You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1059 lines
44 KiB
1059 lines
44 KiB
/*
|
|
* Copyright 2019 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
// This test only works with the GPU backend.
|
|
|
|
#include "gm/gm.h"
|
|
#include "include/core/SkBitmap.h"
|
|
#include "include/core/SkBlendMode.h"
|
|
#include "include/core/SkCanvas.h"
|
|
#include "include/core/SkColor.h"
|
|
#include "include/core/SkColorFilter.h"
|
|
#include "include/core/SkData.h"
|
|
#include "include/core/SkFilterQuality.h"
|
|
#include "include/core/SkFont.h"
|
|
#include "include/core/SkImage.h"
|
|
#include "include/core/SkImageFilter.h"
|
|
#include "include/core/SkImageInfo.h"
|
|
#include "include/core/SkMaskFilter.h"
|
|
#include "include/core/SkMatrix.h"
|
|
#include "include/core/SkPaint.h"
|
|
#include "include/core/SkPoint.h"
|
|
#include "include/core/SkRect.h"
|
|
#include "include/core/SkRefCnt.h"
|
|
#include "include/core/SkScalar.h"
|
|
#include "include/core/SkShader.h"
|
|
#include "include/core/SkSize.h"
|
|
#include "include/core/SkString.h"
|
|
#include "include/core/SkTileMode.h"
|
|
#include "include/core/SkTypeface.h"
|
|
#include "include/core/SkTypes.h"
|
|
#include "include/effects/SkColorMatrix.h"
|
|
#include "include/effects/SkGradientShader.h"
|
|
#include "include/effects/SkImageFilters.h"
|
|
#include "include/effects/SkShaderMaskFilter.h"
|
|
#include "include/private/SkTArray.h"
|
|
#include "src/core/SkLineClipper.h"
|
|
#include "tools/Resources.h"
|
|
#include "tools/ToolUtils.h"
|
|
#include "tools/gpu/YUVUtils.h"
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
class ClipTileRenderer;
|
|
using ClipTileRendererArray = SkTArray<sk_sp<ClipTileRenderer>>;
|
|
|
|
// This GM mimics the draw calls used by complex compositors that focus on drawing rectangles
|
|
// and quadrilaterals with per-edge AA, with complex images, effects, and seamless tiling.
|
|
// It will be updated to reflect the patterns seen in Chromium's SkiaRenderer. It is currently
|
|
// restricted to adding draw ops directly in Ganesh since there is no fully-specified public API.
|
|
static constexpr SkScalar kTileWidth = 40;
|
|
static constexpr SkScalar kTileHeight = 30;
|
|
|
|
static constexpr int kRowCount = 4;
|
|
static constexpr int kColCount = 3;
|
|
|
|
// To mimic Chromium's BSP clipping strategy, a set of three lines formed by triangle edges
|
|
// of the below points are used to clip against the regular tile grid. The tile grid occupies
|
|
// a 120 x 120 rectangle (40px * 3 cols by 30px * 4 rows).
|
|
static constexpr SkPoint kClipP1 = {1.75f * kTileWidth, 0.8f * kTileHeight};
|
|
static constexpr SkPoint kClipP2 = {0.6f * kTileWidth, 2.f * kTileHeight};
|
|
static constexpr SkPoint kClipP3 = {2.9f * kTileWidth, 3.5f * kTileHeight};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Utilities for operating on lines and tiles
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// p0 and p1 form a segment contained the tile grid, so extends them by a large enough margin
|
|
// that the output points stored in 'line' are outside the tile grid (thus effectively infinite).
|
|
static void clipping_line_segment(const SkPoint& p0, const SkPoint& p1, SkPoint line[2]) {
|
|
SkVector v = p1 - p0;
|
|
// 10f was chosen as a balance between large enough to scale the currently set clip
|
|
// points outside of the tile grid, but small enough to preserve precision.
|
|
line[0] = p0 - v * 10.f;
|
|
line[1] = p1 + v * 10.f;
|
|
}
|
|
|
|
// Returns true if line segment (p0-p1) intersects with line segment (l0-l1); if true is returned,
|
|
// the intersection point is stored in 'intersect'.
|
|
static bool intersect_line_segments(const SkPoint& p0, const SkPoint& p1,
|
|
const SkPoint& l0, const SkPoint& l1, SkPoint* intersect) {
|
|
static constexpr SkScalar kHorizontalTolerance = 0.01f; // Pretty conservative
|
|
|
|
// Use doubles for accuracy, since the clipping strategy used below can create T
|
|
// junctions, and lower precision could artificially create gaps
|
|
double pY = (double) p1.fY - (double) p0.fY;
|
|
double pX = (double) p1.fX - (double) p0.fX;
|
|
double lY = (double) l1.fY - (double) l0.fY;
|
|
double lX = (double) l1.fX - (double) l0.fX;
|
|
double plY = (double) p0.fY - (double) l0.fY;
|
|
double plX = (double) p0.fX - (double) l0.fX;
|
|
if (SkScalarNearlyZero(pY, kHorizontalTolerance)) {
|
|
if (SkScalarNearlyZero(lY, kHorizontalTolerance)) {
|
|
// Two horizontal lines
|
|
return false;
|
|
} else {
|
|
// Recalculate but swap p and l
|
|
return intersect_line_segments(l0, l1, p0, p1, intersect);
|
|
}
|
|
}
|
|
|
|
// Up to now, the line segments do not form an invalid intersection
|
|
double lNumerator = plX * pY - plY * pX;
|
|
double lDenom = lX * pY - lY * pX;
|
|
if (SkScalarNearlyZero(lDenom)) {
|
|
// Parallel or identical
|
|
return false;
|
|
}
|
|
|
|
// Calculate alphaL that provides the intersection point along (l0-l1), e.g. l0+alphaL*(l1-l0)
|
|
double alphaL = lNumerator / lDenom;
|
|
if (alphaL < 0.0 || alphaL > 1.0) {
|
|
// Outside of the l segment
|
|
return false;
|
|
}
|
|
|
|
// Calculate alphaP from the valid alphaL (since it could be outside p segment)
|
|
// double alphaP = (alphaL * l.fY - pl.fY) / p.fY;
|
|
double alphaP = (alphaL * lY - plY) / pY;
|
|
if (alphaP < 0.0 || alphaP > 1.0) {
|
|
// Outside of p segment
|
|
return false;
|
|
}
|
|
|
|
// Is valid, so calculate the actual intersection point
|
|
*intersect = l1 * SkScalar(alphaL) + l0 * SkScalar(1.0 - alphaL);
|
|
return true;
|
|
}
|
|
|
|
// Draw a line through the two points, outset by a fixed length in screen space
|
|
static void draw_outset_line(SkCanvas* canvas, const SkMatrix& local, const SkPoint pts[2],
|
|
const SkPaint& paint) {
|
|
static constexpr SkScalar kLineOutset = 10.f;
|
|
SkPoint mapped[2];
|
|
local.mapPoints(mapped, pts, 2);
|
|
SkVector v = mapped[1] - mapped[0];
|
|
v.setLength(v.length() + kLineOutset);
|
|
canvas->drawLine(mapped[1] - v, mapped[0] + v, paint);
|
|
}
|
|
|
|
// Draw grid of red lines at interior tile boundaries.
|
|
static void draw_tile_boundaries(SkCanvas* canvas, const SkMatrix& local) {
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
paint.setColor(SK_ColorRED);
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
paint.setStrokeWidth(0.f);
|
|
for (int x = 1; x < kColCount; ++x) {
|
|
SkPoint pts[] = {{x * kTileWidth, 0}, {x * kTileWidth, kRowCount * kTileHeight}};
|
|
draw_outset_line(canvas, local, pts, paint);
|
|
}
|
|
for (int y = 1; y < kRowCount; ++y) {
|
|
SkPoint pts[] = {{0, y * kTileHeight}, {kTileWidth * kColCount, y * kTileHeight}};
|
|
draw_outset_line(canvas, local, pts, paint);
|
|
}
|
|
}
|
|
|
|
// Draw the arbitrary clipping/split boundaries that intersect the tile grid as green lines
|
|
static void draw_clipping_boundaries(SkCanvas* canvas, const SkMatrix& local) {
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
paint.setColor(SK_ColorGREEN);
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
paint.setStrokeWidth(0.f);
|
|
|
|
// Clip the "infinite" line segments to a rectangular region outside the tile grid
|
|
SkRect border = SkRect::MakeWH(kTileWidth * kColCount, kTileHeight * kRowCount);
|
|
|
|
// Draw p1 to p2
|
|
SkPoint line[2];
|
|
SkPoint clippedLine[2];
|
|
clipping_line_segment(kClipP1, kClipP2, line);
|
|
SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine));
|
|
draw_outset_line(canvas, local, clippedLine, paint);
|
|
|
|
// Draw p2 to p3
|
|
clipping_line_segment(kClipP2, kClipP3, line);
|
|
SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine));
|
|
draw_outset_line(canvas, local, clippedLine, paint);
|
|
|
|
// Draw p3 to p1
|
|
clipping_line_segment(kClipP3, kClipP1, line);
|
|
SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine));
|
|
draw_outset_line(canvas, local, clippedLine, paint);
|
|
}
|
|
|
|
static void draw_text(SkCanvas* canvas, const char* text) {
|
|
SkFont font(ToolUtils::create_portable_typeface(), 12);
|
|
canvas->drawString(text, 0, 0, font, SkPaint());
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Abstraction for rendering a possibly clipped tile, that can apply different effects to mimic
|
|
// the Chromium quad types, and a generic GM template to arrange renderers x transforms in a grid
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class ClipTileRenderer : public SkRefCntBase {
|
|
public:
|
|
// Draw the base rect, possibly clipped by 'clip' if that is not null. The edges to antialias
|
|
// are specified in 'edgeAA' (to make manipulation easier than an unsigned bitfield). 'tileID'
|
|
// represents the location of rect within the tile grid, 'quadID' is the unique ID of the clip
|
|
// region within the tile (reset for each tile).
|
|
//
|
|
// The edgeAA order matches that of clip, so it refers to top, right, bottom, left.
|
|
// Return draw count
|
|
virtual int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4],
|
|
const bool edgeAA[4], int tileID, int quadID) = 0;
|
|
|
|
virtual void drawBanner(SkCanvas* canvas) = 0;
|
|
|
|
// Return draw count
|
|
virtual int drawTiles(SkCanvas* canvas) {
|
|
// All three lines in a list
|
|
SkPoint lines[6];
|
|
clipping_line_segment(kClipP1, kClipP2, lines);
|
|
clipping_line_segment(kClipP2, kClipP3, lines + 2);
|
|
clipping_line_segment(kClipP3, kClipP1, lines + 4);
|
|
|
|
bool edgeAA[4];
|
|
int tileID = 0;
|
|
int drawCount = 0;
|
|
for (int i = 0; i < kRowCount; ++i) {
|
|
for (int j = 0; j < kColCount; ++j) {
|
|
// The unclipped tile geometry
|
|
SkRect tile = SkRect::MakeXYWH(j * kTileWidth, i * kTileHeight,
|
|
kTileWidth, kTileHeight);
|
|
// Base edge AA flags if there are no clips; clipped lines will only turn off edges
|
|
edgeAA[0] = i == 0; // Top
|
|
edgeAA[1] = j == kColCount - 1; // Right
|
|
edgeAA[2] = i == kRowCount - 1; // Bottom
|
|
edgeAA[3] = j == 0; // Left
|
|
|
|
// Now clip against the 3 lines formed by kClipPx and split into general purpose
|
|
// quads as needed.
|
|
int quadCount = 0;
|
|
drawCount += this->clipTile(canvas, tileID, tile, nullptr, edgeAA, lines, 3,
|
|
&quadCount);
|
|
tileID++;
|
|
}
|
|
}
|
|
|
|
return drawCount;
|
|
}
|
|
|
|
protected:
|
|
SkCanvas::QuadAAFlags maskToFlags(const bool edgeAA[4]) const {
|
|
unsigned flags = (edgeAA[0] * SkCanvas::kTop_QuadAAFlag) |
|
|
(edgeAA[1] * SkCanvas::kRight_QuadAAFlag) |
|
|
(edgeAA[2] * SkCanvas::kBottom_QuadAAFlag) |
|
|
(edgeAA[3] * SkCanvas::kLeft_QuadAAFlag);
|
|
return static_cast<SkCanvas::QuadAAFlags>(flags);
|
|
}
|
|
|
|
// Recursively splits the quadrilateral against the segments stored in 'lines', which must be
|
|
// 2 * lineCount long. Increments 'quadCount' for each split quadrilateral, and invokes the
|
|
// drawTile at leaves.
|
|
int clipTile(SkCanvas* canvas, int tileID, const SkRect& baseRect, const SkPoint quad[4],
|
|
const bool edgeAA[4], const SkPoint lines[], int lineCount, int* quadCount) {
|
|
if (lineCount == 0) {
|
|
// No lines, so end recursion by drawing the tile. If the tile was never split then
|
|
// 'quad' remains null so that drawTile() can differentiate how it should draw.
|
|
int draws = this->drawTile(canvas, baseRect, quad, edgeAA, tileID, *quadCount);
|
|
*quadCount = *quadCount + 1;
|
|
return draws;
|
|
}
|
|
|
|
static constexpr int kTL = 0; // Top-left point index in points array
|
|
static constexpr int kTR = 1; // Top-right point index in points array
|
|
static constexpr int kBR = 2; // Bottom-right point index in points array
|
|
static constexpr int kBL = 3; // Bottom-left point index in points array
|
|
static constexpr int kS0 = 4; // First split point index in points array
|
|
static constexpr int kS1 = 5; // Second split point index in points array
|
|
|
|
SkPoint points[6];
|
|
if (quad) {
|
|
// Copy the original 4 points into set of points to consider
|
|
for (int i = 0; i < 4; ++i) {
|
|
points[i] = quad[i];
|
|
}
|
|
} else {
|
|
// Haven't been split yet, so fill in based on the rect
|
|
baseRect.toQuad(points);
|
|
}
|
|
|
|
// Consider the first line against the 4 quad edges in tile, which should have 0,1, or 2
|
|
// intersection points since the tile is convex.
|
|
int splitIndices[2]; // Edge that was intersected
|
|
int intersectionCount = 0;
|
|
for (int i = 0; i < 4; ++i) {
|
|
SkPoint intersect;
|
|
if (intersect_line_segments(points[i], points[i == 3 ? 0 : i + 1],
|
|
lines[0], lines[1], &intersect)) {
|
|
// If the intersected point is the same as the last found intersection, the line
|
|
// runs through a vertex, so don't double count it
|
|
bool duplicate = false;
|
|
for (int j = 0; j < intersectionCount; ++j) {
|
|
if (SkScalarNearlyZero((intersect - points[kS0 + j]).length())) {
|
|
duplicate = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!duplicate) {
|
|
points[kS0 + intersectionCount] = intersect;
|
|
splitIndices[intersectionCount] = i;
|
|
intersectionCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (intersectionCount < 2) {
|
|
// Either the first line never intersected the quad (count == 0), or it intersected at a
|
|
// single vertex without going through quad area (count == 1), so check next line
|
|
return this->clipTile(
|
|
canvas, tileID, baseRect, quad, edgeAA, lines + 2, lineCount - 1, quadCount);
|
|
}
|
|
|
|
SkASSERT(intersectionCount == 2);
|
|
// Split the tile points into 2+ sub quads and recurse to the next lines, which may or may
|
|
// not further split the tile. Since the configurations are relatively simple, the possible
|
|
// splits are hardcoded below; subtile quad orderings are such that the sub tiles remain in
|
|
// clockwise order and match expected edges for QuadAAFlags. subtile indices refer to the
|
|
// 6-element 'points' array.
|
|
SkSTArray<3, std::array<int, 4>> subtiles;
|
|
int s2 = -1; // Index of an original vertex chosen for a artificial split
|
|
if (splitIndices[1] - splitIndices[0] == 2) {
|
|
// Opposite edges, so the split trivially forms 2 sub quads
|
|
if (splitIndices[0] == 0) {
|
|
subtiles.push_back({{kTL, kS0, kS1, kBL}});
|
|
subtiles.push_back({{kS0, kTR, kBR, kS1}});
|
|
} else {
|
|
subtiles.push_back({{kTL, kTR, kS0, kS1}});
|
|
subtiles.push_back({{kS1, kS0, kBR, kBL}});
|
|
}
|
|
} else {
|
|
// Adjacent edges, which makes for a more complicated split, since it forms a degenerate
|
|
// quad (triangle) and a pentagon that must be artificially split. The pentagon is split
|
|
// using one of the original vertices (remembered in 's2'), which adds an additional
|
|
// degenerate quad, but ensures there are no T-junctions.
|
|
switch(splitIndices[0]) {
|
|
case 0:
|
|
// Could be connected to edge 1 or edge 3
|
|
if (splitIndices[1] == 1) {
|
|
s2 = kBL;
|
|
subtiles.push_back({{kS0, kTR, kS1, kS0}}); // degenerate
|
|
subtiles.push_back({{kTL, kS0, edgeAA[0] ? kS0 : kBL, kBL}}); // degenerate
|
|
subtiles.push_back({{kS0, kS1, kBR, kBL}});
|
|
} else {
|
|
SkASSERT(splitIndices[1] == 3);
|
|
s2 = kBR;
|
|
subtiles.push_back({{kTL, kS0, kS1, kS1}}); // degenerate
|
|
subtiles.push_back({{kS1, edgeAA[3] ? kS1 : kBR, kBR, kBL}}); // degenerate
|
|
subtiles.push_back({{kS0, kTR, kBR, kS1}});
|
|
}
|
|
break;
|
|
case 1:
|
|
// Edge 0 handled above, should only be connected to edge 2
|
|
SkASSERT(splitIndices[1] == 2);
|
|
s2 = kTL;
|
|
subtiles.push_back({{kS0, kS0, kBR, kS1}}); // degenerate
|
|
subtiles.push_back({{kTL, kTR, kS0, edgeAA[1] ? kS0 : kTL}}); // degenerate
|
|
subtiles.push_back({{kTL, kS0, kS1, kBL}});
|
|
break;
|
|
case 2:
|
|
// Edge 1 handled above, should only be connected to edge 3
|
|
SkASSERT(splitIndices[1] == 3);
|
|
s2 = kTR;
|
|
subtiles.push_back({{kS1, kS0, kS0, kBL}}); // degenerate
|
|
subtiles.push_back({{edgeAA[2] ? kS0 : kTR, kTR, kBR, kS0}}); // degenerate
|
|
subtiles.push_back({{kTL, kTR, kS0, kS1}});
|
|
break;
|
|
case 3:
|
|
// Fall through, an adjacent edge split that hits edge 3 should have first found
|
|
// been found with edge 0 or edge 2 for the other end
|
|
default:
|
|
SkASSERT(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
SkPoint sub[4];
|
|
bool subAA[4];
|
|
int draws = 0;
|
|
for (int i = 0; i < subtiles.count(); ++i) {
|
|
// Fill in the quad points and update edge AA rules for new interior edges
|
|
for (int j = 0; j < 4; ++j) {
|
|
int p = subtiles[i][j];
|
|
sub[j] = points[p];
|
|
|
|
int np = j == 3 ? subtiles[i][0] : subtiles[i][j + 1];
|
|
// The "new" edges are the edges that connect between the two split points or
|
|
// between a split point and the chosen s2 point. Otherwise the edge remains aligned
|
|
// with the original shape, so should preserve the AA setting.
|
|
if ((p >= kS0 && (np == s2 || np >= kS0)) ||
|
|
((np >= kS0) && (p == s2 || p >= kS0))) {
|
|
// New edge
|
|
subAA[j] = false;
|
|
} else {
|
|
// The subtiles indices were arranged so that their edge ordering was still top,
|
|
// right, bottom, left so 'j' can be used to access edgeAA
|
|
subAA[j] = edgeAA[j];
|
|
}
|
|
}
|
|
|
|
// Split the sub quad with the next line
|
|
draws += this->clipTile(canvas, tileID, baseRect, sub, subAA, lines + 2, lineCount - 1,
|
|
quadCount);
|
|
}
|
|
return draws;
|
|
}
|
|
};
|
|
|
|
static constexpr int kMatrixCount = 5;
|
|
|
|
class CompositorGM : public skiagm::GM {
|
|
public:
|
|
CompositorGM(const char* name, std::function<ClipTileRendererArray()> makeRendererFn)
|
|
: fMakeRendererFn(std::move(makeRendererFn))
|
|
, fName(name) {}
|
|
|
|
protected:
|
|
SkISize onISize() override {
|
|
// Initialize the array of renderers.
|
|
this->onceBeforeDraw();
|
|
|
|
// The GM draws a grid of renderers (rows) x transforms (col). Within each cell, the
|
|
// renderer draws the transformed tile grid, which is approximately
|
|
// (kColCount*kTileWidth, kRowCount*kTileHeight), although it has additional line
|
|
// visualizations and can be transformed outside of those rectangular bounds (i.e. persp),
|
|
// so pad the cell dimensions to be conservative. Must also account for the banner text.
|
|
static constexpr SkScalar kCellWidth = 1.3f * kColCount * kTileWidth;
|
|
static constexpr SkScalar kCellHeight = 1.3f * kRowCount * kTileHeight;
|
|
return SkISize::Make(SkScalarRoundToInt(kCellWidth * kMatrixCount + 175.f),
|
|
SkScalarRoundToInt(kCellHeight * fRenderers.count() + 75.f));
|
|
}
|
|
|
|
SkString onShortName() override {
|
|
SkString fullName;
|
|
fullName.appendf("compositor_quads_%s", fName.c_str());
|
|
return fullName;
|
|
}
|
|
|
|
void onOnceBeforeDraw() override {
|
|
fRenderers = fMakeRendererFn();
|
|
this->configureMatrices();
|
|
}
|
|
|
|
void onDraw(SkCanvas* canvas) override {
|
|
static constexpr SkScalar kGap = 40.f;
|
|
static constexpr SkScalar kBannerWidth = 120.f;
|
|
static constexpr SkScalar kOffset = 15.f;
|
|
|
|
SkTArray<int> drawCounts(fRenderers.count());
|
|
drawCounts.push_back_n(fRenderers.count(), 0);
|
|
|
|
canvas->save();
|
|
canvas->translate(kOffset + kBannerWidth, kOffset);
|
|
for (int i = 0; i < fMatrices.count(); ++i) {
|
|
canvas->save();
|
|
draw_text(canvas, fMatrixNames[i].c_str());
|
|
|
|
canvas->translate(0.f, kGap);
|
|
for (int j = 0; j < fRenderers.count(); ++j) {
|
|
canvas->save();
|
|
draw_tile_boundaries(canvas, fMatrices[i]);
|
|
draw_clipping_boundaries(canvas, fMatrices[i]);
|
|
|
|
canvas->concat(fMatrices[i]);
|
|
drawCounts[j] += fRenderers[j]->drawTiles(canvas);
|
|
|
|
canvas->restore();
|
|
// And advance to the next row
|
|
canvas->translate(0.f, kGap + kRowCount * kTileHeight);
|
|
}
|
|
// Reset back to the left edge
|
|
canvas->restore();
|
|
// And advance to the next column
|
|
canvas->translate(kGap + kColCount * kTileWidth, 0.f);
|
|
}
|
|
canvas->restore();
|
|
|
|
// Print a row header, with total draw counts
|
|
canvas->save();
|
|
canvas->translate(kOffset, kGap + 0.5f * kRowCount * kTileHeight);
|
|
for (int j = 0; j < fRenderers.count(); ++j) {
|
|
fRenderers[j]->drawBanner(canvas);
|
|
canvas->translate(0.f, 15.f);
|
|
draw_text(canvas, SkStringPrintf("Draws = %d", drawCounts[j]).c_str());
|
|
canvas->translate(0.f, kGap + kRowCount * kTileHeight);
|
|
}
|
|
canvas->restore();
|
|
}
|
|
|
|
private:
|
|
std::function<ClipTileRendererArray()> fMakeRendererFn;
|
|
ClipTileRendererArray fRenderers;
|
|
SkTArray<SkMatrix> fMatrices;
|
|
SkTArray<SkString> fMatrixNames;
|
|
|
|
SkString fName;
|
|
|
|
void configureMatrices() {
|
|
fMatrices.reset();
|
|
fMatrixNames.reset();
|
|
fMatrices.push_back_n(kMatrixCount);
|
|
|
|
// Identity
|
|
fMatrices[0].setIdentity();
|
|
fMatrixNames.push_back(SkString("Identity"));
|
|
|
|
// Translate/scale
|
|
fMatrices[1].setTranslate(5.5f, 20.25f);
|
|
fMatrices[1].postScale(.9f, .7f);
|
|
fMatrixNames.push_back(SkString("T+S"));
|
|
|
|
// Rotation
|
|
fMatrices[2].setRotate(20.0f);
|
|
fMatrices[2].preTranslate(15.f, -20.f);
|
|
fMatrixNames.push_back(SkString("Rotate"));
|
|
|
|
// Skew
|
|
fMatrices[3].setSkew(.5f, .25f);
|
|
fMatrices[3].preTranslate(-30.f, 0.f);
|
|
fMatrixNames.push_back(SkString("Skew"));
|
|
|
|
// Perspective
|
|
SkPoint src[4];
|
|
SkRect::MakeWH(kColCount * kTileWidth, kRowCount * kTileHeight).toQuad(src);
|
|
SkPoint dst[4] = {{0, 0},
|
|
{kColCount * kTileWidth + 10.f, 15.f},
|
|
{kColCount * kTileWidth - 28.f, kRowCount * kTileHeight + 40.f},
|
|
{25.f, kRowCount * kTileHeight - 15.f}};
|
|
SkAssertResult(fMatrices[4].setPolyToPoly(src, dst, 4));
|
|
fMatrices[4].preTranslate(0.f, 10.f);
|
|
fMatrixNames.push_back(SkString("Perspective"));
|
|
|
|
SkASSERT(fMatrices.count() == fMatrixNames.count());
|
|
}
|
|
|
|
using INHERITED = skiagm::GM;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Implementations of TileRenderer that color the clipped tiles in various ways
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class DebugTileRenderer : public ClipTileRenderer {
|
|
public:
|
|
|
|
static sk_sp<ClipTileRenderer> Make() {
|
|
// Since aa override is disabled, the quad flags arg doesn't matter.
|
|
return sk_sp<ClipTileRenderer>(new DebugTileRenderer(SkCanvas::kAll_QuadAAFlags, false));
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeAA() {
|
|
return sk_sp<ClipTileRenderer>(new DebugTileRenderer(SkCanvas::kAll_QuadAAFlags, true));
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeNonAA() {
|
|
return sk_sp<ClipTileRenderer>(new DebugTileRenderer(SkCanvas::kNone_QuadAAFlags, true));
|
|
}
|
|
|
|
int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
|
|
int tileID, int quadID) override {
|
|
// Colorize the tile based on its grid position and quad ID
|
|
int i = tileID / kColCount;
|
|
int j = tileID % kColCount;
|
|
|
|
SkColor4f c = {(i + 1.f) / kRowCount, (j + 1.f) / kColCount, .4f, 1.f};
|
|
float alpha = quadID / 10.f;
|
|
c.fR = c.fR * (1 - alpha) + alpha;
|
|
c.fG = c.fG * (1 - alpha) + alpha;
|
|
c.fB = c.fB * (1 - alpha) + alpha;
|
|
c.fA = c.fA * (1 - alpha) + alpha;
|
|
|
|
SkCanvas::QuadAAFlags aaFlags = fEnableAAOverride ? fAAOverride : this->maskToFlags(edgeAA);
|
|
canvas->experimental_DrawEdgeAAQuad(
|
|
rect, clip, aaFlags, c.toSkColor(), SkBlendMode::kSrcOver);
|
|
return 1;
|
|
}
|
|
|
|
void drawBanner(SkCanvas* canvas) override {
|
|
draw_text(canvas, "Edge AA");
|
|
canvas->translate(0.f, 15.f);
|
|
|
|
SkString config;
|
|
static const char* kFormat = "Ext(%s) - Int(%s)";
|
|
if (fEnableAAOverride) {
|
|
SkASSERT(fAAOverride == SkCanvas::kAll_QuadAAFlags ||
|
|
fAAOverride == SkCanvas::kNone_QuadAAFlags);
|
|
if (fAAOverride == SkCanvas::kAll_QuadAAFlags) {
|
|
config.appendf(kFormat, "yes", "yes");
|
|
} else {
|
|
config.appendf(kFormat, "no", "no");
|
|
}
|
|
} else {
|
|
config.appendf(kFormat, "yes", "no");
|
|
}
|
|
draw_text(canvas, config.c_str());
|
|
}
|
|
|
|
private:
|
|
SkCanvas::QuadAAFlags fAAOverride;
|
|
bool fEnableAAOverride;
|
|
|
|
DebugTileRenderer(SkCanvas::QuadAAFlags aa, bool enableAAOverrde)
|
|
: fAAOverride(aa)
|
|
, fEnableAAOverride(enableAAOverrde) {}
|
|
|
|
using INHERITED = ClipTileRenderer;
|
|
};
|
|
|
|
// Tests tmp_drawEdgeAAQuad
|
|
class SolidColorRenderer : public ClipTileRenderer {
|
|
public:
|
|
|
|
static sk_sp<ClipTileRenderer> Make(const SkColor4f& color) {
|
|
return sk_sp<ClipTileRenderer>(new SolidColorRenderer(color));
|
|
}
|
|
|
|
int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
|
|
int tileID, int quadID) override {
|
|
canvas->experimental_DrawEdgeAAQuad(rect, clip, this->maskToFlags(edgeAA),
|
|
fColor.toSkColor(), SkBlendMode::kSrcOver);
|
|
return 1;
|
|
}
|
|
|
|
void drawBanner(SkCanvas* canvas) override {
|
|
draw_text(canvas, "Solid Color");
|
|
}
|
|
|
|
private:
|
|
SkColor4f fColor;
|
|
|
|
SolidColorRenderer(const SkColor4f& color) : fColor(color) {}
|
|
|
|
using INHERITED = ClipTileRenderer;
|
|
};
|
|
|
|
// Tests drawEdgeAAImageSet(), but can batch the entries together in different ways
|
|
class TextureSetRenderer : public ClipTileRenderer {
|
|
public:
|
|
|
|
static sk_sp<ClipTileRenderer> MakeUnbatched(sk_sp<SkImage> image) {
|
|
return Make("Texture", "", std::move(image), nullptr, nullptr, nullptr, nullptr,
|
|
1.f, true, 0);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeBatched(sk_sp<SkImage> image, int transformCount) {
|
|
const char* subtitle = transformCount == 0 ? "" : "w/ xforms";
|
|
return Make("Texture Set", subtitle, std::move(image), nullptr, nullptr, nullptr, nullptr,
|
|
1.f, false, transformCount);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeShader(const char* name, sk_sp<SkImage> image,
|
|
sk_sp<SkShader> shader, bool local) {
|
|
return Make("Shader", name, std::move(image), std::move(shader),
|
|
nullptr, nullptr, nullptr, 1.f, local, 0);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeColorFilter(const char* name, sk_sp<SkImage> image,
|
|
sk_sp<SkColorFilter> filter) {
|
|
return Make("Color Filter", name, std::move(image), nullptr, std::move(filter), nullptr,
|
|
nullptr, 1.f, false, 0);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeImageFilter(const char* name, sk_sp<SkImage> image,
|
|
sk_sp<SkImageFilter> filter) {
|
|
return Make("Image Filter", name, std::move(image), nullptr, nullptr, std::move(filter),
|
|
nullptr, 1.f, false, 0);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeMaskFilter(const char* name, sk_sp<SkImage> image,
|
|
sk_sp<SkMaskFilter> filter) {
|
|
return Make("Mask Filter", name, std::move(image), nullptr, nullptr, nullptr,
|
|
std::move(filter), 1.f, false, 0);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> MakeAlpha(sk_sp<SkImage> image, SkScalar alpha) {
|
|
return Make("Alpha", SkStringPrintf("a = %.2f", alpha).c_str(), std::move(image), nullptr,
|
|
nullptr, nullptr, nullptr, alpha, false, 0);
|
|
}
|
|
|
|
static sk_sp<ClipTileRenderer> Make(const char* topBanner, const char* bottomBanner,
|
|
sk_sp<SkImage> image, sk_sp<SkShader> shader,
|
|
sk_sp<SkColorFilter> colorFilter,
|
|
sk_sp<SkImageFilter> imageFilter,
|
|
sk_sp<SkMaskFilter> maskFilter, SkScalar paintAlpha,
|
|
bool resetAfterEachQuad, int transformCount) {
|
|
return sk_sp<ClipTileRenderer>(new TextureSetRenderer(topBanner, bottomBanner,
|
|
std::move(image), std::move(shader), std::move(colorFilter), std::move(imageFilter),
|
|
std::move(maskFilter), paintAlpha, resetAfterEachQuad, transformCount));
|
|
}
|
|
|
|
int drawTiles(SkCanvas* canvas) override {
|
|
int draws = this->INHERITED::drawTiles(canvas);
|
|
// Push the last tile set
|
|
draws += this->drawAndReset(canvas);
|
|
return draws;
|
|
}
|
|
|
|
int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
|
|
int tileID, int quadID) override {
|
|
// Now don't actually draw the tile, accumulate it in the growing entry set
|
|
bool hasClip = false;
|
|
if (clip) {
|
|
// Record the four points into fDstClips
|
|
fDstClips.push_back_n(4, clip);
|
|
hasClip = true;
|
|
}
|
|
|
|
int matrixIdx = -1;
|
|
if (!fResetEachQuad && fTransformBatchCount > 0) {
|
|
// Handle transform batching. This works by capturing the CTM of the first tile draw,
|
|
// and then calculate the difference between that and future CTMs for later tiles.
|
|
if (fPreViewMatrices.count() == 0) {
|
|
fBaseCTM = canvas->getTotalMatrix();
|
|
fPreViewMatrices.push_back(SkMatrix::I());
|
|
matrixIdx = 0;
|
|
} else {
|
|
// Calculate matrix s.t. getTotalMatrix() = fBaseCTM * M
|
|
SkMatrix invBase;
|
|
if (!fBaseCTM.invert(&invBase)) {
|
|
SkDebugf("Cannot invert CTM, transform batching will not be correct.\n");
|
|
} else {
|
|
SkMatrix preView = SkMatrix::Concat(invBase, canvas->getTotalMatrix());
|
|
if (preView != fPreViewMatrices[fPreViewMatrices.count() - 1]) {
|
|
// Add the new matrix
|
|
fPreViewMatrices.push_back(preView);
|
|
} // else re-use the last matrix
|
|
matrixIdx = fPreViewMatrices.count() - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This acts like the whole image is rendered over the entire tile grid, so derive local
|
|
// coordinates from 'rect', based on the grid to image transform.
|
|
SkMatrix gridToImage = SkMatrix::RectToRect(SkRect::MakeWH(kColCount * kTileWidth,
|
|
kRowCount * kTileHeight),
|
|
SkRect::MakeWH(fImage->width(),
|
|
fImage->height()));
|
|
SkRect localRect = gridToImage.mapRect(rect);
|
|
|
|
// drawTextureSet automatically derives appropriate local quad from localRect if clipPtr
|
|
// is not null.
|
|
fSetEntries.push_back(
|
|
{fImage, localRect, rect, matrixIdx, 1.f, this->maskToFlags(edgeAA), hasClip});
|
|
|
|
if (fResetEachQuad) {
|
|
// Only ever draw one entry at a time
|
|
return this->drawAndReset(canvas);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void drawBanner(SkCanvas* canvas) override {
|
|
if (fTopBanner.size() > 0) {
|
|
draw_text(canvas, fTopBanner.c_str());
|
|
}
|
|
canvas->translate(0.f, 15.f);
|
|
if (fBottomBanner.size() > 0) {
|
|
draw_text(canvas, fBottomBanner.c_str());
|
|
}
|
|
}
|
|
|
|
private:
|
|
SkString fTopBanner;
|
|
SkString fBottomBanner;
|
|
|
|
sk_sp<SkImage> fImage;
|
|
sk_sp<SkShader> fShader;
|
|
sk_sp<SkColorFilter> fColorFilter;
|
|
sk_sp<SkImageFilter> fImageFilter;
|
|
sk_sp<SkMaskFilter> fMaskFilter;
|
|
SkScalar fPaintAlpha;
|
|
|
|
// Batching rules
|
|
bool fResetEachQuad;
|
|
int fTransformBatchCount;
|
|
|
|
SkTArray<SkPoint> fDstClips;
|
|
SkTArray<SkMatrix> fPreViewMatrices;
|
|
SkTArray<SkCanvas::ImageSetEntry> fSetEntries;
|
|
|
|
SkMatrix fBaseCTM;
|
|
int fBatchCount;
|
|
|
|
TextureSetRenderer(const char* topBanner,
|
|
const char* bottomBanner,
|
|
sk_sp<SkImage> image,
|
|
sk_sp<SkShader> shader,
|
|
sk_sp<SkColorFilter> colorFilter,
|
|
sk_sp<SkImageFilter> imageFilter,
|
|
sk_sp<SkMaskFilter> maskFilter,
|
|
SkScalar paintAlpha,
|
|
bool resetEachQuad,
|
|
int transformBatchCount)
|
|
: fTopBanner(topBanner)
|
|
, fBottomBanner(bottomBanner)
|
|
, fImage(std::move(image))
|
|
, fShader(std::move(shader))
|
|
, fColorFilter(std::move(colorFilter))
|
|
, fImageFilter(std::move(imageFilter))
|
|
, fMaskFilter(std::move(maskFilter))
|
|
, fPaintAlpha(paintAlpha)
|
|
, fResetEachQuad(resetEachQuad)
|
|
, fTransformBatchCount(transformBatchCount)
|
|
, fBatchCount(0) {
|
|
SkASSERT(transformBatchCount >= 0 && (!resetEachQuad || transformBatchCount == 0));
|
|
}
|
|
|
|
void configureTilePaint(const SkRect& rect, SkPaint* paint) const {
|
|
paint->setAntiAlias(true);
|
|
paint->setBlendMode(SkBlendMode::kSrcOver);
|
|
|
|
// Send non-white RGB, that should be ignored
|
|
paint->setColor4f({1.f, 0.4f, 0.25f, fPaintAlpha}, nullptr);
|
|
|
|
|
|
if (fShader) {
|
|
if (fResetEachQuad) {
|
|
// Apply a local transform in the shader to map from the tile rectangle to (0,0,w,h)
|
|
static const SkRect kTarget = SkRect::MakeWH(kTileWidth, kTileHeight);
|
|
SkMatrix local = SkMatrix::RectToRect(kTarget, rect);
|
|
paint->setShader(fShader->makeWithLocalMatrix(local));
|
|
} else {
|
|
paint->setShader(fShader);
|
|
}
|
|
}
|
|
|
|
paint->setColorFilter(fColorFilter);
|
|
paint->setImageFilter(fImageFilter);
|
|
paint->setMaskFilter(fMaskFilter);
|
|
}
|
|
|
|
int drawAndReset(SkCanvas* canvas) {
|
|
// Early out if there's nothing to draw
|
|
if (fSetEntries.count() == 0) {
|
|
SkASSERT(fDstClips.count() == 0 && fPreViewMatrices.count() == 0);
|
|
return 0;
|
|
}
|
|
|
|
if (!fResetEachQuad && fTransformBatchCount > 0) {
|
|
// A batch is completed
|
|
fBatchCount++;
|
|
if (fBatchCount < fTransformBatchCount) {
|
|
// Haven't hit the point to submit yet, but end the current tile
|
|
return 0;
|
|
}
|
|
|
|
// Submitting all tiles back to where fBaseCTM was the canvas' matrix, while the
|
|
// canvas currently has the CTM of the last tile batch, so reset it.
|
|
canvas->setMatrix(fBaseCTM);
|
|
}
|
|
|
|
#ifdef SK_DEBUG
|
|
int expectedDstClipCount = 0;
|
|
for (int i = 0; i < fSetEntries.count(); ++i) {
|
|
expectedDstClipCount += 4 * fSetEntries[i].fHasClip;
|
|
SkASSERT(fSetEntries[i].fMatrixIndex < 0 ||
|
|
fSetEntries[i].fMatrixIndex < fPreViewMatrices.count());
|
|
}
|
|
SkASSERT(expectedDstClipCount == fDstClips.count());
|
|
#endif
|
|
|
|
SkPaint paint;
|
|
SkRect lastTileRect = fSetEntries[fSetEntries.count() - 1].fDstRect;
|
|
this->configureTilePaint(lastTileRect, &paint);
|
|
|
|
canvas->experimental_DrawEdgeAAImageSet(
|
|
fSetEntries.begin(), fSetEntries.count(), fDstClips.begin(),
|
|
fPreViewMatrices.begin(), SkSamplingOptions(SkFilterMode::kLinear),
|
|
&paint, SkCanvas::kFast_SrcRectConstraint);
|
|
|
|
// Reset for next tile
|
|
fDstClips.reset();
|
|
fPreViewMatrices.reset();
|
|
fSetEntries.reset();
|
|
fBatchCount = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
using INHERITED = ClipTileRenderer;
|
|
};
|
|
|
|
class YUVTextureSetRenderer : public ClipTileRenderer {
|
|
public:
|
|
static sk_sp<ClipTileRenderer> MakeFromJPEG(sk_sp<SkData> imageData) {
|
|
return sk_sp<ClipTileRenderer>(new YUVTextureSetRenderer(std::move(imageData)));
|
|
}
|
|
|
|
int drawTiles(SkCanvas* canvas) override {
|
|
// Refresh the SkImage at the start, so that it's not attempted for every set entry
|
|
if (fYUVData) {
|
|
fImage = fYUVData->refImage(canvas->recordingContext(),
|
|
sk_gpu_test::LazyYUVImage::Type::kFromPixmaps);
|
|
if (!fImage) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int draws = this->INHERITED::drawTiles(canvas);
|
|
// Push the last tile set
|
|
draws += this->drawAndReset(canvas);
|
|
return draws;
|
|
}
|
|
|
|
int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
|
|
int tileID, int quadID) override {
|
|
SkASSERT(fImage);
|
|
// Now don't actually draw the tile, accumulate it in the growing entry set
|
|
bool hasClip = false;
|
|
if (clip) {
|
|
// Record the four points into fDstClips
|
|
fDstClips.push_back_n(4, clip);
|
|
hasClip = true;
|
|
}
|
|
|
|
// This acts like the whole image is rendered over the entire tile grid, so derive local
|
|
// coordinates from 'rect', based on the grid to image transform.
|
|
SkMatrix gridToImage = SkMatrix::RectToRect(SkRect::MakeWH(kColCount * kTileWidth,
|
|
kRowCount * kTileHeight),
|
|
SkRect::MakeWH(fImage->width(),
|
|
fImage->height()));
|
|
SkRect localRect = gridToImage.mapRect(rect);
|
|
|
|
// drawTextureSet automatically derives appropriate local quad from localRect if clipPtr
|
|
// is not null. Also exercise per-entry alpha combined with YUVA images.
|
|
fSetEntries.push_back(
|
|
{fImage, localRect, rect, -1, .5f, this->maskToFlags(edgeAA), hasClip});
|
|
return 0;
|
|
}
|
|
|
|
void drawBanner(SkCanvas* canvas) override {
|
|
draw_text(canvas, "Texture");
|
|
canvas->translate(0.f, 15.f);
|
|
draw_text(canvas, "YUV + alpha - GPU Only");
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<sk_gpu_test::LazyYUVImage> fYUVData;
|
|
// The last accessed SkImage from fYUVData, held here for easy access by drawTile
|
|
sk_sp<SkImage> fImage;
|
|
|
|
SkTArray<SkPoint> fDstClips;
|
|
SkTArray<SkCanvas::ImageSetEntry> fSetEntries;
|
|
|
|
YUVTextureSetRenderer(sk_sp<SkData> jpegData)
|
|
: fYUVData(sk_gpu_test::LazyYUVImage::Make(std::move(jpegData)))
|
|
, fImage(nullptr) {}
|
|
|
|
int drawAndReset(SkCanvas* canvas) {
|
|
// Early out if there's nothing to draw
|
|
if (fSetEntries.count() == 0) {
|
|
SkASSERT(fDstClips.count() == 0);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SK_DEBUG
|
|
int expectedDstClipCount = 0;
|
|
for (int i = 0; i < fSetEntries.count(); ++i) {
|
|
expectedDstClipCount += 4 * fSetEntries[i].fHasClip;
|
|
}
|
|
SkASSERT(expectedDstClipCount == fDstClips.count());
|
|
#endif
|
|
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
paint.setBlendMode(SkBlendMode::kSrcOver);
|
|
|
|
canvas->experimental_DrawEdgeAAImageSet(
|
|
fSetEntries.begin(), fSetEntries.count(), fDstClips.begin(), nullptr,
|
|
SkSamplingOptions(SkFilterMode::kLinear), &paint,
|
|
SkCanvas::kFast_SrcRectConstraint);
|
|
|
|
// Reset for next tile
|
|
fDstClips.reset();
|
|
fSetEntries.reset();
|
|
|
|
return 1;
|
|
}
|
|
|
|
using INHERITED = ClipTileRenderer;
|
|
};
|
|
|
|
static ClipTileRendererArray make_debug_renderers() {
|
|
return ClipTileRendererArray{DebugTileRenderer::Make(),
|
|
DebugTileRenderer::MakeAA(),
|
|
DebugTileRenderer::MakeNonAA()};
|
|
}
|
|
|
|
static ClipTileRendererArray make_solid_color_renderers() {
|
|
return ClipTileRendererArray{SolidColorRenderer::Make({.2f, .8f, .3f, 1.f})};
|
|
}
|
|
|
|
static ClipTileRendererArray make_shader_renderers() {
|
|
static constexpr SkPoint kPts[] = { {0.f, 0.f}, {0.25f * kTileWidth, 0.25f * kTileHeight} };
|
|
static constexpr SkColor kColors[] = { SK_ColorBLUE, SK_ColorWHITE };
|
|
auto gradient = SkGradientShader::MakeLinear(kPts, kColors, nullptr, 2,
|
|
SkTileMode::kMirror);
|
|
|
|
auto info = SkImageInfo::Make(1, 1, kAlpha_8_SkColorType, kOpaque_SkAlphaType);
|
|
SkBitmap bm;
|
|
bm.allocPixels(info);
|
|
bm.eraseColor(SK_ColorWHITE);
|
|
sk_sp<SkImage> image = bm.asImage();
|
|
|
|
return ClipTileRendererArray{
|
|
TextureSetRenderer::MakeShader("Gradient", image, gradient, false),
|
|
TextureSetRenderer::MakeShader("Local Gradient", image, gradient, true)};
|
|
}
|
|
|
|
static ClipTileRendererArray make_image_renderers() {
|
|
sk_sp<SkImage> mandrill = GetResourceAsImage("images/mandrill_512.png");
|
|
sk_sp<SkData> mandrillJpeg = GetResourceAsData("images/mandrill_h1v1.jpg");
|
|
return ClipTileRendererArray{TextureSetRenderer::MakeUnbatched(mandrill),
|
|
TextureSetRenderer::MakeBatched(mandrill, 0),
|
|
TextureSetRenderer::MakeBatched(mandrill, kMatrixCount),
|
|
YUVTextureSetRenderer::MakeFromJPEG(mandrillJpeg)};
|
|
}
|
|
|
|
static ClipTileRendererArray make_filtered_renderers() {
|
|
sk_sp<SkImage> mandrill = GetResourceAsImage("images/mandrill_512.png");
|
|
|
|
SkColorMatrix cm;
|
|
cm.setSaturation(10);
|
|
sk_sp<SkColorFilter> colorFilter = SkColorFilters::Matrix(cm);
|
|
sk_sp<SkImageFilter> imageFilter = SkImageFilters::Dilate(8, 8, nullptr);
|
|
|
|
static constexpr SkColor kAlphas[] = { SK_ColorTRANSPARENT, SK_ColorBLACK };
|
|
auto alphaGradient = SkGradientShader::MakeRadial(
|
|
{0.5f * kTileWidth * kColCount, 0.5f * kTileHeight * kRowCount},
|
|
0.25f * kTileWidth * kColCount, kAlphas, nullptr, 2, SkTileMode::kClamp);
|
|
sk_sp<SkMaskFilter> maskFilter = SkShaderMaskFilter::Make(std::move(alphaGradient));
|
|
|
|
return ClipTileRendererArray{
|
|
TextureSetRenderer::MakeAlpha(mandrill, 0.5f),
|
|
TextureSetRenderer::MakeColorFilter("Saturation", mandrill, std::move(colorFilter)),
|
|
|
|
// NOTE: won't draw correctly until SkCanvas' AutoLoopers are used to handle image filters
|
|
TextureSetRenderer::MakeImageFilter("Dilate", mandrill, std::move(imageFilter)),
|
|
|
|
// NOTE: blur mask filters do work (tested locally), but visually they don't make much
|
|
// sense, since each quad is blurred independently
|
|
TextureSetRenderer::MakeMaskFilter("Shader", mandrill, std::move(maskFilter))};
|
|
}
|
|
|
|
DEF_GM(return new CompositorGM("debug", make_debug_renderers);)
|
|
DEF_GM(return new CompositorGM("color", make_solid_color_renderers);)
|
|
DEF_GM(return new CompositorGM("shader", make_shader_renderers);)
|
|
DEF_GM(return new CompositorGM("image", make_image_renderers);)
|
|
DEF_GM(return new CompositorGM("filter", make_filtered_renderers);)
|