You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1562 lines
66 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-OutputUtils"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0 // Per-frame verbose logging
#ifdef LOG_NNDEBUG
#define ALOGVV(...) ALOGV(__VA_ARGS__)
#else
#define ALOGVV(...) ((void)0)
#endif
// Convenience macros for transitioning to the error state
#define SET_ERR(fmt, ...) states.setErrIntf.setErrorState( \
"%s: " fmt, __FUNCTION__, \
##__VA_ARGS__)
#include <inttypes.h>
#include <utils/Log.h>
#include <utils/SortedVector.h>
#include <utils/Trace.h>
#include <android/hardware/camera2/ICameraDeviceCallbacks.h>
#include <android/hardware/camera/device/3.4/ICameraDeviceCallback.h>
#include <android/hardware/camera/device/3.5/ICameraDeviceCallback.h>
#include <android/hardware/camera/device/3.5/ICameraDeviceSession.h>
#include <camera_metadata_hidden.h>
#include "device3/Camera3OutputUtils.h"
using namespace android::camera3;
using namespace android::hardware::camera;
namespace android {
namespace camera3 {
status_t fixupMonochromeTags(
CaptureOutputStates& states,
const CameraMetadata& deviceInfo,
CameraMetadata& resultMetadata) {
status_t res = OK;
if (!states.needFixupMonoChrome) {
return res;
}
// Remove tags that are not applicable to monochrome camera.
int32_t tagsToRemove[] = {
ANDROID_SENSOR_GREEN_SPLIT,
ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
for (auto tag : tagsToRemove) {
res = resultMetadata.erase(tag);
if (res != OK) {
ALOGE("%s: Failed to remove tag %d for monochrome camera", __FUNCTION__, tag);
return res;
}
}
// ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL
camera_metadata_entry blEntry = resultMetadata.find(ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL);
for (size_t i = 1; i < blEntry.count; i++) {
blEntry.data.f[i] = blEntry.data.f[0];
}
// ANDROID_SENSOR_NOISE_PROFILE
camera_metadata_entry npEntry = resultMetadata.find(ANDROID_SENSOR_NOISE_PROFILE);
if (npEntry.count > 0 && npEntry.count % 2 == 0) {
double np[] = {npEntry.data.d[0], npEntry.data.d[1]};
res = resultMetadata.update(ANDROID_SENSOR_NOISE_PROFILE, np, 2);
if (res != OK) {
ALOGE("%s: Failed to update SENSOR_NOISE_PROFILE: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
// ANDROID_STATISTICS_LENS_SHADING_MAP
camera_metadata_ro_entry lsSizeEntry = deviceInfo.find(ANDROID_LENS_INFO_SHADING_MAP_SIZE);
camera_metadata_entry lsEntry = resultMetadata.find(ANDROID_STATISTICS_LENS_SHADING_MAP);
if (lsSizeEntry.count == 2 && lsEntry.count > 0
&& (int32_t)lsEntry.count == 4 * lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]) {
for (int32_t i = 0; i < lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]; i++) {
lsEntry.data.f[4*i+1] = lsEntry.data.f[4*i];
lsEntry.data.f[4*i+2] = lsEntry.data.f[4*i];
lsEntry.data.f[4*i+3] = lsEntry.data.f[4*i];
}
}
// ANDROID_TONEMAP_CURVE_BLUE
// ANDROID_TONEMAP_CURVE_GREEN
// ANDROID_TONEMAP_CURVE_RED
camera_metadata_entry tcbEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_BLUE);
camera_metadata_entry tcgEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_GREEN);
camera_metadata_entry tcrEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_RED);
if (tcbEntry.count > 0
&& tcbEntry.count == tcgEntry.count
&& tcbEntry.count == tcrEntry.count) {
for (size_t i = 0; i < tcbEntry.count; i++) {
tcbEntry.data.f[i] = tcrEntry.data.f[i];
tcgEntry.data.f[i] = tcrEntry.data.f[i];
}
}
return res;
}
void insertResultLocked(CaptureOutputStates& states, CaptureResult *result, uint32_t frameNumber) {
if (result == nullptr) return;
camera_metadata_t *meta = const_cast<camera_metadata_t *>(
result->mMetadata.getAndLock());
set_camera_metadata_vendor_id(meta, states.vendorTagId);
result->mMetadata.unlock(meta);
if (result->mMetadata.update(ANDROID_REQUEST_FRAME_COUNT,
(int32_t*)&frameNumber, 1) != OK) {
SET_ERR("Failed to set frame number %d in metadata", frameNumber);
return;
}
if (result->mMetadata.update(ANDROID_REQUEST_ID, &result->mResultExtras.requestId, 1) != OK) {
SET_ERR("Failed to set request ID in metadata for frame %d", frameNumber);
return;
}
// Update vendor tag id for physical metadata
for (auto& physicalMetadata : result->mPhysicalMetadatas) {
camera_metadata_t *pmeta = const_cast<camera_metadata_t *>(
physicalMetadata.mPhysicalCameraMetadata.getAndLock());
set_camera_metadata_vendor_id(pmeta, states.vendorTagId);
physicalMetadata.mPhysicalCameraMetadata.unlock(pmeta);
}
// Valid result, insert into queue
std::list<CaptureResult>::iterator queuedResult =
states.resultQueue.insert(states.resultQueue.end(), CaptureResult(*result));
ALOGV("%s: result requestId = %" PRId32 ", frameNumber = %" PRId64
", burstId = %" PRId32, __FUNCTION__,
queuedResult->mResultExtras.requestId,
queuedResult->mResultExtras.frameNumber,
queuedResult->mResultExtras.burstId);
states.resultSignal.notify_one();
}
void sendPartialCaptureResult(CaptureOutputStates& states,
const camera_metadata_t * partialResult,
const CaptureResultExtras &resultExtras, uint32_t frameNumber) {
ATRACE_CALL();
std::lock_guard<std::mutex> l(states.outputLock);
CaptureResult captureResult;
captureResult.mResultExtras = resultExtras;
captureResult.mMetadata = partialResult;
// Fix up result metadata for monochrome camera.
status_t res = fixupMonochromeTags(states, states.deviceInfo, captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
// Update partial result by removing keys remapped by DistortionCorrection, ZoomRatio,
// and RotationAndCrop mappers.
std::set<uint32_t> keysToRemove;
auto iter = states.distortionMappers.find(states.cameraId.c_str());
if (iter != states.distortionMappers.end()) {
const auto& remappedKeys = iter->second.getRemappedKeys();
keysToRemove.insert(remappedKeys.begin(), remappedKeys.end());
}
const auto& remappedKeys = states.zoomRatioMappers[states.cameraId.c_str()].getRemappedKeys();
keysToRemove.insert(remappedKeys.begin(), remappedKeys.end());
auto mapper = states.rotateAndCropMappers.find(states.cameraId.c_str());
if (mapper != states.rotateAndCropMappers.end()) {
const auto& remappedKeys = iter->second.getRemappedKeys();
keysToRemove.insert(remappedKeys.begin(), remappedKeys.end());
}
for (uint32_t key : keysToRemove) {
captureResult.mMetadata.erase(key);
}
// Send partial result
if (captureResult.mMetadata.entryCount() > 0) {
insertResultLocked(states, &captureResult, frameNumber);
}
}
void sendCaptureResult(
CaptureOutputStates& states,
CameraMetadata &pendingMetadata,
CaptureResultExtras &resultExtras,
CameraMetadata &collectedPartialResult,
uint32_t frameNumber,
bool reprocess, bool zslStillCapture, bool rotateAndCropAuto,
const std::set<std::string>& cameraIdsWithZoom,
const std::vector<PhysicalCaptureResultInfo>& physicalMetadatas) {
ATRACE_CALL();
if (pendingMetadata.isEmpty())
return;
std::lock_guard<std::mutex> l(states.outputLock);
// TODO: need to track errors for tighter bounds on expected frame number
if (reprocess) {
if (frameNumber < states.nextReprocResultFrameNum) {
SET_ERR("Out-of-order reprocess capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, states.nextReprocResultFrameNum);
return;
}
states.nextReprocResultFrameNum = frameNumber + 1;
} else if (zslStillCapture) {
if (frameNumber < states.nextZslResultFrameNum) {
SET_ERR("Out-of-order ZSL still capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, states.nextZslResultFrameNum);
return;
}
states.nextZslResultFrameNum = frameNumber + 1;
} else {
if (frameNumber < states.nextResultFrameNum) {
SET_ERR("Out-of-order capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, states.nextResultFrameNum);
return;
}
states.nextResultFrameNum = frameNumber + 1;
}
CaptureResult captureResult;
captureResult.mResultExtras = resultExtras;
captureResult.mMetadata = pendingMetadata;
captureResult.mPhysicalMetadatas = physicalMetadatas;
// Append any previous partials to form a complete result
if (states.usePartialResult && !collectedPartialResult.isEmpty()) {
captureResult.mMetadata.append(collectedPartialResult);
}
captureResult.mMetadata.sort();
// Check that there's a timestamp in the result metadata
camera_metadata_entry timestamp = captureResult.mMetadata.find(ANDROID_SENSOR_TIMESTAMP);
if (timestamp.count == 0) {
SET_ERR("No timestamp provided by HAL for frame %d!",
frameNumber);
return;
}
nsecs_t sensorTimestamp = timestamp.data.i64[0];
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
camera_metadata_entry timestamp =
physicalMetadata.mPhysicalCameraMetadata.find(ANDROID_SENSOR_TIMESTAMP);
if (timestamp.count == 0) {
SET_ERR("No timestamp provided by HAL for physical camera %s frame %d!",
String8(physicalMetadata.mPhysicalCameraId).c_str(), frameNumber);
return;
}
}
// Fix up some result metadata to account for HAL-level distortion correction
status_t res = OK;
auto iter = states.distortionMappers.find(states.cameraId.c_str());
if (iter != states.distortionMappers.end()) {
res = iter->second.correctCaptureResult(&captureResult.mMetadata);
if (res != OK) {
SET_ERR("Unable to correct capture result metadata for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
}
// Fix up result metadata to account for zoom ratio availabilities between
// HAL and app.
bool zoomRatioIs1 = cameraIdsWithZoom.find(states.cameraId.c_str()) == cameraIdsWithZoom.end();
res = states.zoomRatioMappers[states.cameraId.c_str()].updateCaptureResult(
&captureResult.mMetadata, zoomRatioIs1);
if (res != OK) {
SET_ERR("Failed to update capture result zoom ratio metadata for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
// Fix up result metadata to account for rotateAndCrop in AUTO mode
if (rotateAndCropAuto) {
auto mapper = states.rotateAndCropMappers.find(states.cameraId.c_str());
if (mapper != states.rotateAndCropMappers.end()) {
res = mapper->second.updateCaptureResult(
&captureResult.mMetadata);
if (res != OK) {
SET_ERR("Unable to correct capture result rotate-and-crop for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
}
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
String8 cameraId8(physicalMetadata.mPhysicalCameraId);
auto mapper = states.distortionMappers.find(cameraId8.c_str());
if (mapper != states.distortionMappers.end()) {
res = mapper->second.correctCaptureResult(
&physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Unable to correct physical capture result metadata for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
}
zoomRatioIs1 = cameraIdsWithZoom.find(cameraId8.c_str()) == cameraIdsWithZoom.end();
res = states.zoomRatioMappers[cameraId8.c_str()].updateCaptureResult(
&physicalMetadata.mPhysicalCameraMetadata, zoomRatioIs1);
if (res != OK) {
SET_ERR("Failed to update camera %s's physical zoom ratio metadata for "
"frame %d: %s(%d)", cameraId8.c_str(), frameNumber, strerror(-res), res);
return;
}
}
// Fix up result metadata for monochrome camera.
res = fixupMonochromeTags(states, states.deviceInfo, captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
String8 cameraId8(physicalMetadata.mPhysicalCameraId);
res = fixupMonochromeTags(states,
states.physicalDeviceInfoMap.at(cameraId8.c_str()),
physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
}
std::unordered_map<std::string, CameraMetadata> monitoredPhysicalMetadata;
for (auto& m : physicalMetadatas) {
monitoredPhysicalMetadata.emplace(String8(m.mPhysicalCameraId).string(),
CameraMetadata(m.mPhysicalCameraMetadata));
}
states.tagMonitor.monitorMetadata(TagMonitor::RESULT,
frameNumber, sensorTimestamp, captureResult.mMetadata,
monitoredPhysicalMetadata);
insertResultLocked(states, &captureResult, frameNumber);
}
// Reading one camera metadata from result argument via fmq or from the result
// Assuming the fmq is protected by a lock already
status_t readOneCameraMetadataLocked(
std::unique_ptr<ResultMetadataQueue>& fmq,
uint64_t fmqResultSize,
hardware::camera::device::V3_2::CameraMetadata& resultMetadata,
const hardware::camera::device::V3_2::CameraMetadata& result) {
if (fmqResultSize > 0) {
resultMetadata.resize(fmqResultSize);
if (fmq == nullptr) {
return NO_MEMORY; // logged in initialize()
}
if (!fmq->read(resultMetadata.data(), fmqResultSize)) {
ALOGE("%s: Cannot read camera metadata from fmq, size = %" PRIu64,
__FUNCTION__, fmqResultSize);
return INVALID_OPERATION;
}
} else {
resultMetadata.setToExternal(const_cast<uint8_t *>(result.data()),
result.size());
}
if (resultMetadata.size() != 0) {
status_t res;
const camera_metadata_t* metadata =
reinterpret_cast<const camera_metadata_t*>(resultMetadata.data());
size_t expected_metadata_size = resultMetadata.size();
if ((res = validate_camera_metadata_structure(metadata, &expected_metadata_size)) != OK) {
ALOGE("%s: Invalid camera metadata received by camera service from HAL: %s (%d)",
__FUNCTION__, strerror(-res), res);
return INVALID_OPERATION;
}
}
return OK;
}
void removeInFlightMapEntryLocked(CaptureOutputStates& states, int idx) {
ATRACE_CALL();
InFlightRequestMap& inflightMap = states.inflightMap;
nsecs_t duration = inflightMap.valueAt(idx).maxExpectedDuration;
inflightMap.removeItemsAt(idx, 1);
states.inflightIntf.onInflightEntryRemovedLocked(duration);
}
void removeInFlightRequestIfReadyLocked(CaptureOutputStates& states, int idx) {
InFlightRequestMap& inflightMap = states.inflightMap;
const InFlightRequest &request = inflightMap.valueAt(idx);
const uint32_t frameNumber = inflightMap.keyAt(idx);
SessionStatsBuilder& sessionStatsBuilder = states.sessionStatsBuilder;
nsecs_t sensorTimestamp = request.sensorTimestamp;
nsecs_t shutterTimestamp = request.shutterTimestamp;
// Check if it's okay to remove the request from InFlightMap:
// In the case of a successful request:
// all input and output buffers, all result metadata, shutter callback
// arrived.
// In the case of an unsuccessful request:
// all input and output buffers, as well as request/result error notifications, arrived.
if (request.numBuffersLeft == 0 &&
(request.skipResultMetadata ||
(request.haveResultMetadata && shutterTimestamp != 0))) {
if (request.stillCapture) {
ATRACE_ASYNC_END("still capture", frameNumber);
}
ATRACE_ASYNC_END("frame capture", frameNumber);
// Validation check - if sensor timestamp matches shutter timestamp in the
// case of request having callback.
if (request.hasCallback && request.requestStatus == OK &&
sensorTimestamp != shutterTimestamp) {
SET_ERR("sensor timestamp (%" PRId64
") for frame %d doesn't match shutter timestamp (%" PRId64 ")",
sensorTimestamp, frameNumber, shutterTimestamp);
}
// for an unsuccessful request, it may have pending output buffers to
// return.
assert(request.requestStatus != OK ||
request.pendingOutputBuffers.size() == 0);
returnOutputBuffers(
states.useHalBufManager, states.listener,
request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(), 0,
/*requested*/true, request.requestTimeNs, states.sessionStatsBuilder,
/*timestampIncreasing*/true,
request.outputSurfaces, request.resultExtras,
request.errorBufStrategy);
// Note down the just completed frame number
if (request.hasInputBuffer) {
states.lastCompletedReprocessFrameNumber = frameNumber;
} else if (request.zslCapture) {
states.lastCompletedZslFrameNumber = frameNumber;
} else {
states.lastCompletedRegularFrameNumber = frameNumber;
}
sessionStatsBuilder.incResultCounter(request.skipResultMetadata);
removeInFlightMapEntryLocked(states, idx);
ALOGVV("%s: removed frame %d from InFlightMap", __FUNCTION__, frameNumber);
}
states.inflightIntf.checkInflightMapLengthLocked();
}
// Erase the subset of physicalCameraIds that contains id
bool erasePhysicalCameraIdSet(
std::set<std::set<String8>>& physicalCameraIds, const String8& id) {
bool found = false;
for (auto iter = physicalCameraIds.begin(); iter != physicalCameraIds.end(); iter++) {
if (iter->count(id) == 1) {
physicalCameraIds.erase(iter);
found = true;
break;
}
}
return found;
}
void processCaptureResult(CaptureOutputStates& states, const camera_capture_result *result) {
ATRACE_CALL();
status_t res;
uint32_t frameNumber = result->frame_number;
if (result->result == NULL && result->num_output_buffers == 0 &&
result->input_buffer == NULL) {
SET_ERR("No result data provided by HAL for frame %d",
frameNumber);
return;
}
if (!states.usePartialResult &&
result->result != NULL &&
result->partial_result != 1) {
SET_ERR("Result is malformed for frame %d: partial_result %u must be 1"
" if partial result is not supported",
frameNumber, result->partial_result);
return;
}
bool isPartialResult = false;
CameraMetadata collectedPartialResult;
bool hasInputBufferInRequest = false;
// Get shutter timestamp and resultExtras from list of in-flight requests,
// where it was added by the shutter notification for this frame. If the
// shutter timestamp isn't received yet, append the output buffers to the
// in-flight request and they will be returned when the shutter timestamp
// arrives. Update the in-flight status and remove the in-flight entry if
// all result data and shutter timestamp have been received.
nsecs_t shutterTimestamp = 0;
{
std::lock_guard<std::mutex> l(states.inflightLock);
ssize_t idx = states.inflightMap.indexOfKey(frameNumber);
if (idx == NAME_NOT_FOUND) {
SET_ERR("Unknown frame number for capture result: %d",
frameNumber);
return;
}
InFlightRequest &request = states.inflightMap.editValueAt(idx);
ALOGVV("%s: got InFlightRequest requestId = %" PRId32
", frameNumber = %" PRId64 ", burstId = %" PRId32
", partialResultCount = %d/%d, hasCallback = %d, num_output_buffers %d"
", usePartialResult = %d",
__FUNCTION__, request.resultExtras.requestId,
request.resultExtras.frameNumber, request.resultExtras.burstId,
result->partial_result, states.numPartialResults,
request.hasCallback, result->num_output_buffers,
states.usePartialResult);
// Always update the partial count to the latest one if it's not 0
// (buffers only). When framework aggregates adjacent partial results
// into one, the latest partial count will be used.
if (result->partial_result != 0)
request.resultExtras.partialResultCount = result->partial_result;
// Check if this result carries only partial metadata
if (states.usePartialResult && result->result != NULL) {
if (result->partial_result > states.numPartialResults || result->partial_result < 1) {
SET_ERR("Result is malformed for frame %d: partial_result %u must be in"
" the range of [1, %d] when metadata is included in the result",
frameNumber, result->partial_result, states.numPartialResults);
return;
}
isPartialResult = (result->partial_result < states.numPartialResults);
if (isPartialResult && result->num_physcam_metadata) {
SET_ERR("Result is malformed for frame %d: partial_result not allowed for"
" physical camera result", frameNumber);
return;
}
if (isPartialResult) {
request.collectedPartialResult.append(result->result);
}
if (isPartialResult && request.hasCallback) {
// Send partial capture result
sendPartialCaptureResult(states, result->result, request.resultExtras,
frameNumber);
}
}
shutterTimestamp = request.shutterTimestamp;
hasInputBufferInRequest = request.hasInputBuffer;
// Did we get the (final) result metadata for this capture?
if (result->result != NULL && !isPartialResult) {
if (request.physicalCameraIds.size() != result->num_physcam_metadata) {
SET_ERR("Expected physical Camera metadata count %d not equal to actual count %d",
request.physicalCameraIds.size(), result->num_physcam_metadata);
return;
}
if (request.haveResultMetadata) {
SET_ERR("Called multiple times with metadata for frame %d",
frameNumber);
return;
}
for (uint32_t i = 0; i < result->num_physcam_metadata; i++) {
String8 physicalId(result->physcam_ids[i]);
bool validPhysicalCameraMetadata =
erasePhysicalCameraIdSet(request.physicalCameraIds, physicalId);
if (!validPhysicalCameraMetadata) {
SET_ERR("Unexpected total result for frame %d camera %s",
frameNumber, physicalId.c_str());
return;
}
}
if (states.usePartialResult &&
!request.collectedPartialResult.isEmpty()) {
collectedPartialResult.acquire(
request.collectedPartialResult);
}
request.haveResultMetadata = true;
request.errorBufStrategy = ERROR_BUF_RETURN_NOTIFY;
}
uint32_t numBuffersReturned = result->num_output_buffers;
if (result->input_buffer != NULL) {
if (hasInputBufferInRequest) {
numBuffersReturned += 1;
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request",
__FUNCTION__);
}
}
request.numBuffersLeft -= numBuffersReturned;
if (request.numBuffersLeft < 0) {
SET_ERR("Too many buffers returned for frame %d",
frameNumber);
return;
}
camera_metadata_ro_entry_t entry;
res = find_camera_metadata_ro_entry(result->result,
ANDROID_SENSOR_TIMESTAMP, &entry);
if (res == OK && entry.count == 1) {
request.sensorTimestamp = entry.data.i64[0];
}
// If shutter event isn't received yet, do not return the pending output
// buffers.
request.pendingOutputBuffers.appendArray(result->output_buffers,
result->num_output_buffers);
if (shutterTimestamp != 0) {
returnAndRemovePendingOutputBuffers(
states.useHalBufManager, states.listener,
request, states.sessionStatsBuilder);
}
if (result->result != NULL && !isPartialResult) {
for (uint32_t i = 0; i < result->num_physcam_metadata; i++) {
CameraMetadata physicalMetadata;
physicalMetadata.append(result->physcam_metadata[i]);
request.physicalMetadatas.push_back({String16(result->physcam_ids[i]),
physicalMetadata});
}
if (shutterTimestamp == 0) {
request.pendingMetadata = result->result;
request.collectedPartialResult = collectedPartialResult;
} else if (request.hasCallback) {
CameraMetadata metadata;
metadata = result->result;
sendCaptureResult(states, metadata, request.resultExtras,
collectedPartialResult, frameNumber,
hasInputBufferInRequest, request.zslCapture && request.stillCapture,
request.rotateAndCropAuto, request.cameraIdsWithZoom,
request.physicalMetadatas);
}
}
removeInFlightRequestIfReadyLocked(states, idx);
} // scope for states.inFlightLock
if (result->input_buffer != NULL) {
if (hasInputBufferInRequest) {
Camera3Stream *stream =
Camera3Stream::cast(result->input_buffer->stream);
res = stream->returnInputBuffer(*(result->input_buffer));
// Note: stream may be deallocated at this point, if this buffer was the
// last reference to it.
if (res != OK) {
ALOGE("%s: RequestThread: Can't return input buffer for frame %d to"
" its stream:%s (%d)", __FUNCTION__,
frameNumber, strerror(-res), res);
}
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request, skipping input buffer return.",
__FUNCTION__);
}
}
}
void processOneCaptureResultLocked(
CaptureOutputStates& states,
const hardware::camera::device::V3_2::CaptureResult& result,
const hardware::hidl_vec<
hardware::camera::device::V3_4::PhysicalCameraMetadata> physicalCameraMetadata) {
using hardware::camera::device::V3_2::StreamBuffer;
using hardware::camera::device::V3_2::BufferStatus;
std::unique_ptr<ResultMetadataQueue>& fmq = states.fmq;
BufferRecordsInterface& bufferRecords = states.bufferRecordsIntf;
camera_capture_result r;
status_t res;
r.frame_number = result.frameNumber;
// Read and validate the result metadata.
hardware::camera::device::V3_2::CameraMetadata resultMetadata;
res = readOneCameraMetadataLocked(
fmq, result.fmqResultSize,
resultMetadata, result.result);
if (res != OK) {
ALOGE("%s: Frame %d: Failed to read capture result metadata",
__FUNCTION__, result.frameNumber);
return;
}
r.result = reinterpret_cast<const camera_metadata_t*>(resultMetadata.data());
// Read and validate physical camera metadata
size_t physResultCount = physicalCameraMetadata.size();
std::vector<const char*> physCamIds(physResultCount);
std::vector<const camera_metadata_t *> phyCamMetadatas(physResultCount);
std::vector<hardware::camera::device::V3_2::CameraMetadata> physResultMetadata;
physResultMetadata.resize(physResultCount);
for (size_t i = 0; i < physicalCameraMetadata.size(); i++) {
res = readOneCameraMetadataLocked(fmq, physicalCameraMetadata[i].fmqMetadataSize,
physResultMetadata[i], physicalCameraMetadata[i].metadata);
if (res != OK) {
ALOGE("%s: Frame %d: Failed to read capture result metadata for camera %s",
__FUNCTION__, result.frameNumber,
physicalCameraMetadata[i].physicalCameraId.c_str());
return;
}
physCamIds[i] = physicalCameraMetadata[i].physicalCameraId.c_str();
phyCamMetadatas[i] = reinterpret_cast<const camera_metadata_t*>(
physResultMetadata[i].data());
}
r.num_physcam_metadata = physResultCount;
r.physcam_ids = physCamIds.data();
r.physcam_metadata = phyCamMetadatas.data();
std::vector<camera_stream_buffer_t> outputBuffers(result.outputBuffers.size());
std::vector<buffer_handle_t> outputBufferHandles(result.outputBuffers.size());
for (size_t i = 0; i < result.outputBuffers.size(); i++) {
auto& bDst = outputBuffers[i];
const StreamBuffer &bSrc = result.outputBuffers[i];
sp<Camera3StreamInterface> stream = states.outputStreams.get(bSrc.streamId);
if (stream == nullptr) {
ALOGE("%s: Frame %d: Buffer %zu: Invalid output stream id %d",
__FUNCTION__, result.frameNumber, i, bSrc.streamId);
return;
}
bDst.stream = stream->asHalStream();
bool noBufferReturned = false;
buffer_handle_t *buffer = nullptr;
if (states.useHalBufManager) {
// This is suspicious most of the time but can be correct during flush where HAL
// has to return capture result before a buffer is requested
if (bSrc.bufferId == BUFFER_ID_NO_BUFFER) {
if (bSrc.status == BufferStatus::OK) {
ALOGE("%s: Frame %d: Buffer %zu: No bufferId for stream %d",
__FUNCTION__, result.frameNumber, i, bSrc.streamId);
// Still proceeds so other buffers can be returned
}
noBufferReturned = true;
}
if (noBufferReturned) {
res = OK;
} else {
res = bufferRecords.popInflightRequestBuffer(bSrc.bufferId, &buffer);
}
} else {
res = bufferRecords.popInflightBuffer(result.frameNumber, bSrc.streamId, &buffer);
}
if (res != OK) {
ALOGE("%s: Frame %d: Buffer %zu: No in-flight buffer for stream %d",
__FUNCTION__, result.frameNumber, i, bSrc.streamId);
return;
}
bDst.buffer = buffer;
bDst.status = mapHidlBufferStatus(bSrc.status);
bDst.acquire_fence = -1;
if (bSrc.releaseFence == nullptr) {
bDst.release_fence = -1;
} else if (bSrc.releaseFence->numFds == 1) {
if (noBufferReturned) {
ALOGE("%s: got releaseFence without output buffer!", __FUNCTION__);
}
bDst.release_fence = dup(bSrc.releaseFence->data[0]);
} else {
ALOGE("%s: Frame %d: Invalid release fence for buffer %zu, fd count is %d, not 1",
__FUNCTION__, result.frameNumber, i, bSrc.releaseFence->numFds);
return;
}
}
r.num_output_buffers = outputBuffers.size();
r.output_buffers = outputBuffers.data();
camera_stream_buffer_t inputBuffer;
if (result.inputBuffer.streamId == -1) {
r.input_buffer = nullptr;
} else {
if (states.inputStream->getId() != result.inputBuffer.streamId) {
ALOGE("%s: Frame %d: Invalid input stream id %d", __FUNCTION__,
result.frameNumber, result.inputBuffer.streamId);
return;
}
inputBuffer.stream = states.inputStream->asHalStream();
buffer_handle_t *buffer;
res = bufferRecords.popInflightBuffer(result.frameNumber, result.inputBuffer.streamId,
&buffer);
if (res != OK) {
ALOGE("%s: Frame %d: Input buffer: No in-flight buffer for stream %d",
__FUNCTION__, result.frameNumber, result.inputBuffer.streamId);
return;
}
inputBuffer.buffer = buffer;
inputBuffer.status = mapHidlBufferStatus(result.inputBuffer.status);
inputBuffer.acquire_fence = -1;
if (result.inputBuffer.releaseFence == nullptr) {
inputBuffer.release_fence = -1;
} else if (result.inputBuffer.releaseFence->numFds == 1) {
inputBuffer.release_fence = dup(result.inputBuffer.releaseFence->data[0]);
} else {
ALOGE("%s: Frame %d: Invalid release fence for input buffer, fd count is %d, not 1",
__FUNCTION__, result.frameNumber, result.inputBuffer.releaseFence->numFds);
return;
}
r.input_buffer = &inputBuffer;
}
r.partial_result = result.partialResult;
processCaptureResult(states, &r);
}
void returnOutputBuffers(
bool useHalBufManager,
sp<NotificationListener> listener,
const camera_stream_buffer_t *outputBuffers, size_t numBuffers,
nsecs_t timestamp, bool requested, nsecs_t requestTimeNs,
SessionStatsBuilder& sessionStatsBuilder, bool timestampIncreasing,
const SurfaceMap& outputSurfaces,
const CaptureResultExtras &inResultExtras,
ERROR_BUF_STRATEGY errorBufStrategy) {
for (size_t i = 0; i < numBuffers; i++)
{
Camera3StreamInterface *stream = Camera3Stream::cast(outputBuffers[i].stream);
int streamId = stream->getId();
// Call notify(ERROR_BUFFER) if necessary.
if (outputBuffers[i].status == CAMERA_BUFFER_STATUS_ERROR &&
errorBufStrategy == ERROR_BUF_RETURN_NOTIFY) {
if (listener != nullptr) {
CaptureResultExtras extras = inResultExtras;
extras.errorStreamId = streamId;
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER,
extras);
}
}
if (outputBuffers[i].buffer == nullptr) {
if (!useHalBufManager) {
// With HAL buffer management API, HAL sometimes will have to return buffers that
// has not got a output buffer handle filled yet. This is though illegal if HAL
// buffer management API is not being used.
ALOGE("%s: cannot return a null buffer!", __FUNCTION__);
} else {
if (requested) {
sessionStatsBuilder.incCounter(streamId, /*dropped*/true, 0);
}
}
continue;
}
const auto& it = outputSurfaces.find(streamId);
status_t res = OK;
// Do not return the buffer if the buffer status is error, and the error
// buffer strategy is CACHE.
if (outputBuffers[i].status != CAMERA_BUFFER_STATUS_ERROR ||
errorBufStrategy != ERROR_BUF_CACHE) {
if (it != outputSurfaces.end()) {
res = stream->returnBuffer(
outputBuffers[i], timestamp, timestampIncreasing, it->second,
inResultExtras.frameNumber);
} else {
res = stream->returnBuffer(
outputBuffers[i], timestamp, timestampIncreasing, std::vector<size_t> (),
inResultExtras.frameNumber);
}
}
// Note: stream may be deallocated at this point, if this buffer was
// the last reference to it.
bool dropped = false;
if (res == NO_INIT || res == DEAD_OBJECT) {
ALOGV("Can't return buffer to its stream: %s (%d)", strerror(-res), res);
sessionStatsBuilder.stopCounter(streamId);
} else if (res != OK) {
ALOGE("Can't return buffer to its stream: %s (%d)", strerror(-res), res);
dropped = true;
} else {
if (outputBuffers[i].status == CAMERA_BUFFER_STATUS_ERROR || timestamp == 0) {
dropped = true;
}
}
if (requested) {
nsecs_t bufferTimeNs = systemTime();
int32_t captureLatencyMs = ns2ms(bufferTimeNs - requestTimeNs);
sessionStatsBuilder.incCounter(streamId, dropped, captureLatencyMs);
}
// Long processing consumers can cause returnBuffer timeout for shared stream
// If that happens, cancel the buffer and send a buffer error to client
if (it != outputSurfaces.end() && res == TIMED_OUT &&
outputBuffers[i].status == CAMERA_BUFFER_STATUS_OK) {
// cancel the buffer
camera_stream_buffer_t sb = outputBuffers[i];
sb.status = CAMERA_BUFFER_STATUS_ERROR;
stream->returnBuffer(sb, /*timestamp*/0,
timestampIncreasing, std::vector<size_t> (),
inResultExtras.frameNumber);
if (listener != nullptr) {
CaptureResultExtras extras = inResultExtras;
extras.errorStreamId = streamId;
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER,
extras);
}
}
}
}
void returnAndRemovePendingOutputBuffers(bool useHalBufManager,
sp<NotificationListener> listener, InFlightRequest& request,
SessionStatsBuilder& sessionStatsBuilder) {
bool timestampIncreasing = !(request.zslCapture || request.hasInputBuffer);
returnOutputBuffers(useHalBufManager, listener,
request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(),
request.shutterTimestamp, /*requested*/true,
request.requestTimeNs, sessionStatsBuilder, timestampIncreasing,
request.outputSurfaces, request.resultExtras,
request.errorBufStrategy);
// Remove error buffers that are not cached.
for (auto iter = request.pendingOutputBuffers.begin();
iter != request.pendingOutputBuffers.end(); ) {
if (request.errorBufStrategy != ERROR_BUF_CACHE ||
iter->status != CAMERA_BUFFER_STATUS_ERROR) {
iter = request.pendingOutputBuffers.erase(iter);
} else {
iter++;
}
}
}
void notifyShutter(CaptureOutputStates& states, const camera_shutter_msg_t &msg) {
ATRACE_CALL();
ssize_t idx;
// Set timestamp for the request in the in-flight tracking
// and get the request ID to send upstream
{
std::lock_guard<std::mutex> l(states.inflightLock);
InFlightRequestMap& inflightMap = states.inflightMap;
idx = inflightMap.indexOfKey(msg.frame_number);
if (idx >= 0) {
InFlightRequest &r = inflightMap.editValueAt(idx);
// Verify ordering of shutter notifications
{
std::lock_guard<std::mutex> l(states.outputLock);
// TODO: need to track errors for tighter bounds on expected frame number.
if (r.hasInputBuffer) {
if (msg.frame_number < states.nextReprocShutterFrameNum) {
SET_ERR("Reprocess shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
states.nextReprocShutterFrameNum, msg.frame_number);
return;
}
states.nextReprocShutterFrameNum = msg.frame_number + 1;
} else if (r.zslCapture && r.stillCapture) {
if (msg.frame_number < states.nextZslShutterFrameNum) {
SET_ERR("ZSL still capture shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
states.nextZslShutterFrameNum, msg.frame_number);
return;
}
states.nextZslShutterFrameNum = msg.frame_number + 1;
} else {
if (msg.frame_number < states.nextShutterFrameNum) {
SET_ERR("Shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
states.nextShutterFrameNum, msg.frame_number);
return;
}
states.nextShutterFrameNum = msg.frame_number + 1;
}
}
r.shutterTimestamp = msg.timestamp;
if (r.hasCallback) {
ALOGVV("Camera %s: %s: Shutter fired for frame %d (id %d) at %" PRId64,
states.cameraId.string(), __FUNCTION__,
msg.frame_number, r.resultExtras.requestId, msg.timestamp);
// Call listener, if any
if (states.listener != nullptr) {
r.resultExtras.lastCompletedRegularFrameNumber =
states.lastCompletedRegularFrameNumber;
r.resultExtras.lastCompletedReprocessFrameNumber =
states.lastCompletedReprocessFrameNumber;
r.resultExtras.lastCompletedZslFrameNumber =
states.lastCompletedZslFrameNumber;
states.listener->notifyShutter(r.resultExtras, msg.timestamp);
}
// send pending result and buffers
sendCaptureResult(states,
r.pendingMetadata, r.resultExtras,
r.collectedPartialResult, msg.frame_number,
r.hasInputBuffer, r.zslCapture && r.stillCapture,
r.rotateAndCropAuto, r.cameraIdsWithZoom, r.physicalMetadatas);
}
returnAndRemovePendingOutputBuffers(
states.useHalBufManager, states.listener, r, states.sessionStatsBuilder);
removeInFlightRequestIfReadyLocked(states, idx);
}
}
if (idx < 0) {
SET_ERR("Shutter notification for non-existent frame number %d",
msg.frame_number);
}
}
void notifyError(CaptureOutputStates& states, const camera_error_msg_t &msg) {
ATRACE_CALL();
// Map camera HAL error codes to ICameraDeviceCallback error codes
// Index into this with the HAL error code
static const int32_t halErrorMap[CAMERA_MSG_NUM_ERRORS] = {
// 0 = Unused error code
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR,
// 1 = CAMERA_MSG_ERROR_DEVICE
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE,
// 2 = CAMERA_MSG_ERROR_REQUEST
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
// 3 = CAMERA_MSG_ERROR_RESULT
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT,
// 4 = CAMERA_MSG_ERROR_BUFFER
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER
};
int32_t errorCode =
((msg.error_code >= 0) &&
(msg.error_code < CAMERA_MSG_NUM_ERRORS)) ?
halErrorMap[msg.error_code] :
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR;
int streamId = 0;
String16 physicalCameraId;
if (msg.error_stream != nullptr) {
Camera3Stream *stream =
Camera3Stream::cast(msg.error_stream);
streamId = stream->getId();
physicalCameraId = String16(stream->physicalCameraId());
}
ALOGV("Camera %s: %s: HAL error, frame %d, stream %d: %d",
states.cameraId.string(), __FUNCTION__, msg.frame_number,
streamId, msg.error_code);
CaptureResultExtras resultExtras;
switch (errorCode) {
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE:
// SET_ERR calls into listener to notify application
SET_ERR("Camera HAL reported serious device error");
break;
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST:
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT:
{
std::lock_guard<std::mutex> l(states.inflightLock);
ssize_t idx = states.inflightMap.indexOfKey(msg.frame_number);
if (idx >= 0) {
InFlightRequest &r = states.inflightMap.editValueAt(idx);
r.requestStatus = msg.error_code;
resultExtras = r.resultExtras;
bool physicalDeviceResultError = false;
if (hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT ==
errorCode) {
if (physicalCameraId.size() > 0) {
String8 cameraId(physicalCameraId);
bool validPhysicalCameraId =
erasePhysicalCameraIdSet(r.physicalCameraIds, cameraId);
if (!validPhysicalCameraId) {
ALOGE("%s: Reported result failure for physical camera device: %s "
" which is not part of the respective request!",
__FUNCTION__, cameraId.string());
break;
}
resultExtras.errorPhysicalCameraId = physicalCameraId;
physicalDeviceResultError = true;
}
}
if (!physicalDeviceResultError) {
r.skipResultMetadata = true;
if (hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT
== errorCode) {
r.errorBufStrategy = ERROR_BUF_RETURN_NOTIFY;
} else {
// errorCode is ERROR_CAMERA_REQUEST
r.errorBufStrategy = ERROR_BUF_RETURN;
}
// Check whether the buffers returned. If they returned,
// remove inflight request.
removeInFlightRequestIfReadyLocked(states, idx);
}
} else {
resultExtras.frameNumber = msg.frame_number;
ALOGE("Camera %s: %s: cannot find in-flight request on "
"frame %" PRId64 " error", states.cameraId.string(), __FUNCTION__,
resultExtras.frameNumber);
}
}
resultExtras.errorStreamId = streamId;
if (states.listener != nullptr) {
states.listener->notifyError(errorCode, resultExtras);
} else {
ALOGE("Camera %s: %s: no listener available",
states.cameraId.string(), __FUNCTION__);
}
break;
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER:
// Do not depend on HAL ERROR_CAMERA_BUFFER to send buffer error
// callback to the app. Rather, use STATUS_ERROR of image buffers.
break;
default:
// SET_ERR calls notifyError
SET_ERR("Unknown error message from HAL: %d", msg.error_code);
break;
}
}
void notify(CaptureOutputStates& states, const camera_notify_msg *msg) {
switch (msg->type) {
case CAMERA_MSG_ERROR: {
notifyError(states, msg->message.error);
break;
}
case CAMERA_MSG_SHUTTER: {
notifyShutter(states, msg->message.shutter);
break;
}
default:
SET_ERR("Unknown notify message from HAL: %d",
msg->type);
}
}
void notify(CaptureOutputStates& states,
const hardware::camera::device::V3_2::NotifyMsg& msg) {
using android::hardware::camera::device::V3_2::MsgType;
using android::hardware::camera::device::V3_2::ErrorCode;
ATRACE_CALL();
camera_notify_msg m;
switch (msg.type) {
case MsgType::ERROR:
m.type = CAMERA_MSG_ERROR;
m.message.error.frame_number = msg.msg.error.frameNumber;
if (msg.msg.error.errorStreamId >= 0) {
sp<Camera3StreamInterface> stream =
states.outputStreams.get(msg.msg.error.errorStreamId);
if (stream == nullptr) {
ALOGE("%s: Frame %d: Invalid error stream id %d", __FUNCTION__,
m.message.error.frame_number, msg.msg.error.errorStreamId);
return;
}
m.message.error.error_stream = stream->asHalStream();
} else {
m.message.error.error_stream = nullptr;
}
switch (msg.msg.error.errorCode) {
case ErrorCode::ERROR_DEVICE:
m.message.error.error_code = CAMERA_MSG_ERROR_DEVICE;
break;
case ErrorCode::ERROR_REQUEST:
m.message.error.error_code = CAMERA_MSG_ERROR_REQUEST;
break;
case ErrorCode::ERROR_RESULT:
m.message.error.error_code = CAMERA_MSG_ERROR_RESULT;
break;
case ErrorCode::ERROR_BUFFER:
m.message.error.error_code = CAMERA_MSG_ERROR_BUFFER;
break;
}
break;
case MsgType::SHUTTER:
m.type = CAMERA_MSG_SHUTTER;
m.message.shutter.frame_number = msg.msg.shutter.frameNumber;
m.message.shutter.timestamp = msg.msg.shutter.timestamp;
break;
}
notify(states, &m);
}
void requestStreamBuffers(RequestBufferStates& states,
const hardware::hidl_vec<hardware::camera::device::V3_5::BufferRequest>& bufReqs,
hardware::camera::device::V3_5::ICameraDeviceCallback::requestStreamBuffers_cb _hidl_cb) {
using android::hardware::camera::device::V3_2::BufferStatus;
using android::hardware::camera::device::V3_2::StreamBuffer;
using android::hardware::camera::device::V3_5::BufferRequestStatus;
using android::hardware::camera::device::V3_5::StreamBufferRet;
using android::hardware::camera::device::V3_5::StreamBufferRequestError;
std::lock_guard<std::mutex> lock(states.reqBufferLock);
hardware::hidl_vec<StreamBufferRet> bufRets;
if (!states.useHalBufManager) {
ALOGE("%s: Camera %s does not support HAL buffer management",
__FUNCTION__, states.cameraId.string());
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return;
}
SortedVector<int32_t> streamIds;
ssize_t sz = streamIds.setCapacity(bufReqs.size());
if (sz < 0 || static_cast<size_t>(sz) != bufReqs.size()) {
ALOGE("%s: failed to allocate memory for %zu buffer requests",
__FUNCTION__, bufReqs.size());
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return;
}
if (bufReqs.size() > states.outputStreams.size()) {
ALOGE("%s: too many buffer requests (%zu > # of output streams %zu)",
__FUNCTION__, bufReqs.size(), states.outputStreams.size());
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return;
}
// Check for repeated streamId
for (const auto& bufReq : bufReqs) {
if (streamIds.indexOf(bufReq.streamId) != NAME_NOT_FOUND) {
ALOGE("%s: Stream %d appear multiple times in buffer requests",
__FUNCTION__, bufReq.streamId);
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return;
}
streamIds.add(bufReq.streamId);
}
if (!states.reqBufferIntf.startRequestBuffer()) {
ALOGE("%s: request buffer disallowed while camera service is configuring",
__FUNCTION__);
_hidl_cb(BufferRequestStatus::FAILED_CONFIGURING, bufRets);
return;
}
bufRets.resize(bufReqs.size());
bool allReqsSucceeds = true;
bool oneReqSucceeds = false;
for (size_t i = 0; i < bufReqs.size(); i++) {
const auto& bufReq = bufReqs[i];
auto& bufRet = bufRets[i];
int32_t streamId = bufReq.streamId;
sp<Camera3OutputStreamInterface> outputStream = states.outputStreams.get(streamId);
if (outputStream == nullptr) {
ALOGE("%s: Output stream id %d not found!", __FUNCTION__, streamId);
hardware::hidl_vec<StreamBufferRet> emptyBufRets;
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, emptyBufRets);
states.reqBufferIntf.endRequestBuffer();
return;
}
bufRet.streamId = streamId;
if (outputStream->isAbandoned()) {
bufRet.val.error(StreamBufferRequestError::STREAM_DISCONNECTED);
allReqsSucceeds = false;
continue;
}
size_t handOutBufferCount = outputStream->getOutstandingBuffersCount();
uint32_t numBuffersRequested = bufReq.numBuffersRequested;
size_t totalHandout = handOutBufferCount + numBuffersRequested;
uint32_t maxBuffers = outputStream->asHalStream()->max_buffers;
if (totalHandout > maxBuffers) {
// Not able to allocate enough buffer. Exit early for this stream
ALOGE("%s: request too much buffers for stream %d: at HAL: %zu + requesting: %d"
" > max: %d", __FUNCTION__, streamId, handOutBufferCount,
numBuffersRequested, maxBuffers);
bufRet.val.error(StreamBufferRequestError::MAX_BUFFER_EXCEEDED);
allReqsSucceeds = false;
continue;
}
hardware::hidl_vec<StreamBuffer> tmpRetBuffers(numBuffersRequested);
bool currentReqSucceeds = true;
std::vector<camera_stream_buffer_t> streamBuffers(numBuffersRequested);
size_t numAllocatedBuffers = 0;
size_t numPushedInflightBuffers = 0;
for (size_t b = 0; b < numBuffersRequested; b++) {
camera_stream_buffer_t& sb = streamBuffers[b];
// Since this method can run concurrently with request thread
// We need to update the wait duration everytime we call getbuffer
nsecs_t waitDuration = states.reqBufferIntf.getWaitDuration();
status_t res = outputStream->getBuffer(&sb, waitDuration);
if (res != OK) {
if (res == NO_INIT || res == DEAD_OBJECT) {
ALOGV("%s: Can't get output buffer for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
bufRet.val.error(StreamBufferRequestError::STREAM_DISCONNECTED);
states.sessionStatsBuilder.stopCounter(streamId);
} else {
ALOGE("%s: Can't get output buffer for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
if (res == TIMED_OUT || res == NO_MEMORY) {
bufRet.val.error(StreamBufferRequestError::NO_BUFFER_AVAILABLE);
} else {
bufRet.val.error(StreamBufferRequestError::UNKNOWN_ERROR);
}
}
currentReqSucceeds = false;
break;
}
numAllocatedBuffers++;
buffer_handle_t *buffer = sb.buffer;
auto pair = states.bufferRecordsIntf.getBufferId(*buffer, streamId);
bool isNewBuffer = pair.first;
uint64_t bufferId = pair.second;
StreamBuffer& hBuf = tmpRetBuffers[b];
hBuf.streamId = streamId;
hBuf.bufferId = bufferId;
hBuf.buffer = (isNewBuffer) ? *buffer : nullptr;
hBuf.status = BufferStatus::OK;
hBuf.releaseFence = nullptr;
native_handle_t *acquireFence = nullptr;
if (sb.acquire_fence != -1) {
acquireFence = native_handle_create(1,0);
acquireFence->data[0] = sb.acquire_fence;
}
hBuf.acquireFence.setTo(acquireFence, /*shouldOwn*/true);
hBuf.releaseFence = nullptr;
res = states.bufferRecordsIntf.pushInflightRequestBuffer(bufferId, buffer, streamId);
if (res != OK) {
ALOGE("%s: Can't get register request buffers for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
bufRet.val.error(StreamBufferRequestError::UNKNOWN_ERROR);
currentReqSucceeds = false;
break;
}
numPushedInflightBuffers++;
}
if (currentReqSucceeds) {
bufRet.val.buffers(std::move(tmpRetBuffers));
oneReqSucceeds = true;
} else {
allReqsSucceeds = false;
for (size_t b = 0; b < numPushedInflightBuffers; b++) {
StreamBuffer& hBuf = tmpRetBuffers[b];
buffer_handle_t* buffer;
status_t res = states.bufferRecordsIntf.popInflightRequestBuffer(
hBuf.bufferId, &buffer);
if (res != OK) {
SET_ERR("%s: popInflightRequestBuffer failed for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
}
}
for (size_t b = 0; b < numAllocatedBuffers; b++) {
camera_stream_buffer_t& sb = streamBuffers[b];
sb.acquire_fence = -1;
sb.status = CAMERA_BUFFER_STATUS_ERROR;
}
returnOutputBuffers(states.useHalBufManager, /*listener*/nullptr,
streamBuffers.data(), numAllocatedBuffers, 0, /*requested*/false,
/*requestTimeNs*/0, states.sessionStatsBuilder);
}
}
_hidl_cb(allReqsSucceeds ? BufferRequestStatus::OK :
oneReqSucceeds ? BufferRequestStatus::FAILED_PARTIAL :
BufferRequestStatus::FAILED_UNKNOWN,
bufRets);
states.reqBufferIntf.endRequestBuffer();
}
void returnStreamBuffers(ReturnBufferStates& states,
const hardware::hidl_vec<hardware::camera::device::V3_2::StreamBuffer>& buffers) {
if (!states.useHalBufManager) {
ALOGE("%s: Camera %s does not support HAL buffer managerment",
__FUNCTION__, states.cameraId.string());
return;
}
for (const auto& buf : buffers) {
if (buf.bufferId == BUFFER_ID_NO_BUFFER) {
ALOGE("%s: cannot return a buffer without bufferId", __FUNCTION__);
continue;
}
buffer_handle_t* buffer;
status_t res = states.bufferRecordsIntf.popInflightRequestBuffer(buf.bufferId, &buffer);
if (res != OK) {
ALOGE("%s: cannot find in-flight buffer %" PRIu64 " for stream %d",
__FUNCTION__, buf.bufferId, buf.streamId);
continue;
}
camera_stream_buffer_t streamBuffer;
streamBuffer.buffer = buffer;
streamBuffer.status = CAMERA_BUFFER_STATUS_ERROR;
streamBuffer.acquire_fence = -1;
streamBuffer.release_fence = -1;
if (buf.releaseFence == nullptr) {
streamBuffer.release_fence = -1;
} else if (buf.releaseFence->numFds == 1) {
streamBuffer.release_fence = dup(buf.releaseFence->data[0]);
} else {
ALOGE("%s: Invalid release fence, fd count is %d, not 1",
__FUNCTION__, buf.releaseFence->numFds);
continue;
}
sp<Camera3StreamInterface> stream = states.outputStreams.get(buf.streamId);
if (stream == nullptr) {
ALOGE("%s: Output stream id %d not found!", __FUNCTION__, buf.streamId);
continue;
}
streamBuffer.stream = stream->asHalStream();
returnOutputBuffers(states.useHalBufManager, /*listener*/nullptr,
&streamBuffer, /*size*/1, /*timestamp*/ 0, /*requested*/false,
/*requestTimeNs*/0, states.sessionStatsBuilder);
}
}
void flushInflightRequests(FlushInflightReqStates& states) {
ATRACE_CALL();
{ // First return buffers cached in inFlightMap
std::lock_guard<std::mutex> l(states.inflightLock);
for (size_t idx = 0; idx < states.inflightMap.size(); idx++) {
const InFlightRequest &request = states.inflightMap.valueAt(idx);
returnOutputBuffers(
states.useHalBufManager, states.listener,
request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(), 0, /*requested*/true,
request.requestTimeNs, states.sessionStatsBuilder, /*timestampIncreasing*/true,
request.outputSurfaces, request.resultExtras, request.errorBufStrategy);
ALOGW("%s: Frame %d | Timestamp: %" PRId64 ", metadata"
" arrived: %s, buffers left: %d.\n", __FUNCTION__,
states.inflightMap.keyAt(idx), request.shutterTimestamp,
request.haveResultMetadata ? "true" : "false",
request.numBuffersLeft);
}
states.inflightMap.clear();
states.inflightIntf.onInflightMapFlushedLocked();
}
// Then return all inflight buffers not returned by HAL
std::vector<std::pair<int32_t, int32_t>> inflightKeys;
states.flushBufferIntf.getInflightBufferKeys(&inflightKeys);
// Inflight buffers for HAL buffer manager
std::vector<uint64_t> inflightRequestBufferKeys;
states.flushBufferIntf.getInflightRequestBufferKeys(&inflightRequestBufferKeys);
// (streamId, frameNumber, buffer_handle_t*) tuple for all inflight buffers.
// frameNumber will be -1 for buffers from HAL buffer manager
std::vector<std::tuple<int32_t, int32_t, buffer_handle_t*>> inflightBuffers;
inflightBuffers.reserve(inflightKeys.size() + inflightRequestBufferKeys.size());
for (auto& pair : inflightKeys) {
int32_t frameNumber = pair.first;
int32_t streamId = pair.second;
buffer_handle_t* buffer;
status_t res = states.bufferRecordsIntf.popInflightBuffer(frameNumber, streamId, &buffer);
if (res != OK) {
ALOGE("%s: Frame %d: No in-flight buffer for stream %d",
__FUNCTION__, frameNumber, streamId);
continue;
}
inflightBuffers.push_back(std::make_tuple(streamId, frameNumber, buffer));
}
for (auto& bufferId : inflightRequestBufferKeys) {
int32_t streamId = -1;
buffer_handle_t* buffer = nullptr;
status_t res = states.bufferRecordsIntf.popInflightRequestBuffer(
bufferId, &buffer, &streamId);
if (res != OK) {
ALOGE("%s: cannot find in-flight buffer %" PRIu64, __FUNCTION__, bufferId);
continue;
}
inflightBuffers.push_back(std::make_tuple(streamId, /*frameNumber*/-1, buffer));
}
std::vector<sp<Camera3StreamInterface>> streams = states.flushBufferIntf.getAllStreams();
for (auto& tuple : inflightBuffers) {
status_t res = OK;
int32_t streamId = std::get<0>(tuple);
int32_t frameNumber = std::get<1>(tuple);
buffer_handle_t* buffer = std::get<2>(tuple);
camera_stream_buffer_t streamBuffer;
streamBuffer.buffer = buffer;
streamBuffer.status = CAMERA_BUFFER_STATUS_ERROR;
streamBuffer.acquire_fence = -1;
streamBuffer.release_fence = -1;
for (auto& stream : streams) {
if (streamId == stream->getId()) {
// Return buffer to deleted stream
camera_stream* halStream = stream->asHalStream();
streamBuffer.stream = halStream;
switch (halStream->stream_type) {
case CAMERA_STREAM_OUTPUT:
res = stream->returnBuffer(streamBuffer, /*timestamp*/ 0,
/*timestampIncreasing*/true,
std::vector<size_t> (), frameNumber);
if (res != OK) {
ALOGE("%s: Can't return output buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
break;
case CAMERA_STREAM_INPUT:
res = stream->returnInputBuffer(streamBuffer);
if (res != OK) {
ALOGE("%s: Can't return input buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
break;
default: // Bi-direcitonal stream is deprecated
ALOGE("%s: stream %d has unknown stream type %d",
__FUNCTION__, streamId, halStream->stream_type);
break;
}
break;
}
}
}
}
} // camera3
} // namespace android