You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
742 lines
29 KiB
742 lines
29 KiB
/*
|
|
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "p2p/base/dtls_transport.h"
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <utility>
|
|
|
|
#include "p2p/base/fake_ice_transport.h"
|
|
#include "p2p/base/packet_transport_internal.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/dscp.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "rtc_base/helpers.h"
|
|
#include "rtc_base/rtc_certificate.h"
|
|
#include "rtc_base/ssl_adapter.h"
|
|
#include "rtc_base/ssl_identity.h"
|
|
#include "rtc_base/ssl_stream_adapter.h"
|
|
|
|
#define MAYBE_SKIP_TEST(feature) \
|
|
if (!(rtc::SSLStreamAdapter::feature())) { \
|
|
RTC_LOG(LS_INFO) << #feature " feature disabled... skipping"; \
|
|
return; \
|
|
}
|
|
|
|
namespace cricket {
|
|
|
|
static const size_t kPacketNumOffset = 8;
|
|
static const size_t kPacketHeaderLen = 12;
|
|
static const int kFakePacketId = 0x1234;
|
|
static const int kTimeout = 10000;
|
|
|
|
static bool IsRtpLeadByte(uint8_t b) {
|
|
return ((b & 0xC0) == 0x80);
|
|
}
|
|
|
|
// |modify_digest| is used to set modified fingerprints that are meant to fail
|
|
// validation.
|
|
void SetRemoteFingerprintFromCert(
|
|
DtlsTransport* transport,
|
|
const rtc::scoped_refptr<rtc::RTCCertificate>& cert,
|
|
bool modify_digest = false) {
|
|
std::unique_ptr<rtc::SSLFingerprint> fingerprint =
|
|
rtc::SSLFingerprint::CreateFromCertificate(*cert);
|
|
if (modify_digest) {
|
|
++fingerprint->digest[0];
|
|
}
|
|
// Even if digest is verified to be incorrect, should fail asynchrnously.
|
|
EXPECT_TRUE(transport->SetRemoteFingerprint(
|
|
fingerprint->algorithm,
|
|
reinterpret_cast<const uint8_t*>(fingerprint->digest.data()),
|
|
fingerprint->digest.size()));
|
|
}
|
|
|
|
class DtlsTestClient : public sigslot::has_slots<> {
|
|
public:
|
|
explicit DtlsTestClient(const std::string& name) : name_(name) {}
|
|
void CreateCertificate(rtc::KeyType key_type) {
|
|
certificate_ =
|
|
rtc::RTCCertificate::Create(rtc::SSLIdentity::Create(name_, key_type));
|
|
}
|
|
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate() {
|
|
return certificate_;
|
|
}
|
|
void SetupMaxProtocolVersion(rtc::SSLProtocolVersion version) {
|
|
ssl_max_version_ = version;
|
|
}
|
|
// Set up fake ICE transport and real DTLS transport under test.
|
|
void SetupTransports(IceRole role, int async_delay_ms = 0) {
|
|
fake_ice_transport_.reset(new FakeIceTransport("fake", 0));
|
|
fake_ice_transport_->SetAsync(true);
|
|
fake_ice_transport_->SetAsyncDelay(async_delay_ms);
|
|
fake_ice_transport_->SetIceRole(role);
|
|
fake_ice_transport_->SetIceTiebreaker((role == ICEROLE_CONTROLLING) ? 1
|
|
: 2);
|
|
// Hook the raw packets so that we can verify they are encrypted.
|
|
fake_ice_transport_->SignalReadPacket.connect(
|
|
this, &DtlsTestClient::OnFakeIceTransportReadPacket);
|
|
|
|
dtls_transport_ = std::make_unique<DtlsTransport>(fake_ice_transport_.get(),
|
|
webrtc::CryptoOptions(),
|
|
/*event_log=*/nullptr);
|
|
dtls_transport_->SetSslMaxProtocolVersion(ssl_max_version_);
|
|
// Note: Certificate may be null here if testing passthrough.
|
|
dtls_transport_->SetLocalCertificate(certificate_);
|
|
dtls_transport_->SignalWritableState.connect(
|
|
this, &DtlsTestClient::OnTransportWritableState);
|
|
dtls_transport_->SignalReadPacket.connect(
|
|
this, &DtlsTestClient::OnTransportReadPacket);
|
|
dtls_transport_->SignalSentPacket.connect(
|
|
this, &DtlsTestClient::OnTransportSentPacket);
|
|
}
|
|
|
|
FakeIceTransport* fake_ice_transport() {
|
|
return static_cast<FakeIceTransport*>(dtls_transport_->ice_transport());
|
|
}
|
|
|
|
DtlsTransport* dtls_transport() { return dtls_transport_.get(); }
|
|
|
|
// Simulate fake ICE transports connecting.
|
|
bool Connect(DtlsTestClient* peer, bool asymmetric) {
|
|
fake_ice_transport()->SetDestination(peer->fake_ice_transport(),
|
|
asymmetric);
|
|
return true;
|
|
}
|
|
|
|
int received_dtls_client_hellos() const {
|
|
return received_dtls_client_hellos_;
|
|
}
|
|
|
|
int received_dtls_server_hellos() const {
|
|
return received_dtls_server_hellos_;
|
|
}
|
|
|
|
void CheckRole(rtc::SSLRole role) {
|
|
if (role == rtc::SSL_CLIENT) {
|
|
ASSERT_EQ(0, received_dtls_client_hellos_);
|
|
ASSERT_GT(received_dtls_server_hellos_, 0);
|
|
} else {
|
|
ASSERT_GT(received_dtls_client_hellos_, 0);
|
|
ASSERT_EQ(0, received_dtls_server_hellos_);
|
|
}
|
|
}
|
|
|
|
void CheckSrtp(int expected_crypto_suite) {
|
|
int crypto_suite;
|
|
bool rv = dtls_transport_->GetSrtpCryptoSuite(&crypto_suite);
|
|
if (dtls_transport_->IsDtlsActive() && expected_crypto_suite) {
|
|
ASSERT_TRUE(rv);
|
|
ASSERT_EQ(crypto_suite, expected_crypto_suite);
|
|
} else {
|
|
ASSERT_FALSE(rv);
|
|
}
|
|
}
|
|
|
|
void CheckSsl() {
|
|
int cipher;
|
|
bool rv = dtls_transport_->GetSslCipherSuite(&cipher);
|
|
if (dtls_transport_->IsDtlsActive()) {
|
|
ASSERT_TRUE(rv);
|
|
EXPECT_TRUE(
|
|
rtc::SSLStreamAdapter::IsAcceptableCipher(cipher, rtc::KT_DEFAULT));
|
|
} else {
|
|
ASSERT_FALSE(rv);
|
|
}
|
|
}
|
|
|
|
void SendPackets(size_t size, size_t count, bool srtp) {
|
|
std::unique_ptr<char[]> packet(new char[size]);
|
|
size_t sent = 0;
|
|
do {
|
|
// Fill the packet with a known value and a sequence number to check
|
|
// against, and make sure that it doesn't look like DTLS.
|
|
memset(packet.get(), sent & 0xff, size);
|
|
packet[0] = (srtp) ? 0x80 : 0x00;
|
|
rtc::SetBE32(packet.get() + kPacketNumOffset,
|
|
static_cast<uint32_t>(sent));
|
|
|
|
// Only set the bypass flag if we've activated DTLS.
|
|
int flags = (certificate_ && srtp) ? PF_SRTP_BYPASS : 0;
|
|
rtc::PacketOptions packet_options;
|
|
packet_options.packet_id = kFakePacketId;
|
|
int rv = dtls_transport_->SendPacket(packet.get(), size, packet_options,
|
|
flags);
|
|
ASSERT_GT(rv, 0);
|
|
ASSERT_EQ(size, static_cast<size_t>(rv));
|
|
++sent;
|
|
} while (sent < count);
|
|
}
|
|
|
|
int SendInvalidSrtpPacket(size_t size) {
|
|
std::unique_ptr<char[]> packet(new char[size]);
|
|
// Fill the packet with 0 to form an invalid SRTP packet.
|
|
memset(packet.get(), 0, size);
|
|
|
|
rtc::PacketOptions packet_options;
|
|
return dtls_transport_->SendPacket(packet.get(), size, packet_options,
|
|
PF_SRTP_BYPASS);
|
|
}
|
|
|
|
void ExpectPackets(size_t size) {
|
|
packet_size_ = size;
|
|
received_.clear();
|
|
}
|
|
|
|
size_t NumPacketsReceived() { return received_.size(); }
|
|
|
|
// Inverse of SendPackets.
|
|
bool VerifyPacket(const char* data, size_t size, uint32_t* out_num) {
|
|
if (size != packet_size_ ||
|
|
(data[0] != 0 && static_cast<uint8_t>(data[0]) != 0x80)) {
|
|
return false;
|
|
}
|
|
uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset);
|
|
for (size_t i = kPacketHeaderLen; i < size; ++i) {
|
|
if (static_cast<uint8_t>(data[i]) != (packet_num & 0xff)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (out_num) {
|
|
*out_num = packet_num;
|
|
}
|
|
return true;
|
|
}
|
|
bool VerifyEncryptedPacket(const char* data, size_t size) {
|
|
// This is an encrypted data packet; let's make sure it's mostly random;
|
|
// less than 10% of the bytes should be equal to the cleartext packet.
|
|
if (size <= packet_size_) {
|
|
return false;
|
|
}
|
|
uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset);
|
|
int num_matches = 0;
|
|
for (size_t i = kPacketNumOffset; i < size; ++i) {
|
|
if (static_cast<uint8_t>(data[i]) == (packet_num & 0xff)) {
|
|
++num_matches;
|
|
}
|
|
}
|
|
return (num_matches < ((static_cast<int>(size) - 5) / 10));
|
|
}
|
|
|
|
// Transport callbacks
|
|
void OnTransportWritableState(rtc::PacketTransportInternal* transport) {
|
|
RTC_LOG(LS_INFO) << name_ << ": Transport '" << transport->transport_name()
|
|
<< "' is writable";
|
|
}
|
|
|
|
void OnTransportReadPacket(rtc::PacketTransportInternal* transport,
|
|
const char* data,
|
|
size_t size,
|
|
const int64_t& /* packet_time_us */,
|
|
int flags) {
|
|
uint32_t packet_num = 0;
|
|
ASSERT_TRUE(VerifyPacket(data, size, &packet_num));
|
|
received_.insert(packet_num);
|
|
// Only DTLS-SRTP packets should have the bypass flag set.
|
|
int expected_flags =
|
|
(certificate_ && IsRtpLeadByte(data[0])) ? PF_SRTP_BYPASS : 0;
|
|
ASSERT_EQ(expected_flags, flags);
|
|
}
|
|
|
|
void OnTransportSentPacket(rtc::PacketTransportInternal* transport,
|
|
const rtc::SentPacket& sent_packet) {
|
|
sent_packet_ = sent_packet;
|
|
}
|
|
|
|
rtc::SentPacket sent_packet() const { return sent_packet_; }
|
|
|
|
// Hook into the raw packet stream to make sure DTLS packets are encrypted.
|
|
void OnFakeIceTransportReadPacket(rtc::PacketTransportInternal* transport,
|
|
const char* data,
|
|
size_t size,
|
|
const int64_t& /* packet_time_us */,
|
|
int flags) {
|
|
// Flags shouldn't be set on the underlying Transport packets.
|
|
ASSERT_EQ(0, flags);
|
|
|
|
// Look at the handshake packets to see what role we played.
|
|
// Check that non-handshake packets are DTLS data or SRTP bypass.
|
|
if (data[0] == 22 && size > 17) {
|
|
if (data[13] == 1) {
|
|
++received_dtls_client_hellos_;
|
|
} else if (data[13] == 2) {
|
|
++received_dtls_server_hellos_;
|
|
}
|
|
} else if (dtls_transport_->IsDtlsActive() &&
|
|
!(data[0] >= 20 && data[0] <= 22)) {
|
|
ASSERT_TRUE(data[0] == 23 || IsRtpLeadByte(data[0]));
|
|
if (data[0] == 23) {
|
|
ASSERT_TRUE(VerifyEncryptedPacket(data, size));
|
|
} else if (IsRtpLeadByte(data[0])) {
|
|
ASSERT_TRUE(VerifyPacket(data, size, NULL));
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::string name_;
|
|
rtc::scoped_refptr<rtc::RTCCertificate> certificate_;
|
|
std::unique_ptr<FakeIceTransport> fake_ice_transport_;
|
|
std::unique_ptr<DtlsTransport> dtls_transport_;
|
|
size_t packet_size_ = 0u;
|
|
std::set<int> received_;
|
|
rtc::SSLProtocolVersion ssl_max_version_ = rtc::SSL_PROTOCOL_DTLS_12;
|
|
int received_dtls_client_hellos_ = 0;
|
|
int received_dtls_server_hellos_ = 0;
|
|
rtc::SentPacket sent_packet_;
|
|
};
|
|
|
|
// Base class for DtlsTransportTest and DtlsEventOrderingTest, which
|
|
// inherit from different variants of ::testing::Test.
|
|
//
|
|
// Note that this test always uses a FakeClock, due to the |fake_clock_| member
|
|
// variable.
|
|
class DtlsTransportTestBase {
|
|
public:
|
|
DtlsTransportTestBase() : client1_("P1"), client2_("P2"), use_dtls_(false) {}
|
|
|
|
void SetMaxProtocolVersions(rtc::SSLProtocolVersion c1,
|
|
rtc::SSLProtocolVersion c2) {
|
|
client1_.SetupMaxProtocolVersion(c1);
|
|
client2_.SetupMaxProtocolVersion(c2);
|
|
}
|
|
// If not called, DtlsTransport will be used in SRTP bypass mode.
|
|
void PrepareDtls(rtc::KeyType key_type) {
|
|
client1_.CreateCertificate(key_type);
|
|
client2_.CreateCertificate(key_type);
|
|
use_dtls_ = true;
|
|
}
|
|
|
|
// This test negotiates DTLS parameters before the underlying transports are
|
|
// writable. DtlsEventOrderingTest is responsible for exercising differerent
|
|
// orderings.
|
|
bool Connect(bool client1_server = true) {
|
|
Negotiate(client1_server);
|
|
EXPECT_TRUE(client1_.Connect(&client2_, false));
|
|
|
|
EXPECT_TRUE_SIMULATED_WAIT(client1_.dtls_transport()->writable() &&
|
|
client2_.dtls_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
if (!client1_.dtls_transport()->writable() ||
|
|
!client2_.dtls_transport()->writable())
|
|
return false;
|
|
|
|
// Check that we used the right roles.
|
|
if (use_dtls_) {
|
|
client1_.CheckRole(client1_server ? rtc::SSL_SERVER : rtc::SSL_CLIENT);
|
|
client2_.CheckRole(client1_server ? rtc::SSL_CLIENT : rtc::SSL_SERVER);
|
|
}
|
|
|
|
if (use_dtls_) {
|
|
// Check that we negotiated the right ciphers. Since GCM ciphers are not
|
|
// negotiated by default, we should end up with SRTP_AES128_CM_SHA1_80.
|
|
client1_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_80);
|
|
client2_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_80);
|
|
} else {
|
|
// If DTLS isn't actually being used, GetSrtpCryptoSuite should return
|
|
// false.
|
|
client1_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE);
|
|
client2_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE);
|
|
}
|
|
|
|
client1_.CheckSsl();
|
|
client2_.CheckSsl();
|
|
|
|
return true;
|
|
}
|
|
|
|
void Negotiate(bool client1_server = true) {
|
|
client1_.SetupTransports(ICEROLE_CONTROLLING);
|
|
client2_.SetupTransports(ICEROLE_CONTROLLED);
|
|
client1_.dtls_transport()->SetDtlsRole(client1_server ? rtc::SSL_SERVER
|
|
: rtc::SSL_CLIENT);
|
|
client2_.dtls_transport()->SetDtlsRole(client1_server ? rtc::SSL_CLIENT
|
|
: rtc::SSL_SERVER);
|
|
if (client2_.certificate()) {
|
|
SetRemoteFingerprintFromCert(client1_.dtls_transport(),
|
|
client2_.certificate());
|
|
}
|
|
if (client1_.certificate()) {
|
|
SetRemoteFingerprintFromCert(client2_.dtls_transport(),
|
|
client1_.certificate());
|
|
}
|
|
}
|
|
|
|
void TestTransfer(size_t size, size_t count, bool srtp) {
|
|
RTC_LOG(LS_INFO) << "Expect packets, size=" << size;
|
|
client2_.ExpectPackets(size);
|
|
client1_.SendPackets(size, count, srtp);
|
|
EXPECT_EQ_SIMULATED_WAIT(count, client2_.NumPacketsReceived(), kTimeout,
|
|
fake_clock_);
|
|
}
|
|
|
|
protected:
|
|
rtc::ScopedFakeClock fake_clock_;
|
|
DtlsTestClient client1_;
|
|
DtlsTestClient client2_;
|
|
bool use_dtls_;
|
|
rtc::SSLProtocolVersion ssl_expected_version_;
|
|
};
|
|
|
|
class DtlsTransportTest : public DtlsTransportTestBase,
|
|
public ::testing::Test {};
|
|
|
|
// Connect without DTLS, and transfer RTP data.
|
|
TEST_F(DtlsTransportTest, TestTransferRtp) {
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/false);
|
|
}
|
|
|
|
// Test that the SignalSentPacket signal is wired up.
|
|
TEST_F(DtlsTransportTest, TestSignalSentPacket) {
|
|
ASSERT_TRUE(Connect());
|
|
// Sanity check default value (-1).
|
|
ASSERT_EQ(client1_.sent_packet().send_time_ms, -1);
|
|
TestTransfer(1000, 100, false);
|
|
// Check that we get the expected fake packet ID, and a time of 0 from the
|
|
// fake clock.
|
|
EXPECT_EQ(kFakePacketId, client1_.sent_packet().packet_id);
|
|
EXPECT_GE(client1_.sent_packet().send_time_ms, 0);
|
|
}
|
|
|
|
// Connect without DTLS, and transfer SRTP data.
|
|
TEST_F(DtlsTransportTest, TestTransferSrtp) {
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Connect with DTLS, and transfer data over DTLS.
|
|
TEST_F(DtlsTransportTest, TestTransferDtls) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/false);
|
|
}
|
|
|
|
// Connect with DTLS, combine multiple DTLS records into one packet.
|
|
// Our DTLS implementation doesn't do this, but other implementations may;
|
|
// see https://tools.ietf.org/html/rfc6347#section-4.1.1.
|
|
// This has caused interoperability problems with ORTCLib in the past.
|
|
TEST_F(DtlsTransportTest, TestTransferDtlsCombineRecords) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
// Our DTLS implementation always sends one record per packet, so to simulate
|
|
// an endpoint that sends multiple records per packet, we configure the fake
|
|
// ICE transport to combine every two consecutive packets into a single
|
|
// packet.
|
|
FakeIceTransport* transport = client1_.fake_ice_transport();
|
|
transport->combine_outgoing_packets(true);
|
|
TestTransfer(500, 100, /*srtp=*/false);
|
|
}
|
|
|
|
class DtlsTransportVersionTest
|
|
: public DtlsTransportTestBase,
|
|
public ::testing::TestWithParam<
|
|
::testing::tuple<rtc::SSLProtocolVersion, rtc::SSLProtocolVersion>> {
|
|
};
|
|
|
|
// Test that an acceptable cipher suite is negotiated when different versions
|
|
// of DTLS are supported. Note that it's IsAcceptableCipher that does the actual
|
|
// work.
|
|
TEST_P(DtlsTransportVersionTest, TestCipherSuiteNegotiation) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
SetMaxProtocolVersions(::testing::get<0>(GetParam()),
|
|
::testing::get<1>(GetParam()));
|
|
ASSERT_TRUE(Connect());
|
|
}
|
|
|
|
// Will test every combination of 1.0/1.2 on the client and server.
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
TestCipherSuiteNegotiation,
|
|
DtlsTransportVersionTest,
|
|
::testing::Combine(::testing::Values(rtc::SSL_PROTOCOL_DTLS_10,
|
|
rtc::SSL_PROTOCOL_DTLS_12),
|
|
::testing::Values(rtc::SSL_PROTOCOL_DTLS_10,
|
|
rtc::SSL_PROTOCOL_DTLS_12)));
|
|
|
|
// Connect with DTLS, negotiating DTLS-SRTP, and transfer SRTP using bypass.
|
|
TEST_F(DtlsTransportTest, TestTransferDtlsSrtp) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Connect with DTLS-SRTP, transfer an invalid SRTP packet, and expects -1
|
|
// returned.
|
|
TEST_F(DtlsTransportTest, TestTransferDtlsInvalidSrtpPacket) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
EXPECT_EQ(-1, client1_.SendInvalidSrtpPacket(100));
|
|
}
|
|
|
|
// Create a single transport with DTLS, and send normal data and SRTP data on
|
|
// it.
|
|
TEST_F(DtlsTransportTest, TestTransferDtlsSrtpDemux) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
TestTransfer(1000, 100, /*srtp=*/false);
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Test transferring when the "answerer" has the server role.
|
|
TEST_F(DtlsTransportTest, TestTransferDtlsSrtpAnswererIsPassive) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect(/*client1_server=*/false));
|
|
TestTransfer(1000, 100, /*srtp=*/true);
|
|
}
|
|
|
|
// Test that renegotiation (setting same role and fingerprint again) can be
|
|
// started before the clients become connected in the first negotiation.
|
|
TEST_F(DtlsTransportTest, TestRenegotiateBeforeConnect) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
// Note: This is doing the same thing Connect normally does, minus some
|
|
// additional checks not relevant for this test.
|
|
Negotiate();
|
|
Negotiate();
|
|
EXPECT_TRUE(client1_.Connect(&client2_, false));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client1_.dtls_transport()->writable() &&
|
|
client2_.dtls_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
TestTransfer(1000, 100, true);
|
|
}
|
|
|
|
// Test Certificates state after negotiation but before connection.
|
|
TEST_F(DtlsTransportTest, TestCertificatesBeforeConnect) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
Negotiate();
|
|
|
|
// After negotiation, each side has a distinct local certificate, but still no
|
|
// remote certificate, because connection has not yet occurred.
|
|
auto certificate1 = client1_.dtls_transport()->GetLocalCertificate();
|
|
auto certificate2 = client2_.dtls_transport()->GetLocalCertificate();
|
|
ASSERT_NE(certificate1->GetSSLCertificate().ToPEMString(),
|
|
certificate2->GetSSLCertificate().ToPEMString());
|
|
ASSERT_FALSE(client1_.dtls_transport()->GetRemoteSSLCertChain());
|
|
ASSERT_FALSE(client2_.dtls_transport()->GetRemoteSSLCertChain());
|
|
}
|
|
|
|
// Test Certificates state after connection.
|
|
TEST_F(DtlsTransportTest, TestCertificatesAfterConnect) {
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
ASSERT_TRUE(Connect());
|
|
|
|
// After connection, each side has a distinct local certificate.
|
|
auto certificate1 = client1_.dtls_transport()->GetLocalCertificate();
|
|
auto certificate2 = client2_.dtls_transport()->GetLocalCertificate();
|
|
ASSERT_NE(certificate1->GetSSLCertificate().ToPEMString(),
|
|
certificate2->GetSSLCertificate().ToPEMString());
|
|
|
|
// Each side's remote certificate is the other side's local certificate.
|
|
std::unique_ptr<rtc::SSLCertChain> remote_cert1 =
|
|
client1_.dtls_transport()->GetRemoteSSLCertChain();
|
|
ASSERT_TRUE(remote_cert1);
|
|
ASSERT_EQ(1u, remote_cert1->GetSize());
|
|
ASSERT_EQ(remote_cert1->Get(0).ToPEMString(),
|
|
certificate2->GetSSLCertificate().ToPEMString());
|
|
std::unique_ptr<rtc::SSLCertChain> remote_cert2 =
|
|
client2_.dtls_transport()->GetRemoteSSLCertChain();
|
|
ASSERT_TRUE(remote_cert2);
|
|
ASSERT_EQ(1u, remote_cert2->GetSize());
|
|
ASSERT_EQ(remote_cert2->Get(0).ToPEMString(),
|
|
certificate1->GetSSLCertificate().ToPEMString());
|
|
}
|
|
|
|
// Test that packets are retransmitted according to the expected schedule.
|
|
// Each time a timeout occurs, the retransmission timer should be doubled up to
|
|
// 60 seconds. The timer defaults to 1 second, but for WebRTC we should be
|
|
// initializing it to 50ms.
|
|
TEST_F(DtlsTransportTest, TestRetransmissionSchedule) {
|
|
// We can only change the retransmission schedule with a recently-added
|
|
// BoringSSL API. Skip the test if not built with BoringSSL.
|
|
MAYBE_SKIP_TEST(IsBoringSsl);
|
|
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
// Exchange fingerprints and set SSL roles.
|
|
Negotiate();
|
|
|
|
// Make client2_ writable, but not client1_.
|
|
// This means client1_ will send DTLS client hellos but get no response.
|
|
EXPECT_TRUE(client2_.Connect(&client1_, true));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client2_.fake_ice_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
|
|
// Wait for the first client hello to be sent.
|
|
EXPECT_EQ_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout);
|
|
EXPECT_FALSE(client1_.fake_ice_transport()->writable());
|
|
|
|
static int timeout_schedule_ms[] = {50, 100, 200, 400, 800, 1600,
|
|
3200, 6400, 12800, 25600, 51200, 60000};
|
|
|
|
int expected_hellos = 1;
|
|
for (size_t i = 0;
|
|
i < (sizeof(timeout_schedule_ms) / sizeof(timeout_schedule_ms[0]));
|
|
++i) {
|
|
// For each expected retransmission time, advance the fake clock a
|
|
// millisecond before the expected time and verify that no unexpected
|
|
// retransmissions were sent. Then advance it the final millisecond and
|
|
// verify that the expected retransmission was sent.
|
|
fake_clock_.AdvanceTime(
|
|
webrtc::TimeDelta::Millis(timeout_schedule_ms[i] - 1));
|
|
EXPECT_EQ(expected_hellos, client1_.received_dtls_client_hellos());
|
|
fake_clock_.AdvanceTime(webrtc::TimeDelta::Millis(1));
|
|
EXPECT_EQ(++expected_hellos, client1_.received_dtls_client_hellos());
|
|
}
|
|
}
|
|
|
|
// The following events can occur in many different orders:
|
|
// 1. Caller receives remote fingerprint.
|
|
// 2. Caller is writable.
|
|
// 3. Caller receives ClientHello.
|
|
// 4. DTLS handshake finishes.
|
|
//
|
|
// The tests below cover all causally consistent permutations of these events;
|
|
// the caller must be writable and receive a ClientHello before the handshake
|
|
// finishes, but otherwise any ordering is possible.
|
|
//
|
|
// For each permutation, the test verifies that a connection is established and
|
|
// fingerprint verified without any DTLS packet needing to be retransmitted.
|
|
//
|
|
// Each permutation is also tested with valid and invalid fingerprints,
|
|
// ensuring that the handshake fails with an invalid fingerprint.
|
|
enum DtlsTransportEvent {
|
|
CALLER_RECEIVES_FINGERPRINT,
|
|
CALLER_WRITABLE,
|
|
CALLER_RECEIVES_CLIENTHELLO,
|
|
HANDSHAKE_FINISHES
|
|
};
|
|
|
|
class DtlsEventOrderingTest
|
|
: public DtlsTransportTestBase,
|
|
public ::testing::TestWithParam<
|
|
::testing::tuple<std::vector<DtlsTransportEvent>, bool>> {
|
|
protected:
|
|
// If |valid_fingerprint| is false, the caller will receive a fingerprint
|
|
// that doesn't match the callee's certificate, so the handshake should fail.
|
|
void TestEventOrdering(const std::vector<DtlsTransportEvent>& events,
|
|
bool valid_fingerprint) {
|
|
// Pre-setup: Set local certificate on both caller and callee, and
|
|
// remote fingerprint on callee, but neither is writable and the caller
|
|
// doesn't have the callee's fingerprint.
|
|
PrepareDtls(rtc::KT_DEFAULT);
|
|
// Simulate packets being sent and arriving asynchronously.
|
|
// Otherwise the entire DTLS handshake would occur in one clock tick, and
|
|
// we couldn't inject method calls in the middle of it.
|
|
int simulated_delay_ms = 10;
|
|
client1_.SetupTransports(ICEROLE_CONTROLLING, simulated_delay_ms);
|
|
client2_.SetupTransports(ICEROLE_CONTROLLED, simulated_delay_ms);
|
|
// Similar to how NegotiateOrdering works.
|
|
client1_.dtls_transport()->SetDtlsRole(rtc::SSL_SERVER);
|
|
client2_.dtls_transport()->SetDtlsRole(rtc::SSL_CLIENT);
|
|
SetRemoteFingerprintFromCert(client2_.dtls_transport(),
|
|
client1_.certificate());
|
|
|
|
for (DtlsTransportEvent e : events) {
|
|
switch (e) {
|
|
case CALLER_RECEIVES_FINGERPRINT:
|
|
if (valid_fingerprint) {
|
|
SetRemoteFingerprintFromCert(client1_.dtls_transport(),
|
|
client2_.certificate());
|
|
} else {
|
|
SetRemoteFingerprintFromCert(client1_.dtls_transport(),
|
|
client2_.certificate(),
|
|
true /*modify_digest*/);
|
|
}
|
|
break;
|
|
case CALLER_WRITABLE:
|
|
EXPECT_TRUE(client1_.Connect(&client2_, true));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client1_.fake_ice_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
break;
|
|
case CALLER_RECEIVES_CLIENTHELLO:
|
|
// Sanity check that a ClientHello hasn't already been received.
|
|
EXPECT_EQ(0, client1_.received_dtls_client_hellos());
|
|
// Making client2_ writable will cause it to send the ClientHello.
|
|
EXPECT_TRUE(client2_.Connect(&client1_, true));
|
|
EXPECT_TRUE_SIMULATED_WAIT(client2_.fake_ice_transport()->writable(),
|
|
kTimeout, fake_clock_);
|
|
EXPECT_EQ_SIMULATED_WAIT(1, client1_.received_dtls_client_hellos(),
|
|
kTimeout, fake_clock_);
|
|
break;
|
|
case HANDSHAKE_FINISHES:
|
|
// Sanity check that the handshake hasn't already finished.
|
|
EXPECT_FALSE(client1_.dtls_transport()->IsDtlsConnected() ||
|
|
client1_.dtls_transport()->dtls_state() ==
|
|
DTLS_TRANSPORT_FAILED);
|
|
EXPECT_TRUE_SIMULATED_WAIT(
|
|
client1_.dtls_transport()->IsDtlsConnected() ||
|
|
client1_.dtls_transport()->dtls_state() ==
|
|
DTLS_TRANSPORT_FAILED,
|
|
kTimeout, fake_clock_);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DtlsTransportState expected_final_state =
|
|
valid_fingerprint ? DTLS_TRANSPORT_CONNECTED : DTLS_TRANSPORT_FAILED;
|
|
EXPECT_EQ_SIMULATED_WAIT(expected_final_state,
|
|
client1_.dtls_transport()->dtls_state(), kTimeout,
|
|
fake_clock_);
|
|
EXPECT_EQ_SIMULATED_WAIT(expected_final_state,
|
|
client2_.dtls_transport()->dtls_state(), kTimeout,
|
|
fake_clock_);
|
|
|
|
// Transports should be writable iff there was a valid fingerprint.
|
|
EXPECT_EQ(valid_fingerprint, client1_.dtls_transport()->writable());
|
|
EXPECT_EQ(valid_fingerprint, client2_.dtls_transport()->writable());
|
|
|
|
// Check that no hello needed to be retransmitted.
|
|
EXPECT_EQ(1, client1_.received_dtls_client_hellos());
|
|
EXPECT_EQ(1, client2_.received_dtls_server_hellos());
|
|
|
|
if (valid_fingerprint) {
|
|
TestTransfer(1000, 100, false);
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_P(DtlsEventOrderingTest, TestEventOrdering) {
|
|
TestEventOrdering(::testing::get<0>(GetParam()),
|
|
::testing::get<1>(GetParam()));
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
TestEventOrdering,
|
|
DtlsEventOrderingTest,
|
|
::testing::Combine(
|
|
::testing::Values(
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_FINGERPRINT, CALLER_WRITABLE,
|
|
CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_WRITABLE, CALLER_RECEIVES_FINGERPRINT,
|
|
CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO,
|
|
CALLER_RECEIVES_FINGERPRINT, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO,
|
|
HANDSHAKE_FINISHES, CALLER_RECEIVES_FINGERPRINT},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_FINGERPRINT, CALLER_RECEIVES_CLIENTHELLO,
|
|
CALLER_WRITABLE, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_CLIENTHELLO, CALLER_RECEIVES_FINGERPRINT,
|
|
CALLER_WRITABLE, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{
|
|
CALLER_RECEIVES_CLIENTHELLO, CALLER_WRITABLE,
|
|
CALLER_RECEIVES_FINGERPRINT, HANDSHAKE_FINISHES},
|
|
std::vector<DtlsTransportEvent>{CALLER_RECEIVES_CLIENTHELLO,
|
|
CALLER_WRITABLE, HANDSHAKE_FINISHES,
|
|
CALLER_RECEIVES_FINGERPRINT}),
|
|
::testing::Bool()));
|
|
|
|
} // namespace cricket
|