
// CHECK: dense<true> : tensor<1x2xi1>
// CHECK: dense<1> : tensor<1x2xi32>
// CHECK: dense<1> : tensor<1x2xi32>
// CHECK: dense<1> : tensor<1x2xi64>
// CHECK: dense<1> : tensor<1x2xi64>
// CHECK: dense<1.000000e+00> : tensor<1x2xf32>
// CHECK: dense<1.000000e+00> : tensor<1x2xf64>
mlirAttributeDump(mlirElementsAttrGetValue(floatElements, 2, uints64));
mlirAttributeDump(mlirElementsAttrGetValue(doubleElements, 2, uints64));
// CHECK: 1.000000e+00 : f32
// CHECK: 1.000000e+00 : f64
int64_t indices[] = {4, 7};
int64_t two = 2;
MlirAttribute indicesAttr = mlirDenseElementsAttrInt64Get(
mlirRankedTensorTypeGet(1, &two, mlirIntegerTypeGet(ctx, 64)), 2,
indices);
MlirAttribute valuesAttr = mlirDenseElementsAttrFloatGet(
mlirRankedTensorTypeGet(1, &two, mlirF32TypeGet(ctx)), 2, floats);
MlirAttribute sparseAttr = mlirSparseElementsAttribute(
mlirRankedTensorTypeGet(2, shape, mlirF32TypeGet(ctx)), indicesAttr,
valuesAttr);
mlirAttributeDump(sparseAttr);
// CHECK: sparse<[4, 7], [0.000000e+00, 1.000000e+00]> : tensor<1x2xf32>
return 0;
}
int printAffineMap(MlirContext ctx) {
MlirAffineMap emptyAffineMap = mlirAffineMapEmptyGet(ctx);
MlirAffineMap affineMap = mlirAffineMapGet(ctx, 3, 2);
MlirAffineMap constAffineMap = mlirAffineMapConstantGet(ctx, 2);
MlirAffineMap multiDimIdentityAffineMap =
mlirAffineMapMultiDimIdentityGet(ctx, 3);
MlirAffineMap minorIdentityAffineMap =
mlirAffineMapMinorIdentityGet(ctx, 3, 2);
unsigned permutation[] = {1, 2, 0};
MlirAffineMap permutationAffineMap = mlirAffineMapPermutationGet(
ctx, sizeof(permutation) / sizeof(unsigned), permutation);
fprintf(stderr, "@affineMap\n");
mlirAffineMapDump(emptyAffineMap);
mlirAffineMapDump(affineMap);
mlirAffineMapDump(constAffineMap);
mlirAffineMapDump(multiDimIdentityAffineMap);
mlirAffineMapDump(minorIdentityAffineMap);
mlirAffineMapDump(permutationAffineMap);
// CHECK-LABEL: @affineMap
// CHECK: () -> ()
// CHECK: (d0, d1, d2)[s0, s1] -> ()
// CHECK: () -> (2)
// CHECK: (d0, d1, d2) -> (d0, d1, d2)
// CHECK: (d0, d1, d2) -> (d1, d2)
// CHECK: (d0, d1, d2) -> (d1, d2, d0)
if (!mlirAffineMapIsIdentity(emptyAffineMap) ||
mlirAffineMapIsIdentity(affineMap) ||
mlirAffineMapIsIdentity(constAffineMap) ||
!mlirAffineMapIsIdentity(multiDimIdentityAffineMap) ||
mlirAffineMapIsIdentity(minorIdentityAffineMap) ||
mlirAffineMapIsIdentity(permutationAffineMap))
return 1;
if (!mlirAffineMapIsMinorIdentity(emptyAffineMap) ||
mlirAffineMapIsMinorIdentity(affineMap) ||
!mlirAffineMapIsMinorIdentity(multiDimIdentityAffineMap) ||
!mlirAffineMapIsMinorIdentity(minorIdentityAffineMap) ||
mlirAffineMapIsMinorIdentity(permutationAffineMap))
return 2;
if (!mlirAffineMapIsEmpty(emptyAffineMap) ||
mlirAffineMapIsEmpty(affineMap) || mlirAffineMapIsEmpty(constAffineMap) ||
mlirAffineMapIsEmpty(multiDimIdentityAffineMap) ||
mlirAffineMapIsEmpty(minorIdentityAffineMap) ||
mlirAffineMapIsEmpty(permutationAffineMap))
return 3;
if (mlirAffineMapIsSingleConstant(emptyAffineMap) ||
mlirAffineMapIsSingleConstant(affineMap) ||
!mlirAffineMapIsSingleConstant(constAffineMap) ||
mlirAffineMapIsSingleConstant(multiDimIdentityAffineMap) ||
mlirAffineMapIsSingleConstant(minorIdentityAffineMap) ||
mlirAffineMapIsSingleConstant(permutationAffineMap))
return 4;
if (mlirAffineMapGetSingleConstantResult(constAffineMap) != 2)
return 5;
if (mlirAffineMapGetNumDims(emptyAffineMap) != 0 ||
mlirAffineMapGetNumDims(affineMap) != 3 ||
mlirAffineMapGetNumDims(constAffineMap) != 0 ||
mlirAffineMapGetNumDims(multiDimIdentityAffineMap) != 3 ||
mlirAffineMapGetNumDims(minorIdentityAffineMap) != 3 ||
mlirAffineMapGetNumDims(permutationAffineMap) != 3)
return 6;
if (mlirAffineMapGetNumSymbols(emptyAffineMap) != 0 ||
mlirAffineMapGetNumSymbols(affineMap) != 2 ||
mlirAffineMapGetNumSymbols(constAffineMap) != 0 ||
mlirAffineMapGetNumSymbols(multiDimIdentityAffineMap) != 0 ||
mlirAffineMapGetNumSymbols(minorIdentityAffineMap) != 0 ||
mlirAffineMapGetNumSymbols(permutationAffineMap) != 0)
return 7;
if (mlirAffineMapGetNumResults(emptyAffineMap) != 0 ||
mlirAffineMapGetNumResults(affineMap) != 0 ||
mlirAffineMapGetNumResults(constAffineMap) != 1 ||
mlirAffineMapGetNumResults(multiDimIdentityAffineMap) != 3 ||
mlirAffineMapGetNumResults(minorIdentityAffineMap) != 2 ||
mlirAffineMapGetNumResults(permutationAffineMap) != 3)
return 8;
if (mlirAffineMapGetNumInputs(emptyAffineMap) != 0 ||
mlirAffineMapGetNumInputs(affineMap) != 5 ||
mlirAffineMapGetNumInputs(constAffineMap) != 0 ||
mlirAffineMapGetNumInputs(multiDimIdentityAffineMap) != 3 ||
mlirAffineMapGetNumInputs(minorIdentityAffineMap) != 3 ||
mlirAffineMapGetNumInputs(permutationAffineMap) != 3)
return 9;
if (!mlirAffineMapIsProjectedPermutation(emptyAffineMap) ||
!mlirAffineMapIsPermutation(emptyAffineMap) ||
mlirAffineMapIsProjectedPermutation(affineMap) ||
mlirAffineMapIsPermutation(affineMap) ||
mlirAffineMapIsProjectedPermutation(constAffineMap) ||
mlirAffineMapIsPermutation(constAffineMap) ||
!mlirAffineMapIsProjectedPermutation(multiDimIdentityAffineMap) ||
!mlirAffineMapIsPermutation(multiDimIdentityAffineMap) ||
!mlirAffineMapIsProjectedPermutation(minorIdentityAffineMap) ||
mlirAffineMapIsPermutation(minorIdentityAffineMap) ||
!mlirAffineMapIsProjectedPermutation(permutationAffineMap) ||
!mlirAffineMapIsPermutation(permutationAffineMap))
return 10;
intptr_t sub[] = {1};
MlirAffineMap subMap = mlirAffineMapGetSubMap(
multiDimIdentityAffineMap, sizeof(sub) / sizeof(intptr_t), sub);
MlirAffineMap majorSubMap =
mlirAffineMapGetMajorSubMap(multiDimIdentityAffineMap, 1);
MlirAffineMap minorSubMap =
mlirAffineMapGetMinorSubMap(multiDimIdentityAffineMap, 1);
mlirAffineMapDump(subMap);
mlirAffineMapDump(majorSubMap);
mlirAffineMapDump(minorSubMap);
// CHECK: (d0, d1, d2) -> (d1)
// CHECK: (d0, d1, d2) -> (d0)
// CHECK: (d0, d1, d2) -> (d2)
return 0;
}
int printAffineExpr(MlirContext ctx) {
MlirAffineExpr affineDimExpr = mlirAffineDimExprGet(ctx, 5);
MlirAffineExpr affineSymbolExpr = mlirAffineSymbolExprGet(ctx, 5);
MlirAffineExpr affineConstantExpr = mlirAffineConstantExprGet(ctx, 5);
MlirAffineExpr affineAddExpr =
mlirAffineAddExprGet(affineDimExpr, affineSymbolExpr);
MlirAffineExpr affineMulExpr =
mlirAffineMulExprGet(affineDimExpr, affineSymbolExpr);
MlirAffineExpr affineModExpr =
mlirAffineModExprGet(affineDimExpr, affineSymbolExpr);
MlirAffineExpr affineFloorDivExpr =
mlirAffineFloorDivExprGet(affineDimExpr, affineSymbolExpr);
MlirAffineExpr affineCeilDivExpr =
mlirAffineCeilDivExprGet(affineDimExpr, affineSymbolExpr);
// Tests mlirAffineExprDump.
fprintf(stderr, "@affineExpr\n");
mlirAffineExprDump(affineDimExpr);
mlirAffineExprDump(affineSymbolExpr);
mlirAffineExprDump(affineConstantExpr);
mlirAffineExprDump(affineAddExpr);
mlirAffineExprDump(affineMulExpr);
mlirAffineExprDump(affineModExpr);
mlirAffineExprDump(affineFloorDivExpr);
mlirAffineExprDump(affineCeilDivExpr);
// CHECK-LABEL: @affineExpr
// CHECK: d5
// CHECK: s5
// CHECK: 5
// CHECK: d5 + s5
// CHECK: d5 * s5
// CHECK: d5 mod s5
// CHECK: d5 floordiv s5
// CHECK: d5 ceildiv s5
// Tests methods of affine binary operation expression, takes add expression
// as an example.
mlirAffineExprDump(mlirAffineBinaryOpExprGetLHS(affineAddExpr));
mlirAffineExprDump(mlirAffineBinaryOpExprGetRHS(affineAddExpr));
// CHECK: d5
// CHECK: s5
// Tests methods of affine dimension expression.
if (mlirAffineDimExprGetPosition(affineDimExpr) != 5)
return 1;
// Tests methods of affine symbol expression.
if (mlirAffineSymbolExprGetPosition(affineSymbolExpr) != 5)
return 2;
// Tests methods of affine constant expression.
if (mlirAffineConstantExprGetValue(affineConstantExpr) != 5)
return 3;
// Tests methods of affine expression.
if (mlirAffineExprIsSymbolicOrConstant(affineDimExpr) ||
!mlirAffineExprIsSymbolicOrConstant(affineSymbolExpr) ||
!mlirAffineExprIsSymbolicOrConstant(affineConstantExpr) ||
mlirAffineExprIsSymbolicOrConstant(affineAddExpr) ||
mlirAffineExprIsSymbolicOrConstant(affineMulExpr) ||
mlirAffineExprIsSymbolicOrConstant(affineModExpr) ||
mlirAffineExprIsSymbolicOrConstant(affineFloorDivExpr) ||
mlirAffineExprIsSymbolicOrConstant(affineCeilDivExpr))
return 4;
if (!mlirAffineExprIsPureAffine(affineDimExpr) ||
!mlirAffineExprIsPureAffine(affineSymbolExpr) ||
!mlirAffineExprIsPureAffine(affineConstantExpr) ||
!mlirAffineExprIsPureAffine(affineAddExpr) ||
mlirAffineExprIsPureAffine(affineMulExpr) ||
mlirAffineExprIsPureAffine(affineModExpr) ||
mlirAffineExprIsPureAffine(affineFloorDivExpr) ||
mlirAffineExprIsPureAffine(affineCeilDivExpr))
return 5;
if (mlirAffineExprGetLargestKnownDivisor(affineDimExpr) != 1 ||
mlirAffineExprGetLargestKnownDivisor(affineSymbolExpr) != 1 ||
mlirAffineExprGetLargestKnownDivisor(affineConstantExpr) != 5 ||
mlirAffineExprGetLargestKnownDivisor(affineAddExpr) != 1 ||
mlirAffineExprGetLargestKnownDivisor(affineMulExpr) != 1 ||
mlirAffineExprGetLargestKnownDivisor(affineModExpr) != 1 ||
mlirAffineExprGetLargestKnownDivisor(affineFloorDivExpr) != 1 ||
mlirAffineExprGetLargestKnownDivisor(affineCeilDivExpr) != 1)
return 6;
if (!mlirAffineExprIsMultipleOf(affineDimExpr, 1) ||
!mlirAffineExprIsMultipleOf(affineSymbolExpr, 1) ||
!mlirAffineExprIsMultipleOf(affineConstantExpr, 5) ||
!mlirAffineExprIsMultipleOf(affineAddExpr, 1) ||
!mlirAffineExprIsMultipleOf(affineMulExpr, 1) ||
!mlirAffineExprIsMultipleOf(affineModExpr, 1) ||
!mlirAffineExprIsMultipleOf(affineFloorDivExpr, 1) ||
!mlirAffineExprIsMultipleOf(affineCeilDivExpr, 1))
return 7;
if (!mlirAffineExprIsFunctionOfDim(affineDimExpr, 5) ||
mlirAffineExprIsFunctionOfDim(affineSymbolExpr, 5) ||
mlirAffineExprIsFunctionOfDim(affineConstantExpr, 5) ||
!mlirAffineExprIsFunctionOfDim(affineAddExpr, 5) ||
!mlirAffineExprIsFunctionOfDim(affineMulExpr, 5) ||
!mlirAffineExprIsFunctionOfDim(affineModExpr, 5) ||
!mlirAffineExprIsFunctionOfDim(affineFloorDivExpr, 5) ||
!mlirAffineExprIsFunctionOfDim(affineCeilDivExpr, 5))
return 8;
// Tests 'IsA' methods of affine binary operation expression.
if (!mlirAffineExprIsAAdd(affineAddExpr))
return 9;
if (!mlirAffineExprIsAMul(affineMulExpr))
return 10;
if (!mlirAffineExprIsAMod(affineModExpr))
return 11;
if (!mlirAffineExprIsAFloorDiv(affineFloorDivExpr))
return 12;
if (!mlirAffineExprIsACeilDiv(affineCeilDivExpr))
return 13;
return 0;
}
int registerOnlyStd() {
MlirContext ctx = mlirContextCreate();
// The built-in dialect is always loaded.
if (mlirContextGetNumLoadedDialects(ctx) != 1)
return 1;
MlirDialect std =
mlirContextGetOrLoadDialect(ctx, mlirStandardDialectGetNamespace());
if (!mlirDialectIsNull(std))
return 2;
mlirContextRegisterStandardDialect(ctx);
if (mlirContextGetNumRegisteredDialects(ctx) != 1)
return 3;
if (mlirContextGetNumLoadedDialects(ctx) != 1)
return 4;
std = mlirContextGetOrLoadDialect(ctx, mlirStandardDialectGetNamespace());
if (mlirDialectIsNull(std))
return 5;
if (mlirContextGetNumLoadedDialects(ctx) != 2)
return 6;
MlirDialect alsoStd = mlirContextLoadStandardDialect(ctx);
if (!mlirDialectEqual(std, alsoStd))
return 7;
MlirStringRef stdNs = mlirDialectGetNamespace(std);
MlirStringRef alsoStdNs = mlirStandardDialectGetNamespace();
if (stdNs.length != alsoStdNs.length ||
strncmp(stdNs.data, alsoStdNs.data, stdNs.length))
return 8;
fprintf(stderr, "@registration\n");
// CHECK-LABEL: @registration
return 0;
}
// Wraps a diagnostic into additional text we can match against.
MlirLogicalResult errorHandler(MlirDiagnostic diagnostic, void *userData) {
fprintf(stderr, "processing diagnostic (userData: %ld) <<\n", (long)userData);
mlirDiagnosticPrint(diagnostic, printToStderr, NULL);
fprintf(stderr, "\n");
MlirLocation loc = mlirDiagnosticGetLocation(diagnostic);
mlirLocationPrint(loc, printToStderr, NULL);
assert(mlirDiagnosticGetNumNotes(diagnostic) == 0);
fprintf(stderr, ">> end of diagnostic (userData: %ld)\n", (long)userData);
return mlirLogicalResultSuccess();
}
// Logs when the delete user data callback is called
static void deleteUserData(void *userData) {
fprintf(stderr, "deleting user data (userData: %ld)\n", (long)userData);
}
void testDiagnostics() {
MlirContext ctx = mlirContextCreate();
MlirDiagnosticHandlerID id = mlirContextAttachDiagnosticHandler(
ctx, errorHandler, (void *)42, deleteUserData);
MlirLocation loc = mlirLocationUnknownGet(ctx);
fprintf(stderr, "@test_diagnostics\n");
mlirEmitError(loc, "test diagnostics");
mlirContextDetachDiagnosticHandler(ctx, id);
mlirEmitError(loc, "more test diagnostics");
// CHECK-LABEL: @test_diagnostics
// CHECK: processing diagnostic (userData: 42) <<
// CHECK: test diagnostics
// CHECK: loc(unknown)
// CHECK: >> end of diagnostic (userData: 42)
// CHECK: deleting user data (userData: 42)
// CHECK-NOT: processing diagnostic
// CHECK: more test diagnostics
}
int main() {
MlirContext ctx = mlirContextCreate();
mlirRegisterAllDialects(ctx);
if (constructAndTraverseIr(ctx))
return 1;
buildWithInsertionsAndPrint(ctx);
if (printBuiltinTypes(ctx))
return 2;
if (printBuiltinAttributes(ctx))
return 3;
if (printAffineMap(ctx))
return 4;
if (printAffineExpr(ctx))
return 5;
if (registerOnlyStd())
return 6;
mlirContextDestroy(ctx);
testDiagnostics();
return 0;
}