You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

496 lines
18 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2SoftFlacEnc"
#include <log/log.h>
#include <audio_utils/primitives.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include <C2PlatformSupport.h>
#include <SimpleC2Interface.h>
#include "C2SoftFlacEnc.h"
namespace android {
namespace {
constexpr char COMPONENT_NAME[] = "c2.android.flac.encoder";
} // namespace
class C2SoftFlacEnc::IntfImpl : public SimpleInterface<void>::BaseParams {
public:
explicit IntfImpl(const std::shared_ptr<C2ReflectorHelper> &helper)
: SimpleInterface<void>::BaseParams(
helper,
COMPONENT_NAME,
C2Component::KIND_ENCODER,
C2Component::DOMAIN_AUDIO,
MEDIA_MIMETYPE_AUDIO_FLAC) {
noPrivateBuffers();
noInputReferences();
noOutputReferences();
noInputLatency();
noTimeStretch();
setDerivedInstance(this);
addParameter(
DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES)
.withConstValue(new C2ComponentAttributesSetting(
C2Component::ATTRIB_IS_TEMPORAL))
.build());
addParameter(
DefineParam(mSampleRate, C2_PARAMKEY_SAMPLE_RATE)
.withDefault(new C2StreamSampleRateInfo::input(0u, 44100))
.withFields({C2F(mSampleRate, value).inRange(1, 655350)})
.withSetter((Setter<decltype(*mSampleRate)>::StrictValueWithNoDeps))
.build());
addParameter(
DefineParam(mChannelCount, C2_PARAMKEY_CHANNEL_COUNT)
.withDefault(new C2StreamChannelCountInfo::input(0u, 1))
.withFields({C2F(mChannelCount, value).inRange(1, 2)})
.withSetter(Setter<decltype(*mChannelCount)>::StrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mBitrate, C2_PARAMKEY_BITRATE)
.withDefault(new C2StreamBitrateInfo::output(0u, 768000))
.withFields({C2F(mBitrate, value).inRange(1, 21000000)})
.withSetter(Setter<decltype(*mBitrate)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mComplexity, C2_PARAMKEY_COMPLEXITY)
.withDefault(new C2StreamComplexityTuning::output(0u,
FLAC_COMPRESSION_LEVEL_DEFAULT))
.withFields({C2F(mComplexity, value).inRange(
FLAC_COMPRESSION_LEVEL_MIN, FLAC_COMPRESSION_LEVEL_MAX)})
.withSetter(Setter<decltype(*mComplexity)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mInputMaxBufSize, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE)
.withConstValue(new C2StreamMaxBufferSizeInfo::input(0u, 4608))
.build());
addParameter(
DefineParam(mPcmEncodingInfo, C2_PARAMKEY_PCM_ENCODING)
.withDefault(new C2StreamPcmEncodingInfo::input(0u, C2Config::PCM_16))
.withFields({C2F(mPcmEncodingInfo, value).oneOf({
C2Config::PCM_16,
// C2Config::PCM_8,
C2Config::PCM_FLOAT})
})
.withSetter((Setter<decltype(*mPcmEncodingInfo)>::StrictValueWithNoDeps))
.build());
}
uint32_t getSampleRate() const { return mSampleRate->value; }
uint32_t getChannelCount() const { return mChannelCount->value; }
uint32_t getBitrate() const { return mBitrate->value; }
uint32_t getComplexity() const { return mComplexity->value; }
int32_t getPcmEncodingInfo() const { return mPcmEncodingInfo->value; }
private:
std::shared_ptr<C2StreamSampleRateInfo::input> mSampleRate;
std::shared_ptr<C2StreamChannelCountInfo::input> mChannelCount;
std::shared_ptr<C2StreamBitrateInfo::output> mBitrate;
std::shared_ptr<C2StreamComplexityTuning::output> mComplexity;
std::shared_ptr<C2StreamMaxBufferSizeInfo::input> mInputMaxBufSize;
std::shared_ptr<C2StreamPcmEncodingInfo::input> mPcmEncodingInfo;
};
C2SoftFlacEnc::C2SoftFlacEnc(
const char *name,
c2_node_id_t id,
const std::shared_ptr<IntfImpl> &intfImpl)
: SimpleC2Component(std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl),
mFlacStreamEncoder(nullptr),
mInputBufferPcm32(nullptr) {
}
C2SoftFlacEnc::~C2SoftFlacEnc() {
onRelease();
}
c2_status_t C2SoftFlacEnc::onInit() {
mFlacStreamEncoder = FLAC__stream_encoder_new();
if (!mFlacStreamEncoder) return C2_CORRUPTED;
mInputBufferPcm32 = (FLAC__int32*) malloc(
kInBlockSize * kMaxNumChannels * sizeof(FLAC__int32));
if (!mInputBufferPcm32) return C2_NO_MEMORY;
mSignalledError = false;
mSignalledOutputEos = false;
mIsFirstFrame = true;
mAnchorTimeStamp = 0ull;
mProcessedSamples = 0u;
mEncoderWriteData = false;
mEncoderReturnedNbBytes = 0;
mHeaderOffset = 0;
mWroteHeader = false;
status_t err = configureEncoder();
return err == OK ? C2_OK : C2_CORRUPTED;
}
void C2SoftFlacEnc::onRelease() {
if (mFlacStreamEncoder) {
FLAC__stream_encoder_delete(mFlacStreamEncoder);
mFlacStreamEncoder = nullptr;
}
if (mInputBufferPcm32) {
free(mInputBufferPcm32);
mInputBufferPcm32 = nullptr;
}
}
void C2SoftFlacEnc::onReset() {
(void) onStop();
}
c2_status_t C2SoftFlacEnc::onStop() {
mSignalledError = false;
mSignalledOutputEos = false;
mIsFirstFrame = true;
mAnchorTimeStamp = 0ull;
mProcessedSamples = 0u;
mEncoderWriteData = false;
mEncoderReturnedNbBytes = 0;
mHeaderOffset = 0;
mWroteHeader = false;
c2_status_t status = drain(DRAIN_COMPONENT_NO_EOS, nullptr);
if (C2_OK != status) return status;
status_t err = configureEncoder();
if (err != OK) mSignalledError = true;
return C2_OK;
}
c2_status_t C2SoftFlacEnc::onFlush_sm() {
return onStop();
}
static void fillEmptyWork(const std::unique_ptr<C2Work> &work) {
work->worklets.front()->output.flags = work->input.flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
}
void C2SoftFlacEnc::process(
const std::unique_ptr<C2Work> &work,
const std::shared_ptr<C2BlockPool> &pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 1u;
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError || mSignalledOutputEos) {
work->result = C2_BAD_VALUE;
return;
}
bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
C2ReadView rView = mDummyReadView;
size_t inOffset = 0u;
size_t inSize = 0u;
if (!work->input.buffers.empty()) {
rView = work->input.buffers[0]->data().linearBlocks().front().map().get();
inSize = rView.capacity();
if (inSize && rView.error()) {
ALOGE("read view map failed %d", rView.error());
work->result = C2_CORRUPTED;
return;
}
}
ALOGV("in buffer attr. size %zu timestamp %d frameindex %d, flags %x",
inSize, (int)work->input.ordinal.timestamp.peeku(),
(int)work->input.ordinal.frameIndex.peeku(), work->input.flags);
if (mIsFirstFrame && inSize) {
mAnchorTimeStamp = work->input.ordinal.timestamp.peekull();
mIsFirstFrame = false;
}
if (!mWroteHeader) {
std::unique_ptr<C2StreamInitDataInfo::output> csd =
C2StreamInitDataInfo::output::AllocUnique(mHeaderOffset, 0u);
if (!csd) {
ALOGE("CSD allocation failed");
mSignalledError = true;
work->result = C2_NO_MEMORY;
return;
}
memcpy(csd->m.value, mHeader, mHeaderOffset);
ALOGV("put csd, %d bytes", mHeaderOffset);
work->worklets.front()->output.configUpdate.push_back(std::move(csd));
mWroteHeader = true;
}
const uint32_t sampleRate = mIntf->getSampleRate();
const uint32_t channelCount = mIntf->getChannelCount();
const bool inputFloat = mIntf->getPcmEncodingInfo() == C2Config::PCM_FLOAT;
const unsigned sampleSize = inputFloat ? sizeof(float) : sizeof(int16_t);
const unsigned frameSize = channelCount * sampleSize;
const uint64_t outTimeStamp = mProcessedSamples * 1000000ll / sampleRate;
size_t outCapacity = inSize;
outCapacity += mBlockSize * frameSize;
C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE };
c2_status_t err = pool->fetchLinearBlock(outCapacity, usage, &mOutputBlock);
if (err != C2_OK) {
ALOGE("fetchLinearBlock for Output failed with status %d", err);
work->result = C2_NO_MEMORY;
return;
}
err = mOutputBlock->map().get().error();
if (err) {
ALOGE("write view map failed %d", err);
work->result = C2_CORRUPTED;
return;
}
mEncoderWriteData = true;
mEncoderReturnedNbBytes = 0;
size_t inPos = 0;
while (inPos < inSize) {
const uint8_t *inPtr = rView.data() + inOffset;
const size_t processSize = MIN(kInBlockSize * frameSize, (inSize - inPos));
const unsigned nbInputFrames = processSize / frameSize;
const unsigned nbInputSamples = processSize / sampleSize;
ALOGV("about to encode %zu bytes", processSize);
if (inputFloat) {
const float * const pcmFloat = reinterpret_cast<const float *>(inPtr + inPos);
memcpy_to_q8_23_from_float_with_clamp(mInputBufferPcm32, pcmFloat, nbInputSamples);
} else {
const int16_t * const pcm16 = reinterpret_cast<const int16_t *>(inPtr + inPos);
for (unsigned i = 0; i < nbInputSamples; i++) {
mInputBufferPcm32[i] = (FLAC__int32) pcm16[i];
}
}
FLAC__bool ok = FLAC__stream_encoder_process_interleaved(
mFlacStreamEncoder, mInputBufferPcm32, nbInputFrames);
if (!ok) {
ALOGE("error encountered during encoding");
mSignalledError = true;
work->result = C2_CORRUPTED;
mOutputBlock.reset();
return;
}
inPos += processSize;
}
if (eos && (C2_OK != drain(DRAIN_COMPONENT_WITH_EOS, pool))) {
ALOGE("error encountered during encoding");
mSignalledError = true;
work->result = C2_CORRUPTED;
mOutputBlock.reset();
return;
}
fillEmptyWork(work);
if (mEncoderReturnedNbBytes != 0) {
std::shared_ptr<C2Buffer> buffer = createLinearBuffer(std::move(mOutputBlock), 0, mEncoderReturnedNbBytes);
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal.timestamp = mAnchorTimeStamp + outTimeStamp;
} else {
ALOGV("encoder process_interleaved returned without data to write");
}
mOutputBlock = nullptr;
if (eos) {
mSignalledOutputEos = true;
ALOGV("signalled EOS");
}
mEncoderWriteData = false;
mEncoderReturnedNbBytes = 0;
}
FLAC__StreamEncoderWriteStatus C2SoftFlacEnc::onEncodedFlacAvailable(
const FLAC__byte buffer[], size_t bytes, unsigned samples,
unsigned current_frame) {
(void) current_frame;
ALOGV("%s (bytes=%zu, samples=%u, curr_frame=%u)", __func__, bytes, samples,
current_frame);
if (samples == 0) {
ALOGI("saving %zu bytes of header", bytes);
memcpy(mHeader + mHeaderOffset, buffer, bytes);
mHeaderOffset += bytes;// will contain header size when finished receiving header
return FLAC__STREAM_ENCODER_WRITE_STATUS_OK;
}
if ((samples == 0) || !mEncoderWriteData) {
// called by the encoder because there's header data to save, but it's not the role
// of this component (unless WRITE_FLAC_HEADER_IN_FIRST_BUFFER is defined)
ALOGV("ignoring %zu bytes of header data (samples=%d)", bytes, samples);
return FLAC__STREAM_ENCODER_WRITE_STATUS_OK;
}
// write encoded data
C2WriteView wView = mOutputBlock->map().get();
uint8_t* outData = wView.data();
ALOGV("writing %zu bytes of encoded data on output", bytes);
// increment mProcessedSamples to maintain audio synchronization during
// play back
mProcessedSamples += samples;
if (bytes + mEncoderReturnedNbBytes > mOutputBlock->capacity()) {
ALOGE("not enough space left to write encoded data, dropping %zu bytes", bytes);
// a fatal error would stop the encoding
return FLAC__STREAM_ENCODER_WRITE_STATUS_OK;
}
memcpy(outData + mEncoderReturnedNbBytes, buffer, bytes);
mEncoderReturnedNbBytes += bytes;
return FLAC__STREAM_ENCODER_WRITE_STATUS_OK;
}
status_t C2SoftFlacEnc::configureEncoder() {
ALOGV("%s numChannel=%d, sampleRate=%d", __func__, mIntf->getChannelCount(), mIntf->getSampleRate());
if (mSignalledError || !mFlacStreamEncoder) {
ALOGE("can't configure encoder: no encoder or invalid state");
return UNKNOWN_ERROR;
}
const bool inputFloat = mIntf->getPcmEncodingInfo() == C2Config::PCM_FLOAT;
const int bitsPerSample = inputFloat ? 24 : 16;
FLAC__bool ok = true;
ok = ok && FLAC__stream_encoder_set_channels(mFlacStreamEncoder, mIntf->getChannelCount());
ok = ok && FLAC__stream_encoder_set_sample_rate(mFlacStreamEncoder, mIntf->getSampleRate());
ok = ok && FLAC__stream_encoder_set_bits_per_sample(mFlacStreamEncoder, bitsPerSample);
ok = ok && FLAC__stream_encoder_set_compression_level(mFlacStreamEncoder,
mIntf->getComplexity());
ok = ok && FLAC__stream_encoder_set_verify(mFlacStreamEncoder, false);
if (!ok) {
ALOGE("unknown error when configuring encoder");
return UNKNOWN_ERROR;
}
ok &= FLAC__STREAM_ENCODER_INIT_STATUS_OK ==
FLAC__stream_encoder_init_stream(mFlacStreamEncoder,
flacEncoderWriteCallback /*write_callback*/,
nullptr /*seek_callback*/,
nullptr /*tell_callback*/,
nullptr /*metadata_callback*/,
(void *) this /*client_data*/);
if (!ok) {
ALOGE("unknown error when configuring encoder");
return UNKNOWN_ERROR;
}
mBlockSize = FLAC__stream_encoder_get_blocksize(mFlacStreamEncoder);
ALOGV("encoder successfully configured");
return OK;
}
FLAC__StreamEncoderWriteStatus C2SoftFlacEnc::flacEncoderWriteCallback(
const FLAC__StreamEncoder *,
const FLAC__byte buffer[],
size_t bytes,
unsigned samples,
unsigned current_frame,
void *client_data) {
return ((C2SoftFlacEnc*) client_data)->onEncodedFlacAvailable(
buffer, bytes, samples, current_frame);
}
c2_status_t C2SoftFlacEnc::drain(
uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool) {
(void) pool;
switch (drainMode) {
case NO_DRAIN:
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
case DRAIN_CHAIN:
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
case DRAIN_COMPONENT_WITH_EOS:
// TODO: This flag is not being sent back to the client
// because there are no items in PendingWork queue as all the
// inputs are being sent back with emptywork or valid encoded data
// mSignalledOutputEos = true;
case DRAIN_COMPONENT_NO_EOS:
break;
default:
return C2_BAD_VALUE;
}
FLAC__bool ok = FLAC__stream_encoder_finish(mFlacStreamEncoder);
if (!ok) return C2_CORRUPTED;
mIsFirstFrame = true;
mAnchorTimeStamp = 0ull;
mProcessedSamples = 0u;
return C2_OK;
}
class C2SoftFlacEncFactory : public C2ComponentFactory {
public:
C2SoftFlacEncFactory() : mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GetCodec2PlatformComponentStore()->getParamReflector())) {
}
virtual c2_status_t createComponent(
c2_node_id_t id,
std::shared_ptr<C2Component>* const component,
std::function<void(C2Component*)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2SoftFlacEnc(COMPONENT_NAME,
id,
std::make_shared<C2SoftFlacEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual c2_status_t createInterface(
c2_node_id_t id,
std::shared_ptr<C2ComponentInterface>* const interface,
std::function<void(C2ComponentInterface*)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2SoftFlacEnc::IntfImpl>(
COMPONENT_NAME, id, std::make_shared<C2SoftFlacEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual ~C2SoftFlacEncFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
__attribute__((cfi_canonical_jump_table))
extern "C" ::C2ComponentFactory* CreateCodec2Factory() {
ALOGV("in %s", __func__);
return new ::android::C2SoftFlacEncFactory();
}
__attribute__((cfi_canonical_jump_table))
extern "C" void DestroyCodec2Factory(::C2ComponentFactory* factory) {
ALOGV("in %s", __func__);
delete factory;
}