You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

276 lines
9.2 KiB

//===- llvm/unittest/Bitcode/BitReaderTest.cpp - Tests for BitReader ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/DataStream.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StreamingMemoryObject.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
std::unique_ptr<Module> parseAssembly(LLVMContext &Context,
const char *Assembly) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
// A failure here means that the test itself is buggy.
if (!M)
report_fatal_error(OS.str().c_str());
return M;
}
static void writeModuleToBuffer(std::unique_ptr<Module> Mod,
SmallVectorImpl<char> &Buffer) {
raw_svector_ostream OS(Buffer);
WriteBitcodeToFile(Mod.get(), OS);
}
static std::unique_ptr<Module> getLazyModuleFromAssembly(LLVMContext &Context,
SmallString<1024> &Mem,
const char *Assembly) {
writeModuleToBuffer(parseAssembly(Context, Assembly), Mem);
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBuffer(Mem.str(), "test", false);
ErrorOr<std::unique_ptr<Module>> ModuleOrErr =
getLazyBitcodeModule(std::move(Buffer), Context);
return std::move(ModuleOrErr.get());
}
class BufferDataStreamer : public DataStreamer {
std::unique_ptr<MemoryBuffer> Buffer;
unsigned Pos = 0;
size_t GetBytes(unsigned char *Out, size_t Len) override {
StringRef Buf = Buffer->getBuffer();
size_t Left = Buf.size() - Pos;
Len = std::min(Left, Len);
memcpy(Out, Buffer->getBuffer().substr(Pos).data(), Len);
Pos += Len;
return Len;
}
public:
BufferDataStreamer(std::unique_ptr<MemoryBuffer> Buffer)
: Buffer(std::move(Buffer)) {}
};
static std::unique_ptr<Module>
getStreamedModuleFromAssembly(LLVMContext &Context, SmallString<1024> &Mem,
const char *Assembly) {
writeModuleToBuffer(parseAssembly(Context, Assembly), Mem);
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBuffer(Mem.str(), "test", false);
auto Streamer = llvm::make_unique<BufferDataStreamer>(std::move(Buffer));
ErrorOr<std::unique_ptr<Module>> ModuleOrErr =
getStreamedBitcodeModule("test", std::move(Streamer), Context);
return std::move(ModuleOrErr.get());
}
// Checks if we correctly detect eof if we try to read N bits when there are not
// enough bits left on the input stream to read N bits, and we are using a data
// streamer. In particular, it checks if we properly set the object size when
// the eof is reached under such conditions.
TEST(BitReaderTest, TestForEofAfterReadFailureOnDataStreamer) {
// Note: Because StreamingMemoryObject does a call to method GetBytes in it's
// constructor, using internal constant kChunkSize, we must fill the input
// with more characters than that amount.
static size_t InputSize = StreamingMemoryObject::kChunkSize + 5;
char *Text = new char[InputSize];
std::memset(Text, 'a', InputSize);
Text[InputSize - 1] = '\0';
StringRef Input(Text);
// Build bitsteam reader using data streamer.
auto MemoryBuf = MemoryBuffer::getMemBuffer(Input);
std::unique_ptr<DataStreamer> Streamer(
new BufferDataStreamer(std::move(MemoryBuf)));
auto OwnedBytes =
llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
auto Reader = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
BitstreamCursor Cursor;
Cursor.init(Reader.get());
// Jump to two bytes before end of stream.
Cursor.JumpToBit((InputSize - 4) * CHAR_BIT);
// Try to read 4 bytes when only 2 are present, resulting in error value 0.
const size_t ReadErrorValue = 0;
EXPECT_EQ(ReadErrorValue, Cursor.Read(32));
// Should be at eof now.
EXPECT_TRUE(Cursor.AtEndOfStream());
delete[] Text;
}
TEST(BitReaderTest, MateralizeForwardRefWithStream) {
SmallString<1024> Mem;
LLVMContext Context;
std::unique_ptr<Module> M = getStreamedModuleFromAssembly(
Context, Mem, "@table = constant i8* blockaddress(@func, %bb)\n"
"define void @func() {\n"
" unreachable\n"
"bb:\n"
" unreachable\n"
"}\n");
EXPECT_FALSE(M->getFunction("func")->empty());
}
// Tests that lazy evaluation can parse functions out of order.
TEST(BitReaderTest, MaterializeFunctionsOutOfOrder) {
SmallString<1024> Mem;
LLVMContext Context;
std::unique_ptr<Module> M = getLazyModuleFromAssembly(
Context, Mem, "define void @f() {\n"
" unreachable\n"
"}\n"
"define void @g() {\n"
" unreachable\n"
"}\n"
"define void @h() {\n"
" unreachable\n"
"}\n"
"define void @j() {\n"
" unreachable\n"
"}\n");
EXPECT_FALSE(verifyModule(*M, &dbgs()));
Function *F = M->getFunction("f");
Function *G = M->getFunction("g");
Function *H = M->getFunction("h");
Function *J = M->getFunction("j");
// Initially all functions are not materialized (no basic blocks).
EXPECT_TRUE(F->empty());
EXPECT_TRUE(G->empty());
EXPECT_TRUE(H->empty());
EXPECT_TRUE(J->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
// Materialize h.
H->materialize();
EXPECT_TRUE(F->empty());
EXPECT_TRUE(G->empty());
EXPECT_FALSE(H->empty());
EXPECT_TRUE(J->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
// Materialize g.
G->materialize();
EXPECT_TRUE(F->empty());
EXPECT_FALSE(G->empty());
EXPECT_FALSE(H->empty());
EXPECT_TRUE(J->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
// Materialize j.
J->materialize();
EXPECT_TRUE(F->empty());
EXPECT_FALSE(G->empty());
EXPECT_FALSE(H->empty());
EXPECT_FALSE(J->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
// Materialize f.
F->materialize();
EXPECT_FALSE(F->empty());
EXPECT_FALSE(G->empty());
EXPECT_FALSE(H->empty());
EXPECT_FALSE(J->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
}
TEST(BitReaderTest, MaterializeFunctionsForBlockAddr) { // PR11677
SmallString<1024> Mem;
LLVMContext Context;
std::unique_ptr<Module> M = getLazyModuleFromAssembly(
Context, Mem, "@table = constant i8* blockaddress(@func, %bb)\n"
"define void @func() {\n"
" unreachable\n"
"bb:\n"
" unreachable\n"
"}\n");
EXPECT_FALSE(verifyModule(*M, &dbgs()));
}
TEST(BitReaderTest, MaterializeFunctionsForBlockAddrInFunctionBefore) {
SmallString<1024> Mem;
LLVMContext Context;
std::unique_ptr<Module> M = getLazyModuleFromAssembly(
Context, Mem, "define i8* @before() {\n"
" ret i8* blockaddress(@func, %bb)\n"
"}\n"
"define void @other() {\n"
" unreachable\n"
"}\n"
"define void @func() {\n"
" unreachable\n"
"bb:\n"
" unreachable\n"
"}\n");
EXPECT_TRUE(M->getFunction("before")->empty());
EXPECT_TRUE(M->getFunction("func")->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
// Materialize @before, pulling in @func.
EXPECT_FALSE(M->getFunction("before")->materialize());
EXPECT_FALSE(M->getFunction("func")->empty());
EXPECT_TRUE(M->getFunction("other")->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
}
TEST(BitReaderTest, MaterializeFunctionsForBlockAddrInFunctionAfter) {
SmallString<1024> Mem;
LLVMContext Context;
std::unique_ptr<Module> M = getLazyModuleFromAssembly(
Context, Mem, "define void @func() {\n"
" unreachable\n"
"bb:\n"
" unreachable\n"
"}\n"
"define void @other() {\n"
" unreachable\n"
"}\n"
"define i8* @after() {\n"
" ret i8* blockaddress(@func, %bb)\n"
"}\n");
EXPECT_TRUE(M->getFunction("after")->empty());
EXPECT_TRUE(M->getFunction("func")->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
// Materialize @after, pulling in @func.
EXPECT_FALSE(M->getFunction("after")->materialize());
EXPECT_FALSE(M->getFunction("func")->empty());
EXPECT_TRUE(M->getFunction("other")->empty());
EXPECT_FALSE(verifyModule(*M, &dbgs()));
}
} // end namespace