You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

566 lines
16 KiB

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "util/Util.h"
#include <algorithm>
#include <ostream>
#include <string>
#include <vector>
#include "android-base/stringprintf.h"
#include "androidfw/StringPiece.h"
#include "build/version.h"
#include "text/Unicode.h"
#include "text/Utf8Iterator.h"
#include "util/BigBuffer.h"
#include "util/Maybe.h"
#include "utils/Unicode.h"
using ::aapt::text::Utf8Iterator;
using ::android::StringPiece;
using ::android::StringPiece16;
namespace aapt {
namespace util {
// Package name and shared user id would be used as a part of the file name.
// Limits size to 223 and reserves 32 for the OS.
// See frameworks/base/core/java/android/content/pm/parsing/ParsingPackageUtils.java
constexpr static const size_t kMaxPackageNameSize = 223;
static std::vector<std::string> SplitAndTransform(
const StringPiece& str, char sep, const std::function<char(char)>& f) {
std::vector<std::string> parts;
const StringPiece::const_iterator end = std::end(str);
StringPiece::const_iterator start = std::begin(str);
StringPiece::const_iterator current;
do {
current = std::find(start, end, sep);
parts.emplace_back(str.substr(start, current).to_string());
if (f) {
std::string& part = parts.back();
std::transform(part.begin(), part.end(), part.begin(), f);
}
start = current + 1;
} while (current != end);
return parts;
}
std::vector<std::string> Split(const StringPiece& str, char sep) {
return SplitAndTransform(str, sep, nullptr);
}
std::vector<std::string> SplitAndLowercase(const StringPiece& str, char sep) {
return SplitAndTransform(str, sep, ::tolower);
}
bool StartsWith(const StringPiece& str, const StringPiece& prefix) {
if (str.size() < prefix.size()) {
return false;
}
return str.substr(0, prefix.size()) == prefix;
}
bool EndsWith(const StringPiece& str, const StringPiece& suffix) {
if (str.size() < suffix.size()) {
return false;
}
return str.substr(str.size() - suffix.size(), suffix.size()) == suffix;
}
StringPiece TrimLeadingWhitespace(const StringPiece& str) {
if (str.size() == 0 || str.data() == nullptr) {
return str;
}
const char* start = str.data();
const char* end = start + str.length();
while (start != end && isspace(*start)) {
start++;
}
return StringPiece(start, end - start);
}
StringPiece TrimTrailingWhitespace(const StringPiece& str) {
if (str.size() == 0 || str.data() == nullptr) {
return str;
}
const char* start = str.data();
const char* end = start + str.length();
while (end != start && isspace(*(end - 1))) {
end--;
}
return StringPiece(start, end - start);
}
StringPiece TrimWhitespace(const StringPiece& str) {
if (str.size() == 0 || str.data() == nullptr) {
return str;
}
const char* start = str.data();
const char* end = str.data() + str.length();
while (start != end && isspace(*start)) {
start++;
}
while (end != start && isspace(*(end - 1))) {
end--;
}
return StringPiece(start, end - start);
}
static int IsJavaNameImpl(const StringPiece& str) {
int pieces = 0;
for (const StringPiece& piece : Tokenize(str, '.')) {
pieces++;
if (!text::IsJavaIdentifier(piece)) {
return -1;
}
}
return pieces;
}
bool IsJavaClassName(const StringPiece& str) {
return IsJavaNameImpl(str) >= 2;
}
bool IsJavaPackageName(const StringPiece& str) {
return IsJavaNameImpl(str) >= 1;
}
static int IsAndroidNameImpl(const StringPiece& str) {
int pieces = 0;
for (const StringPiece& piece : Tokenize(str, '.')) {
if (piece.empty()) {
return -1;
}
const char first_character = piece.data()[0];
if (!::isalpha(first_character)) {
return -1;
}
bool valid = std::all_of(piece.begin() + 1, piece.end(), [](const char c) -> bool {
return ::isalnum(c) || c == '_';
});
if (!valid) {
return -1;
}
pieces++;
}
return pieces;
}
bool IsAndroidPackageName(const StringPiece& str) {
if (str.size() > kMaxPackageNameSize) {
return false;
}
return IsAndroidNameImpl(str) > 1 || str == "android";
}
bool IsAndroidSharedUserId(const android::StringPiece& package_name,
const android::StringPiece& shared_user_id) {
if (shared_user_id.size() > kMaxPackageNameSize) {
return false;
}
return shared_user_id.empty() || IsAndroidNameImpl(shared_user_id) > 1 ||
package_name == "android";
}
bool IsAndroidSplitName(const StringPiece& str) {
return IsAndroidNameImpl(str) > 0;
}
Maybe<std::string> GetFullyQualifiedClassName(const StringPiece& package,
const StringPiece& classname) {
if (classname.empty()) {
return {};
}
if (util::IsJavaClassName(classname)) {
return classname.to_string();
}
if (package.empty()) {
return {};
}
std::string result = package.to_string();
if (classname.data()[0] != '.') {
result += '.';
}
result.append(classname.data(), classname.size());
if (!IsJavaClassName(result)) {
return {};
}
return result;
}
const char* GetToolName() {
static const char* const sToolName = "Android Asset Packaging Tool (aapt)";
return sToolName;
}
std::string GetToolFingerprint() {
// DO NOT UPDATE, this is more of a marketing version.
static const char* const sMajorVersion = "2";
// Update minor version whenever a feature or flag is added.
static const char* const sMinorVersion = "19";
// The build id of aapt2 binary.
static const std::string sBuildId = android::build::GetBuildNumber();
return android::base::StringPrintf("%s.%s-%s", sMajorVersion, sMinorVersion, sBuildId.c_str());
}
static size_t ConsumeDigits(const char* start, const char* end) {
const char* c = start;
for (; c != end && *c >= '0' && *c <= '9'; c++) {
}
return static_cast<size_t>(c - start);
}
bool VerifyJavaStringFormat(const StringPiece& str) {
const char* c = str.begin();
const char* const end = str.end();
size_t arg_count = 0;
bool nonpositional = false;
while (c != end) {
if (*c == '%' && c + 1 < end) {
c++;
if (*c == '%' || *c == 'n') {
c++;
continue;
}
arg_count++;
size_t num_digits = ConsumeDigits(c, end);
if (num_digits > 0) {
c += num_digits;
if (c != end && *c != '$') {
// The digits were a size, but not a positional argument.
nonpositional = true;
}
} else if (*c == '<') {
// Reusing last argument, bad idea since positions can be moved around
// during translation.
nonpositional = true;
c++;
// Optionally we can have a $ after
if (c != end && *c == '$') {
c++;
}
} else {
nonpositional = true;
}
// Ignore size, width, flags, etc.
while (c != end && (*c == '-' || *c == '#' || *c == '+' || *c == ' ' ||
*c == ',' || *c == '(' || (*c >= '0' && *c <= '9'))) {
c++;
}
/*
* This is a shortcut to detect strings that are going to Time.format()
* instead of String.format()
*
* Comparison of String.format() and Time.format() args:
*
* String: ABC E GH ST X abcdefgh nost x
* Time: DEFGHKMS W Za d hkm s w yz
*
* Therefore we know it's definitely Time if we have:
* DFKMWZkmwyz
*/
if (c != end) {
switch (*c) {
case 'D':
case 'F':
case 'K':
case 'M':
case 'W':
case 'Z':
case 'k':
case 'm':
case 'w':
case 'y':
case 'z':
return true;
}
}
}
if (c != end) {
c++;
}
}
if (arg_count > 1 && nonpositional) {
// Multiple arguments were specified, but some or all were non positional.
// Translated
// strings may rearrange the order of the arguments, which will break the
// string.
return false;
}
return true;
}
std::string Utf8ToModifiedUtf8(const std::string& utf8) {
// Java uses Modified UTF-8 which only supports the 1, 2, and 3 byte formats of UTF-8. To encode
// 4 byte UTF-8 codepoints, Modified UTF-8 allows the use of surrogate pairs in the same format
// of CESU-8 surrogate pairs. Calculate the size of the utf8 string with all 4 byte UTF-8
// codepoints replaced with 2 3 byte surrogate pairs
size_t modified_size = 0;
const size_t size = utf8.size();
for (size_t i = 0; i < size; i++) {
if (((uint8_t) utf8[i] >> 4) == 0xF) {
modified_size += 6;
i += 3;
} else {
modified_size++;
}
}
// Early out if no 4 byte codepoints are found
if (size == modified_size) {
return utf8;
}
std::string output;
output.reserve(modified_size);
for (size_t i = 0; i < size; i++) {
if (((uint8_t) utf8[i] >> 4) == 0xF) {
int32_t codepoint = utf32_from_utf8_at(utf8.data(), size, i, nullptr);
// Calculate the high and low surrogates as UTF-16 would
int32_t high = ((codepoint - 0x10000) / 0x400) + 0xD800;
int32_t low = ((codepoint - 0x10000) % 0x400) + 0xDC00;
// Encode each surrogate in UTF-8
output.push_back((char) (0xE4 | ((high >> 12) & 0xF)));
output.push_back((char) (0x80 | ((high >> 6) & 0x3F)));
output.push_back((char) (0x80 | (high & 0x3F)));
output.push_back((char) (0xE4 | ((low >> 12) & 0xF)));
output.push_back((char) (0x80 | ((low >> 6) & 0x3F)));
output.push_back((char) (0x80 | (low & 0x3F)));
i += 3;
} else {
output.push_back(utf8[i]);
}
}
return output;
}
std::string ModifiedUtf8ToUtf8(const std::string& modified_utf8) {
// The UTF-8 representation will have a byte length less than or equal to the Modified UTF-8
// representation.
std::string output;
output.reserve(modified_utf8.size());
size_t index = 0;
const size_t modified_size = modified_utf8.size();
while (index < modified_size) {
size_t next_index;
int32_t high_surrogate = utf32_from_utf8_at(modified_utf8.data(), modified_size, index,
&next_index);
if (high_surrogate < 0) {
return {};
}
// Check that the first codepoint is within the high surrogate range
if (high_surrogate >= 0xD800 && high_surrogate <= 0xDB7F) {
int32_t low_surrogate = utf32_from_utf8_at(modified_utf8.data(), modified_size, next_index,
&next_index);
if (low_surrogate < 0) {
return {};
}
// Check that the second codepoint is within the low surrogate range
if (low_surrogate >= 0xDC00 && low_surrogate <= 0xDFFF) {
const char32_t codepoint = (char32_t) (((high_surrogate - 0xD800) * 0x400)
+ (low_surrogate - 0xDC00) + 0x10000);
// The decoded codepoint should represent a 4 byte, UTF-8 character
const size_t utf8_length = (size_t) utf32_to_utf8_length(&codepoint, 1);
if (utf8_length != 4) {
return {};
}
// Encode the UTF-8 representation of the codepoint into the string
char* start = &output[output.size()];
output.resize(output.size() + utf8_length);
utf32_to_utf8((char32_t*) &codepoint, 1, start, utf8_length + 1);
index = next_index;
continue;
}
}
// Append non-surrogate pairs to the output string
for (size_t i = index; i < next_index; i++) {
output.push_back(modified_utf8[i]);
}
index = next_index;
}
return output;
}
std::u16string Utf8ToUtf16(const StringPiece& utf8) {
ssize_t utf16_length = utf8_to_utf16_length(
reinterpret_cast<const uint8_t*>(utf8.data()), utf8.length());
if (utf16_length <= 0) {
return {};
}
std::u16string utf16;
utf16.resize(utf16_length);
utf8_to_utf16(reinterpret_cast<const uint8_t*>(utf8.data()), utf8.length(),
&*utf16.begin(), utf16_length + 1);
return utf16;
}
std::string Utf16ToUtf8(const StringPiece16& utf16) {
ssize_t utf8_length = utf16_to_utf8_length(utf16.data(), utf16.length());
if (utf8_length <= 0) {
return {};
}
std::string utf8;
utf8.resize(utf8_length);
utf16_to_utf8(utf16.data(), utf16.length(), &*utf8.begin(), utf8_length + 1);
return utf8;
}
bool WriteAll(std::ostream& out, const BigBuffer& buffer) {
for (const auto& b : buffer) {
if (!out.write(reinterpret_cast<const char*>(b.buffer.get()), b.size)) {
return false;
}
}
return true;
}
std::unique_ptr<uint8_t[]> Copy(const BigBuffer& buffer) {
std::unique_ptr<uint8_t[]> data =
std::unique_ptr<uint8_t[]>(new uint8_t[buffer.size()]);
uint8_t* p = data.get();
for (const auto& block : buffer) {
memcpy(p, block.buffer.get(), block.size);
p += block.size;
}
return data;
}
typename Tokenizer::iterator& Tokenizer::iterator::operator++() {
const char* start = token_.end();
const char* end = str_.end();
if (start == end) {
end_ = true;
token_.assign(token_.end(), 0);
return *this;
}
start += 1;
const char* current = start;
while (current != end) {
if (*current == separator_) {
token_.assign(start, current - start);
return *this;
}
++current;
}
token_.assign(start, end - start);
return *this;
}
bool Tokenizer::iterator::operator==(const iterator& rhs) const {
// We check equality here a bit differently.
// We need to know that the addresses are the same.
return token_.begin() == rhs.token_.begin() &&
token_.end() == rhs.token_.end() && end_ == rhs.end_;
}
bool Tokenizer::iterator::operator!=(const iterator& rhs) const {
return !(*this == rhs);
}
Tokenizer::iterator::iterator(const StringPiece& s, char sep, const StringPiece& tok, bool end)
: str_(s), separator_(sep), token_(tok), end_(end) {}
Tokenizer::Tokenizer(const StringPiece& str, char sep)
: begin_(++iterator(str, sep, StringPiece(str.begin() - 1, 0), false)),
end_(str, sep, StringPiece(str.end(), 0), true) {}
bool ExtractResFilePathParts(const StringPiece& path, StringPiece* out_prefix,
StringPiece* out_entry, StringPiece* out_suffix) {
const StringPiece res_prefix("res/");
if (!StartsWith(path, res_prefix)) {
return false;
}
StringPiece::const_iterator last_occurence = path.end();
for (auto iter = path.begin() + res_prefix.size(); iter != path.end();
++iter) {
if (*iter == '/') {
last_occurence = iter;
}
}
if (last_occurence == path.end()) {
return false;
}
auto iter = std::find(last_occurence, path.end(), '.');
*out_suffix = StringPiece(iter, path.end() - iter);
*out_entry = StringPiece(last_occurence + 1, iter - last_occurence - 1);
*out_prefix = StringPiece(path.begin(), last_occurence - path.begin() + 1);
return true;
}
StringPiece16 GetString16(const android::ResStringPool& pool, size_t idx) {
if (auto str = pool.stringAt(idx); str.ok()) {
return *str;
}
return StringPiece16();
}
std::string GetString(const android::ResStringPool& pool, size_t idx) {
if (auto str = pool.string8At(idx); str.ok()) {
return ModifiedUtf8ToUtf8(str->to_string());
}
return Utf16ToUtf8(GetString16(pool, idx));
}
} // namespace util
} // namespace aapt