You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

182 lines
6.2 KiB

/*
* Copyright 2016, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bcc/Config.h"
#include "Assert.h"
#include "Log.h"
#include "RSTransforms.h"
#include <cstdlib>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Module.h>
#include <llvm/Pass.h>
#include <llvm/IR/GetElementPtrTypeIterator.h>
namespace { // anonymous namespace
/* This pass translates GEPs that index into structs or arrays of structs to
* GEPs with an int8* operand and a byte offset. This translation is done to
* enforce on x86 the ARM alignment rule that 64-bit scalars be 8-byte aligned
* for structs with such scalars.
*/
class RSX86TranslateGEPPass : public llvm::FunctionPass {
private:
static char ID;
llvm::LLVMContext *Context;
const llvm::DataLayout DL;
// Walk a GEP instruction and return true if any type indexed is a struct.
bool GEPIndexesStructType(const llvm::GetElementPtrInst *GEP) {
for (llvm::gep_type_iterator GTI = gep_type_begin(GEP),
GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
if (llvm::dyn_cast<llvm::StructType>(*GTI)) {
return true;
}
}
return false;
}
// Helper method to add two llvm::Value parameters
llvm::Value *incrementOffset(llvm::Value *accum, llvm::Value *incr,
llvm::Instruction *InsertBefore) {
if (accum == nullptr)
return incr;
return llvm::BinaryOperator::CreateAdd(accum, incr, "", InsertBefore);
}
// Compute the byte offset for a GEP from the GEP's base pointer operand.
// Based on visitGetElementPtrInst in llvm/lib/Transforms/Scalar/SROA.cpp.
// The difference is that this function handles non-constant array indices and
// constructs a sequence of instructions to calculate the offset. These
// instructions might not be the most efficient way to calculate this offset,
// but we rely on subsequent optimizations to do necessary fold/combine.
llvm::Value *computeGEPOffset(llvm::GetElementPtrInst *GEP) {
llvm::Value *Offset = nullptr;
for (llvm::gep_type_iterator GTI = gep_type_begin(GEP),
GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
if (llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(*GTI)) {
llvm::ConstantInt *OpC = llvm::dyn_cast<llvm::ConstantInt>(GTI.getOperand());
if (!OpC) {
ALOGE("Operand for struct type is not constant!");
bccAssert(false);
}
// Offset = Offset + EltOffset for index into a struct
const llvm::StructLayout *SL = DL.getStructLayout(STy);
unsigned EltOffset = SL->getElementOffset(OpC->getZExtValue());
llvm::Value *Incr = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(*Context), EltOffset);
Offset = incrementOffset(Offset, Incr, GEP);
} else {
// Offset = Offset + Index * EltSize for index into an array or a vector
llvm::Value *EltSize = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(*Context),
DL.getTypeAllocSize(GTI.getIndexedType()));
llvm::Value *Incr = llvm::BinaryOperator::CreateMul(
GTI.getOperand() /* Index */,
EltSize, "", GEP);
Offset = incrementOffset(Offset, Incr, GEP);
}
}
return Offset;
}
void translateGEP(llvm::GetElementPtrInst *GEP) {
// cast GEP pointer operand to int8*
llvm::CastInst *Int8Ptr = llvm::CastInst::CreatePointerCast(
GEP->getPointerOperand(),
llvm::Type::getInt8PtrTy(*Context),
"to.int8ptr",
GEP);
llvm::Value *Indices[1] = {computeGEPOffset(GEP)};
// index into the int8* based on the byte offset
llvm::GetElementPtrInst *Int8PtrGEP = llvm::GetElementPtrInst::Create(
llvm::Type::getInt8Ty(*Context), Int8Ptr, llvm::makeArrayRef(Indices),
"int8ptr.indexed", GEP);
Int8PtrGEP->setIsInBounds(GEP->isInBounds());
// cast the indexed int8* back to the type of the original GEP
llvm::CastInst *OutCast = llvm::CastInst::CreatePointerCast(
Int8PtrGEP, GEP->getType(), "to.orig.geptype", GEP);
GEP->replaceAllUsesWith(OutCast);
}
public:
RSX86TranslateGEPPass()
: FunctionPass (ID), DL(X86_CUSTOM_DL_STRING) {
}
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override {
// This pass is run in isolation in a separate pass manager. So setting
// AnalysisUsage is unnecessary. Set just for completeness.
AU.setPreservesCFG();
}
virtual bool runOnFunction(llvm::Function &F) override {
bool changed = false;
Context = &F.getParent()->getContext();
// To avoid updating/deleting instructions while walking a BasicBlock's instructions,
// collect the GEPs that need to be translated and process them
// subsequently.
std::vector<llvm::GetElementPtrInst *> GEPsToHandle;
for (auto &BB: F) {
for (auto &I: BB) {
if (auto *GEP = llvm::dyn_cast<llvm::GetElementPtrInst>(&I)) {
if (GEPIndexesStructType(GEP)) {
GEPsToHandle.push_back(GEP);
}
}
}
}
for (auto *GEP: GEPsToHandle) {
// Translate GEPs and erase them
translateGEP(GEP);
changed = true;
GEP->eraseFromParent();
}
return changed;
}
virtual const char *getPassName() const override {
return "Translate GEPs on structs, intended for x86 target";
}
};
}
char RSX86TranslateGEPPass::ID = 0;
namespace bcc {
llvm::FunctionPass *
createRSX86TranslateGEPPass() {
return new RSX86TranslateGEPPass();
}
}