You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

970 lines
35 KiB

//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
return true;
}
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
switch (Kind) {
default:
break;
case RK_IntegerAdd:
case RK_IntegerMult:
case RK_IntegerOr:
case RK_IntegerAnd:
case RK_IntegerXor:
case RK_IntegerMinMax:
return true;
}
return false;
}
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
}
bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
switch (Kind) {
default:
break;
case RK_IntegerAdd:
case RK_IntegerMult:
case RK_FloatAdd:
case RK_FloatMult:
return true;
}
return false;
}
Instruction *
RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
if (!Phi->hasOneUse())
return Phi;
const APInt *M = nullptr;
Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
// Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
// with a new integer type of the corresponding bit width.
if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
m_And(m_APInt(M), m_Instruction(I))))) {
int32_t Bits = (*M + 1).exactLogBase2();
if (Bits > 0) {
RT = IntegerType::get(Phi->getContext(), Bits);
Visited.insert(Phi);
CI.insert(J);
return J;
}
}
return Phi;
}
bool RecurrenceDescriptor::getSourceExtensionKind(
Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
SmallVector<Instruction *, 8> Worklist;
bool FoundOneOperand = false;
unsigned DstSize = RT->getPrimitiveSizeInBits();
Worklist.push_back(Exit);
// Traverse the instructions in the reduction expression, beginning with the
// exit value.
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
for (Use &U : I->operands()) {
// Terminate the traversal if the operand is not an instruction, or we
// reach the starting value.
Instruction *J = dyn_cast<Instruction>(U.get());
if (!J || J == Start)
continue;
// Otherwise, investigate the operation if it is also in the expression.
if (Visited.count(J)) {
Worklist.push_back(J);
continue;
}
// If the operand is not in Visited, it is not a reduction operation, but
// it does feed into one. Make sure it is either a single-use sign- or
// zero-extend instruction.
CastInst *Cast = dyn_cast<CastInst>(J);
bool IsSExtInst = isa<SExtInst>(J);
if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
return false;
// Ensure the source type of the extend is no larger than the reduction
// type. It is not necessary for the types to be identical.
unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
if (SrcSize > DstSize)
return false;
// Furthermore, ensure that all such extends are of the same kind.
if (FoundOneOperand) {
if (IsSigned != IsSExtInst)
return false;
} else {
FoundOneOperand = true;
IsSigned = IsSExtInst;
}
// Lastly, if the source type of the extend matches the reduction type,
// add the extend to CI so that we can avoid accounting for it in the
// cost model.
if (SrcSize == DstSize)
CI.insert(Cast);
}
}
return true;
}
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
Loop *TheLoop, bool HasFunNoNaNAttr,
RecurrenceDescriptor &RedDes) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Reduction variables are only found in the loop header block.
if (Phi->getParent() != TheLoop->getHeader())
return false;
// Obtain the reduction start value from the value that comes from the loop
// preheader.
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
// We start with the PHI node and scan for all of the users of this
// instruction. All users must be instructions that can be used as reduction
// variables (such as ADD). We must have a single out-of-block user. The cycle
// must include the original PHI.
bool FoundStartPHI = false;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
InstDesc ReduxDesc(false, nullptr);
// Data used for determining if the recurrence has been type-promoted.
Type *RecurrenceType = Phi->getType();
SmallPtrSet<Instruction *, 4> CastInsts;
Instruction *Start = Phi;
bool IsSigned = false;
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
// Return early if the recurrence kind does not match the type of Phi. If the
// recurrence kind is arithmetic, we attempt to look through AND operations
// resulting from the type promotion performed by InstCombine. Vector
// operations are not limited to the legal integer widths, so we may be able
// to evaluate the reduction in the narrower width.
if (RecurrenceType->isFloatingPointTy()) {
if (!isFloatingPointRecurrenceKind(Kind))
return false;
} else {
if (!isIntegerRecurrenceKind(Kind))
return false;
if (isArithmeticRecurrenceKind(Kind))
Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
}
Worklist.push_back(Start);
VisitedInsts.insert(Start);
// A value in the reduction can be used:
// - By the reduction:
// - Reduction operation:
// - One use of reduction value (safe).
// - Multiple use of reduction value (not safe).
// - PHI:
// - All uses of the PHI must be the reduction (safe).
// - Otherwise, not safe.
// - By one instruction outside of the loop (safe).
// - By further instructions outside of the loop (not safe).
// - By an instruction that is not part of the reduction (not safe).
// This is either:
// * An instruction type other than PHI or the reduction operation.
// * A PHI in the header other than the initial PHI.
while (!Worklist.empty()) {
Instruction *Cur = Worklist.back();
Worklist.pop_back();
// No Users.
// If the instruction has no users then this is a broken chain and can't be
// a reduction variable.
if (Cur->use_empty())
return false;
bool IsAPhi = isa<PHINode>(Cur);
// A header PHI use other than the original PHI.
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
return false;
// Reductions of instructions such as Div, and Sub is only possible if the
// LHS is the reduction variable.
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
return false;
// Any reduction instruction must be of one of the allowed kinds. We ignore
// the starting value (the Phi or an AND instruction if the Phi has been
// type-promoted).
if (Cur != Start) {
ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
if (!ReduxDesc.isRecurrence())
return false;
}
// A reduction operation must only have one use of the reduction value.
if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
hasMultipleUsesOf(Cur, VisitedInsts))
return false;
// All inputs to a PHI node must be a reduction value.
if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
return false;
if (Kind == RK_IntegerMinMax &&
(isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
// Check whether we found a reduction operator.
FoundReduxOp |= !IsAPhi && Cur != Start;
// Process users of current instruction. Push non-PHI nodes after PHI nodes
// onto the stack. This way we are going to have seen all inputs to PHI
// nodes once we get to them.
SmallVector<Instruction *, 8> NonPHIs;
SmallVector<Instruction *, 8> PHIs;
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
// Check if we found the exit user.
BasicBlock *Parent = UI->getParent();
if (!TheLoop->contains(Parent)) {
// Exit if you find multiple outside users or if the header phi node is
// being used. In this case the user uses the value of the previous
// iteration, in which case we would loose "VF-1" iterations of the
// reduction operation if we vectorize.
if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
// before we feed back to the reduction phi. Otherwise, we loose VF-1
// operations on the value.
if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
return false;
ExitInstruction = Cur;
continue;
}
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
InstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
else
NonPHIs.push_back(UI);
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
return false;
// Remember that we completed the cycle.
if (UI == Phi)
FoundStartPHI = true;
}
Worklist.append(PHIs.begin(), PHIs.end());
Worklist.append(NonPHIs.begin(), NonPHIs.end());
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp.
if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
NumCmpSelectPatternInst != 2)
return false;
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
// If we think Phi may have been type-promoted, we also need to ensure that
// all source operands of the reduction are either SExtInsts or ZEstInsts. If
// so, we will be able to evaluate the reduction in the narrower bit width.
if (Start != Phi)
if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
IsSigned, VisitedInsts, CastInsts))
return false;
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
// is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
RecurrenceDescriptor RD(
RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
RedDes = RD;
return true;
}
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
Instruction *Cmp = nullptr;
SelectInst *Select = nullptr;
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
return InstDesc(false, I);
return InstDesc(Select, Prev.getMinMaxKind());
}
// Only handle single use cases for now.
if (!(Select = dyn_cast<SelectInst>(I)))
return InstDesc(false, I);
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
return InstDesc(false, I);
if (!Cmp->hasOneUse())
return InstDesc(false, I);
Value *CmpLeft;
Value *CmpRight;
// Look for a min/max pattern.
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_UIntMin);
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_UIntMax);
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_SIntMax);
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_SIntMin);
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMin);
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMax);
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMin);
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMax);
return InstDesc(false, I);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
Instruction *UAI = Prev.getUnsafeAlgebraInst();
if (!UAI && FP && !I->hasUnsafeAlgebra())
UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
case Instruction::PHI:
return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
case Instruction::Sub:
case Instruction::Add:
return InstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
return InstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
return InstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
return InstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
return InstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return InstDesc(Kind == RK_FloatMult, I, UAI);
case Instruction::FSub:
case Instruction::FAdd:
return InstDesc(Kind == RK_FloatAdd, I, UAI);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax &&
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
return InstDesc(false, I);
return isMinMaxSelectCmpPattern(I, Prev);
}
}
bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
unsigned NumUses = 0;
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
++Use) {
if (Insts.count(dyn_cast<Instruction>(*Use)))
++NumUses;
if (NumUses > 1)
return true;
}
return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes) {
BasicBlock *Header = TheLoop->getHeader();
Function &F = *Header->getParent();
bool HasFunNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
RedDes)) {
DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
return true;
}
// Not a reduction of known type.
return false;
}
bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
DominatorTree *DT) {
// Ensure the phi node is in the loop header and has two incoming values.
if (Phi->getParent() != TheLoop->getHeader() ||
Phi->getNumIncomingValues() != 2)
return false;
// Ensure the loop has a preheader and a single latch block. The loop
// vectorizer will need the latch to set up the next iteration of the loop.
auto *Preheader = TheLoop->getLoopPreheader();
auto *Latch = TheLoop->getLoopLatch();
if (!Preheader || !Latch)
return false;
// Ensure the phi node's incoming blocks are the loop preheader and latch.
if (Phi->getBasicBlockIndex(Preheader) < 0 ||
Phi->getBasicBlockIndex(Latch) < 0)
return false;
// Get the previous value. The previous value comes from the latch edge while
// the initial value comes form the preheader edge.
auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
return false;
// Ensure every user of the phi node is dominated by the previous value. The
// dominance requirement ensures the loop vectorizer will not need to
// vectorize the initial value prior to the first iteration of the loop.
for (User *U : Phi->users())
if (auto *I = dyn_cast<Instruction>(U))
if (!DT->dominates(Previous, I))
return false;
return true;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
Type *Tp) {
switch (K) {
case RK_IntegerXor:
case RK_IntegerAdd:
case RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
return ConstantInt::get(Tp, 0);
case RK_IntegerMult:
// Multiplying a number by 1 does not change it.
return ConstantInt::get(Tp, 1);
case RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
return ConstantInt::get(Tp, -1, true);
case RK_FloatMult:
// Multiplying a number by 1 does not change it.
return ConstantFP::get(Tp, 1.0L);
case RK_FloatAdd:
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown recurrence kind");
}
}
/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
switch (Kind) {
case RK_IntegerAdd:
return Instruction::Add;
case RK_IntegerMult:
return Instruction::Mul;
case RK_IntegerOr:
return Instruction::Or;
case RK_IntegerAnd:
return Instruction::And;
case RK_IntegerXor:
return Instruction::Xor;
case RK_FloatMult:
return Instruction::FMul;
case RK_FloatAdd:
return Instruction::FAdd;
case RK_IntegerMinMax:
return Instruction::ICmp;
case RK_FloatMinMax:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown recurrence operation");
}
}
Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
MinMaxRecurrenceKind RK,
Value *Left, Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
case MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
case MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
case MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
case MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
case MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
// We only match FP sequences with unsafe algebra, so we can unconditionally
// set it on any generated instructions.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
FastMathFlags FMF;
FMF.setUnsafeAlgebra();
Builder.setFastMathFlags(FMF);
Value *Cmp;
if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
const SCEV *Step)
: StartValue(Start), IK(K), Step(Step) {
assert(IK != IK_NoInduction && "Not an induction");
// Start value type should match the induction kind and the value
// itself should not be null.
assert(StartValue && "StartValue is null");
assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
"StartValue is not a pointer for pointer induction");
assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
"StartValue is not an integer for integer induction");
// Check the Step Value. It should be non-zero integer value.
assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
"Step value is zero");
assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
"Step value should be constant for pointer induction");
assert(Step->getType()->isIntegerTy() && "StepValue is not an integer");
}
int InductionDescriptor::getConsecutiveDirection() const {
ConstantInt *ConstStep = getConstIntStepValue();
if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
return ConstStep->getSExtValue();
return 0;
}
ConstantInt *InductionDescriptor::getConstIntStepValue() const {
if (isa<SCEVConstant>(Step))
return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
return nullptr;
}
Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
ScalarEvolution *SE,
const DataLayout& DL) const {
SCEVExpander Exp(*SE, DL, "induction");
switch (IK) {
case IK_IntInduction: {
assert(Index->getType() == StartValue->getType() &&
"Index type does not match StartValue type");
// FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
// and calculate (Start + Index * Step) for all cases, without
// special handling for "isOne" and "isMinusOne".
// But in the real life the result code getting worse. We mix SCEV
// expressions and ADD/SUB operations and receive redundant
// intermediate values being calculated in different ways and
// Instcombine is unable to reduce them all.
if (getConstIntStepValue() &&
getConstIntStepValue()->isMinusOne())
return B.CreateSub(StartValue, Index);
if (getConstIntStepValue() &&
getConstIntStepValue()->isOne())
return B.CreateAdd(StartValue, Index);
const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
SE->getMulExpr(Step, SE->getSCEV(Index)));
return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
}
case IK_PtrInduction: {
assert(Index->getType() == Step->getType() &&
"Index type does not match StepValue type");
assert(isa<SCEVConstant>(Step) &&
"Expected constant step for pointer induction");
const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
return B.CreateGEP(nullptr, StartValue, Index);
}
case IK_NoInduction:
return nullptr;
}
llvm_unreachable("invalid enum");
}
bool InductionDescriptor::isInductionPHI(PHINode *Phi,
PredicatedScalarEvolution &PSE,
InductionDescriptor &D,
bool Assume) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return false;
const SCEV *PhiScev = PSE.getSCEV(Phi);
const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
// We need this expression to be an AddRecExpr.
if (Assume && !AR)
AR = PSE.getAsAddRec(Phi);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
return isInductionPHI(Phi, PSE.getSE(), D, AR);
}
bool InductionDescriptor::isInductionPHI(PHINode *Phi,
ScalarEvolution *SE,
InductionDescriptor &D,
const SCEV *Expr) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return false;
// Check that the PHI is consecutive.
const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
assert(AR->getLoop()->getHeader() == Phi->getParent() &&
"PHI is an AddRec for a different loop?!");
Value *StartValue =
Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
const SCEV *Step = AR->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
// The stride may be a constant or a loop invariant integer value.
const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
if (!ConstStep && !SE->isLoopInvariant(Step, AR->getLoop()))
return false;
if (PhiTy->isIntegerTy()) {
D = InductionDescriptor(StartValue, IK_IntInduction, Step);
return true;
}
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
// Pointer induction should be a constant.
if (!ConstStep)
return false;
ConstantInt *CV = ConstStep->getValue();
Type *PointerElementType = PhiTy->getPointerElementType();
// The pointer stride cannot be determined if the pointer element type is not
// sized.
if (!PointerElementType->isSized())
return false;
const DataLayout &DL = Phi->getModule()->getDataLayout();
int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
if (!Size)
return false;
int64_t CVSize = CV->getSExtValue();
if (CVSize % Size)
return false;
auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
true /* signed */);
D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
return true;
}
/// \brief Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;
for (auto *Block : L->getBlocks())
// FIXME: I believe that this could use copy_if if the Inst reference could
// be adapted into a pointer.
for (auto &Inst : *Block) {
auto Users = Inst.users();
if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
auto *Use = cast<Instruction>(U);
return !L->contains(Use->getParent());
}))
UsedOutside.push_back(&Inst);
}
return UsedOutside;
}
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
// By definition, all loop passes need the LoopInfo analysis and the
// Dominator tree it depends on. Because they all participate in the loop
// pass manager, they must also preserve these.
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
// here because users shouldn't directly get them from this header.
extern char &LoopSimplifyID;
extern char &LCSSAID;
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
// Loop passes are designed to run inside of a loop pass manager which means
// that any function analyses they require must be required by the first loop
// pass in the manager (so that it is computed before the loop pass manager
// runs) and preserved by all loop pasess in the manager. To make this
// reasonably robust, the set needed for most loop passes is maintained here.
// If your loop pass requires an analysis not listed here, you will need to
// carefully audit the loop pass manager nesting structure that results.
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
}
/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
}
/// \brief Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise. If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
StringRef Name) {
MDNode *LoopID = TheLoop->getLoopID();
// Return none if LoopID is false.
if (!LoopID)
return None;
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
// Iterate over LoopID operands and look for MDString Metadata
for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (!MD)
continue;
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
if (!S)
continue;
// Return true if MDString holds expected MetaData.
if (Name.equals(S->getString()))
switch (MD->getNumOperands()) {
case 1:
return nullptr;
case 2:
return &MD->getOperand(1);
default:
llvm_unreachable("loop metadata has 0 or 1 operand");
}
}
return None;
}
/// Returns true if the instruction in a loop is guaranteed to execute at least
/// once.
bool llvm::isGuaranteedToExecute(const Instruction &Inst,
const DominatorTree *DT, const Loop *CurLoop,
const LoopSafetyInfo *SafetyInfo) {
// We have to check to make sure that the instruction dominates all
// of the exit blocks. If it doesn't, then there is a path out of the loop
// which does not execute this instruction, so we can't hoist it.
// If the instruction is in the header block for the loop (which is very
// common), it is always guaranteed to dominate the exit blocks. Since this
// is a common case, and can save some work, check it now.
if (Inst.getParent() == CurLoop->getHeader())
// If there's a throw in the header block, we can't guarantee we'll reach
// Inst.
return !SafetyInfo->HeaderMayThrow;
// Somewhere in this loop there is an instruction which may throw and make us
// exit the loop.
if (SafetyInfo->MayThrow)
return false;
// Get the exit blocks for the current loop.
SmallVector<BasicBlock *, 8> ExitBlocks;
CurLoop->getExitBlocks(ExitBlocks);
// Verify that the block dominates each of the exit blocks of the loop.
for (BasicBlock *ExitBlock : ExitBlocks)
if (!DT->dominates(Inst.getParent(), ExitBlock))
return false;
// As a degenerate case, if the loop is statically infinite then we haven't
// proven anything since there are no exit blocks.
if (ExitBlocks.empty())
return false;
// FIXME: In general, we have to prove that the loop isn't an infinite loop.
// See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
// just a special case of this.)
return true;
}