|
|
/*
|
|
|
* Copyright 2017 The Android Open Source Project
|
|
|
*
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
* You may obtain a copy of the License at
|
|
|
*
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
*
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
* See the License for the specific language governing permissions and
|
|
|
* limitations under the License.
|
|
|
*/
|
|
|
|
|
|
#ifndef ANDROID_INTERPOLATOR_H
|
|
|
#define ANDROID_INTERPOLATOR_H
|
|
|
|
|
|
#include <map>
|
|
|
#include <sstream>
|
|
|
#include <unordered_map>
|
|
|
|
|
|
#include <android/media/InterpolatorConfig.h>
|
|
|
#include <binder/Parcel.h>
|
|
|
#include <utils/RefBase.h>
|
|
|
|
|
|
#pragma push_macro("LOG_TAG")
|
|
|
#undef LOG_TAG
|
|
|
#define LOG_TAG "Interpolator"
|
|
|
|
|
|
namespace android {
|
|
|
|
|
|
/*
|
|
|
* A general purpose spline interpolator class which takes a set of points
|
|
|
* and performs interpolation. This is used for the VolumeShaper class.
|
|
|
*/
|
|
|
|
|
|
template <typename S, typename T>
|
|
|
class Interpolator : public std::map<S, T> {
|
|
|
public:
|
|
|
// Polynomial spline interpolators
|
|
|
using InterpolatorType = media::InterpolatorType;
|
|
|
|
|
|
explicit Interpolator(
|
|
|
InterpolatorType interpolatorType = InterpolatorType::CUBIC,
|
|
|
bool cache = true)
|
|
|
: mCache(cache)
|
|
|
, mFirstSlope(0)
|
|
|
, mLastSlope(0) {
|
|
|
setInterpolatorType(interpolatorType);
|
|
|
}
|
|
|
|
|
|
std::pair<S, T> first() const {
|
|
|
return *this->begin();
|
|
|
}
|
|
|
|
|
|
std::pair<S, T> last() const {
|
|
|
return *this->rbegin();
|
|
|
}
|
|
|
|
|
|
// find the corresponding Y point from a X point.
|
|
|
T findY(S x) { // logically const, but modifies cache
|
|
|
auto high = this->lower_bound(x);
|
|
|
// greater than last point
|
|
|
if (high == this->end()) {
|
|
|
return this->rbegin()->second;
|
|
|
}
|
|
|
// at or before first point
|
|
|
if (high == this->begin()) {
|
|
|
return high->second;
|
|
|
}
|
|
|
// go lower.
|
|
|
auto low = high;
|
|
|
--low;
|
|
|
|
|
|
// now that we have two adjacent points:
|
|
|
switch (mInterpolatorType) {
|
|
|
case InterpolatorType::STEP:
|
|
|
return high->first == x ? high->second : low->second;
|
|
|
case InterpolatorType::LINEAR:
|
|
|
return ((high->first - x) * low->second + (x - low->first) * high->second)
|
|
|
/ (high->first - low->first);
|
|
|
case InterpolatorType::CUBIC:
|
|
|
case InterpolatorType::CUBIC_MONOTONIC:
|
|
|
default: {
|
|
|
// See https://en.wikipedia.org/wiki/Cubic_Hermite_spline
|
|
|
|
|
|
const S interval = high->first - low->first;
|
|
|
|
|
|
// check to see if we've cached the polynomial coefficients
|
|
|
if (mMemo.count(low->first) != 0) {
|
|
|
const S t = (x - low->first) / interval;
|
|
|
const S t2 = t * t;
|
|
|
const auto &memo = mMemo[low->first];
|
|
|
return low->second + std::get<0>(memo) * t
|
|
|
+ (std::get<1>(memo) + std::get<2>(memo) * t) * t2;
|
|
|
}
|
|
|
|
|
|
// find the neighboring points (low2 < low < high < high2)
|
|
|
auto low2 = this->end();
|
|
|
if (low != this->begin()) {
|
|
|
low2 = low;
|
|
|
--low2; // decrementing this->begin() is undefined
|
|
|
}
|
|
|
auto high2 = high;
|
|
|
++high2;
|
|
|
|
|
|
// you could have catmullRom with monotonic or
|
|
|
// non catmullRom (finite difference) with regular cubic;
|
|
|
// the choices here minimize computation.
|
|
|
bool monotonic, catmullRom;
|
|
|
if (mInterpolatorType == InterpolatorType::CUBIC_MONOTONIC) {
|
|
|
monotonic = true;
|
|
|
catmullRom = false;
|
|
|
} else {
|
|
|
monotonic = false;
|
|
|
catmullRom = true;
|
|
|
}
|
|
|
|
|
|
// secants are only needed for finite difference splines or
|
|
|
// monotonic computation.
|
|
|
// we use lazy computation here - if we precompute in
|
|
|
// a single pass, duplicate secant computations may be avoided.
|
|
|
S sec, sec0, sec1;
|
|
|
if (!catmullRom || monotonic) {
|
|
|
sec = (high->second - low->second) / interval;
|
|
|
sec0 = low2 != this->end()
|
|
|
? (low->second - low2->second) / (low->first - low2->first)
|
|
|
: mFirstSlope;
|
|
|
sec1 = high2 != this->end()
|
|
|
? (high2->second - high->second) / (high2->first - high->first)
|
|
|
: mLastSlope;
|
|
|
}
|
|
|
|
|
|
// compute the tangent slopes at the control points
|
|
|
S m0, m1;
|
|
|
if (catmullRom) {
|
|
|
// Catmull-Rom spline
|
|
|
m0 = low2 != this->end()
|
|
|
? (high->second - low2->second) / (high->first - low2->first)
|
|
|
: mFirstSlope;
|
|
|
|
|
|
m1 = high2 != this->end()
|
|
|
? (high2->second - low->second) / (high2->first - low->first)
|
|
|
: mLastSlope;
|
|
|
} else {
|
|
|
// finite difference spline
|
|
|
m0 = (sec0 + sec) * 0.5f;
|
|
|
m1 = (sec1 + sec) * 0.5f;
|
|
|
}
|
|
|
|
|
|
if (monotonic) {
|
|
|
// https://en.wikipedia.org/wiki/Monotone_cubic_interpolation
|
|
|
// A sufficient condition for Fritsch–Carlson monotonicity is constraining
|
|
|
// (1) the normalized slopes to be within the circle of radius 3, or
|
|
|
// (2) the normalized slopes to be within the square of radius 3.
|
|
|
// Condition (2) is more generous and easier to compute.
|
|
|
const S maxSlope = 3 * sec;
|
|
|
m0 = constrainSlope(m0, maxSlope);
|
|
|
m1 = constrainSlope(m1, maxSlope);
|
|
|
|
|
|
m0 = constrainSlope(m0, 3 * sec0);
|
|
|
m1 = constrainSlope(m1, 3 * sec1);
|
|
|
}
|
|
|
|
|
|
const S t = (x - low->first) / interval;
|
|
|
const S t2 = t * t;
|
|
|
if (mCache) {
|
|
|
// convert to cubic polynomial coefficients and compute
|
|
|
m0 *= interval;
|
|
|
m1 *= interval;
|
|
|
const T dy = high->second - low->second;
|
|
|
const S c0 = low->second;
|
|
|
const S c1 = m0;
|
|
|
const S c2 = 3 * dy - 2 * m0 - m1;
|
|
|
const S c3 = m0 + m1 - 2 * dy;
|
|
|
mMemo[low->first] = std::make_tuple(c1, c2, c3);
|
|
|
return c0 + c1 * t + (c2 + c3 * t) * t2;
|
|
|
} else {
|
|
|
// classic Hermite interpolation
|
|
|
const S t3 = t2 * t;
|
|
|
const S h00 = 2 * t3 - 3 * t2 + 1;
|
|
|
const S h10 = t3 - 2 * t2 + t ;
|
|
|
const S h01 = -2 * t3 + 3 * t2 ;
|
|
|
const S h11 = t3 - t2 ;
|
|
|
return h00 * low->second + (h10 * m0 + h11 * m1) * interval + h01 * high->second;
|
|
|
}
|
|
|
} // default
|
|
|
}
|
|
|
}
|
|
|
|
|
|
InterpolatorType getInterpolatorType() const {
|
|
|
return mInterpolatorType;
|
|
|
}
|
|
|
|
|
|
status_t setInterpolatorType(InterpolatorType interpolatorType) {
|
|
|
switch (interpolatorType) {
|
|
|
case InterpolatorType::STEP: // Not continuous
|
|
|
case InterpolatorType::LINEAR: // C0
|
|
|
case InterpolatorType::CUBIC: // C1
|
|
|
case InterpolatorType::CUBIC_MONOTONIC: // C1 + other constraints
|
|
|
// case InterpolatorType::CUBIC_C2:
|
|
|
mInterpolatorType = interpolatorType;
|
|
|
return NO_ERROR;
|
|
|
default:
|
|
|
ALOGE("invalid interpolatorType: %d", interpolatorType);
|
|
|
return BAD_VALUE;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
T getFirstSlope() const {
|
|
|
return mFirstSlope;
|
|
|
}
|
|
|
|
|
|
void setFirstSlope(T slope) {
|
|
|
mFirstSlope = slope;
|
|
|
}
|
|
|
|
|
|
T getLastSlope() const {
|
|
|
return mLastSlope;
|
|
|
}
|
|
|
|
|
|
void setLastSlope(T slope) {
|
|
|
mLastSlope = slope;
|
|
|
}
|
|
|
|
|
|
void clearCache() {
|
|
|
mMemo.clear();
|
|
|
}
|
|
|
|
|
|
// TODO(ytai): remove this method once it is not used.
|
|
|
status_t writeToParcel(Parcel *parcel) const {
|
|
|
media::InterpolatorConfig config;
|
|
|
writeToConfig(&config);
|
|
|
return config.writeToParcel(parcel);
|
|
|
}
|
|
|
|
|
|
void writeToConfig(media::InterpolatorConfig *config) const {
|
|
|
config->type = mInterpolatorType;
|
|
|
config->firstSlope = mFirstSlope;
|
|
|
config->lastSlope = mLastSlope;
|
|
|
for (const auto &pt : *this) {
|
|
|
config->xy.push_back(pt.first);
|
|
|
config->xy.push_back(pt.second);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// TODO(ytai): remove this method once it is not used.
|
|
|
status_t readFromParcel(const Parcel &parcel) {
|
|
|
media::InterpolatorConfig config;
|
|
|
status_t res = config.readFromParcel(&parcel);
|
|
|
if (res != NO_ERROR) {
|
|
|
return res;
|
|
|
}
|
|
|
return readFromConfig(config);
|
|
|
}
|
|
|
|
|
|
status_t readFromConfig(const media::InterpolatorConfig &config) {
|
|
|
this->clear();
|
|
|
setInterpolatorType(config.type);
|
|
|
if ((config.xy.size() & 1) != 0) {
|
|
|
// xy size must be even.
|
|
|
return BAD_VALUE;
|
|
|
}
|
|
|
uint32_t size = config.xy.size() / 2;
|
|
|
mFirstSlope = config.firstSlope;
|
|
|
mLastSlope = config.lastSlope;
|
|
|
|
|
|
// Note: We don't need to check size is within some bounds as
|
|
|
// the Parcel read will fail if size is incorrectly specified too large.
|
|
|
float lastx;
|
|
|
for (uint32_t i = 0; i < size; ++i) {
|
|
|
float x = config.xy[i * 2];
|
|
|
float y = config.xy[i * 2 + 1];
|
|
|
if ((i > 0 && !(x > lastx)) /* handle nan */
|
|
|
|| y != y /* handle nan */) {
|
|
|
// This is a std::map object which imposes sorted order
|
|
|
// automatically on emplace.
|
|
|
// Nevertheless for reading from a Parcel,
|
|
|
// we require that the points be specified monotonic in x.
|
|
|
return BAD_VALUE;
|
|
|
}
|
|
|
this->emplace(x, y);
|
|
|
lastx = x;
|
|
|
}
|
|
|
return NO_ERROR;
|
|
|
}
|
|
|
|
|
|
std::string toString() const {
|
|
|
std::stringstream ss;
|
|
|
ss << "Interpolator{mInterpolatorType=" << static_cast<int32_t>(mInterpolatorType);
|
|
|
ss << ", mFirstSlope=" << mFirstSlope;
|
|
|
ss << ", mLastSlope=" << mLastSlope;
|
|
|
ss << ", {";
|
|
|
bool first = true;
|
|
|
for (const auto &pt : *this) {
|
|
|
if (first) {
|
|
|
first = false;
|
|
|
ss << "{";
|
|
|
} else {
|
|
|
ss << ", {";
|
|
|
}
|
|
|
ss << pt.first << ", " << pt.second << "}";
|
|
|
}
|
|
|
ss << "}}";
|
|
|
return ss.str();
|
|
|
}
|
|
|
|
|
|
private:
|
|
|
static S constrainSlope(S slope, S maxSlope) {
|
|
|
if (maxSlope > 0) {
|
|
|
slope = std::min(slope, maxSlope);
|
|
|
slope = std::max(slope, S(0)); // not globally monotonic
|
|
|
} else {
|
|
|
slope = std::max(slope, maxSlope);
|
|
|
slope = std::min(slope, S(0)); // not globally monotonic
|
|
|
}
|
|
|
return slope;
|
|
|
}
|
|
|
|
|
|
InterpolatorType mInterpolatorType;
|
|
|
bool mCache; // whether we cache spline coefficient computation
|
|
|
|
|
|
// for cubic interpolation, the boundary conditions in slope.
|
|
|
S mFirstSlope;
|
|
|
S mLastSlope;
|
|
|
|
|
|
// spline cubic polynomial coefficient cache
|
|
|
std::unordered_map<S, std::tuple<S /* c1 */, S /* c2 */, S /* c3 */>> mMemo;
|
|
|
}; // Interpolator
|
|
|
|
|
|
} // namespace android
|
|
|
|
|
|
#pragma pop_macro("LOG_TAG")
|
|
|
|
|
|
#endif // ANDROID_INTERPOLATOR_H
|