You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

673 lines
22 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/binder_parcel.h>
#include <android/binder_parcel_platform.h>
#include "parcel_internal.h"
#include "ibinder_internal.h"
#include "status_internal.h"
#include <limits>
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <binder/Parcel.h>
#include <binder/ParcelFileDescriptor.h>
#include <utils/Unicode.h>
using ::android::IBinder;
using ::android::Parcel;
using ::android::sp;
using ::android::status_t;
using ::android::base::unique_fd;
using ::android::os::ParcelFileDescriptor;
template <typename T>
using ContiguousArrayAllocator = bool (*)(void* arrayData, int32_t length, T** outBuffer);
template <typename T>
using ArrayAllocator = bool (*)(void* arrayData, int32_t length);
template <typename T>
using ArrayGetter = T (*)(const void* arrayData, size_t index);
template <typename T>
using ArraySetter = void (*)(void* arrayData, size_t index, T value);
binder_status_t WriteAndValidateArraySize(AParcel* parcel, bool isNullArray, int32_t length) {
// only -1 can be used to represent a null array
if (length < -1) return STATUS_BAD_VALUE;
if (!isNullArray && length < 0) {
LOG(ERROR) << __func__ << ": non-null array but length is " << length;
return STATUS_BAD_VALUE;
}
if (isNullArray && length > 0) {
LOG(ERROR) << __func__ << ": null buffer cannot be for size " << length << " array.";
return STATUS_BAD_VALUE;
}
Parcel* rawParcel = parcel->get();
status_t status = rawParcel->writeInt32(static_cast<int32_t>(length));
if (status != STATUS_OK) return PruneStatusT(status);
return STATUS_OK;
}
template <typename T>
binder_status_t WriteArray(AParcel* parcel, const T* array, int32_t length) {
binder_status_t status = WriteAndValidateArraySize(parcel, array == nullptr, length);
if (status != STATUS_OK) return status;
if (length <= 0) return STATUS_OK;
int32_t size = 0;
if (__builtin_smul_overflow(sizeof(T), length, &size)) return STATUS_NO_MEMORY;
void* const data = parcel->get()->writeInplace(size);
if (data == nullptr) return STATUS_NO_MEMORY;
memcpy(data, array, size);
return STATUS_OK;
}
// Each element in a char16_t array is converted to an int32_t (not packed).
template <>
binder_status_t WriteArray<char16_t>(AParcel* parcel, const char16_t* array, int32_t length) {
binder_status_t status = WriteAndValidateArraySize(parcel, array == nullptr, length);
if (status != STATUS_OK) return status;
if (length <= 0) return STATUS_OK;
int32_t size = 0;
if (__builtin_smul_overflow(sizeof(char16_t), length, &size)) return STATUS_NO_MEMORY;
Parcel* rawParcel = parcel->get();
for (int32_t i = 0; i < length; i++) {
status = rawParcel->writeChar(array[i]);
if (status != STATUS_OK) return PruneStatusT(status);
}
return STATUS_OK;
}
template <typename T>
binder_status_t ReadArray(const AParcel* parcel, void* arrayData,
ContiguousArrayAllocator<T> allocator) {
const Parcel* rawParcel = parcel->get();
int32_t length;
status_t status = rawParcel->readInt32(&length);
if (status != STATUS_OK) return PruneStatusT(status);
if (length < -1) return STATUS_BAD_VALUE;
T* array;
if (!allocator(arrayData, length, &array)) return STATUS_NO_MEMORY;
if (length <= 0) return STATUS_OK;
if (array == nullptr) return STATUS_NO_MEMORY;
int32_t size = 0;
if (__builtin_smul_overflow(sizeof(T), length, &size)) return STATUS_NO_MEMORY;
const void* data = rawParcel->readInplace(size);
if (data == nullptr) return STATUS_NO_MEMORY;
memcpy(array, data, size);
return STATUS_OK;
}
// Each element in a char16_t array is converted to an int32_t (not packed)
template <>
binder_status_t ReadArray<char16_t>(const AParcel* parcel, void* arrayData,
ContiguousArrayAllocator<char16_t> allocator) {
const Parcel* rawParcel = parcel->get();
int32_t length;
status_t status = rawParcel->readInt32(&length);
if (status != STATUS_OK) return PruneStatusT(status);
if (length < -1) return STATUS_BAD_VALUE;
char16_t* array;
if (!allocator(arrayData, length, &array)) return STATUS_NO_MEMORY;
if (length <= 0) return STATUS_OK;
if (array == nullptr) return STATUS_NO_MEMORY;
int32_t size = 0;
if (__builtin_smul_overflow(sizeof(char16_t), length, &size)) return STATUS_NO_MEMORY;
for (int32_t i = 0; i < length; i++) {
status = rawParcel->readChar(array + i);
if (status != STATUS_OK) return PruneStatusT(status);
}
return STATUS_OK;
}
template <typename T>
binder_status_t WriteArray(AParcel* parcel, const void* arrayData, int32_t length,
ArrayGetter<T> getter, status_t (Parcel::*write)(T)) {
// we have no clue if arrayData represents a null object or not, we can only infer from length
bool arrayIsNull = length < 0;
binder_status_t status = WriteAndValidateArraySize(parcel, arrayIsNull, length);
if (status != STATUS_OK) return status;
if (length <= 0) return STATUS_OK;
Parcel* rawParcel = parcel->get();
for (int32_t i = 0; i < length; i++) {
status = (rawParcel->*write)(getter(arrayData, i));
if (status != STATUS_OK) return PruneStatusT(status);
}
return STATUS_OK;
}
template <typename T>
binder_status_t ReadArray(const AParcel* parcel, void* arrayData, ArrayAllocator<T> allocator,
ArraySetter<T> setter, status_t (Parcel::*read)(T*) const) {
const Parcel* rawParcel = parcel->get();
int32_t length;
status_t status = rawParcel->readInt32(&length);
if (status != STATUS_OK) return PruneStatusT(status);
if (length < -1) return STATUS_BAD_VALUE;
if (!allocator(arrayData, length)) return STATUS_NO_MEMORY;
if (length <= 0) return STATUS_OK;
for (int32_t i = 0; i < length; i++) {
T readTarget;
status = (rawParcel->*read)(&readTarget);
if (status != STATUS_OK) return PruneStatusT(status);
setter(arrayData, i, readTarget);
}
return STATUS_OK;
}
void AParcel_delete(AParcel* parcel) {
delete parcel;
}
binder_status_t AParcel_setDataPosition(const AParcel* parcel, int32_t position) {
if (position < 0) {
return STATUS_BAD_VALUE;
}
parcel->get()->setDataPosition(position);
return STATUS_OK;
}
int32_t AParcel_getDataPosition(const AParcel* parcel) {
return parcel->get()->dataPosition();
}
void AParcel_markSensitive(const AParcel* parcel) {
return parcel->get()->markSensitive();
}
binder_status_t AParcel_writeStrongBinder(AParcel* parcel, AIBinder* binder) {
sp<IBinder> writeBinder = binder != nullptr ? binder->getBinder() : nullptr;
return parcel->get()->writeStrongBinder(writeBinder);
}
binder_status_t AParcel_readStrongBinder(const AParcel* parcel, AIBinder** binder) {
sp<IBinder> readBinder = nullptr;
status_t status = parcel->get()->readNullableStrongBinder(&readBinder);
if (status != STATUS_OK) {
return PruneStatusT(status);
}
sp<AIBinder> ret = ABpBinder::lookupOrCreateFromBinder(readBinder);
AIBinder_incStrong(ret.get());
*binder = ret.get();
return PruneStatusT(status);
}
binder_status_t AParcel_writeParcelFileDescriptor(AParcel* parcel, int fd) {
if (fd < 0) {
if (fd != -1) {
return STATUS_UNKNOWN_ERROR;
}
return PruneStatusT(parcel->get()->writeInt32(0)); // null
}
status_t status = parcel->get()->writeInt32(1); // not-null
if (status != STATUS_OK) return PruneStatusT(status);
status = parcel->get()->writeDupParcelFileDescriptor(fd);
return PruneStatusT(status);
}
binder_status_t AParcel_readParcelFileDescriptor(const AParcel* parcel, int* fd) {
std::optional<ParcelFileDescriptor> parcelFd;
status_t status = parcel->get()->readParcelable(&parcelFd);
if (status != STATUS_OK) return PruneStatusT(status);
if (parcelFd) {
*fd = parcelFd->release().release();
} else {
*fd = -1;
}
return STATUS_OK;
}
binder_status_t AParcel_writeStatusHeader(AParcel* parcel, const AStatus* status) {
return PruneStatusT(status->get().writeToParcel(parcel->get()));
}
binder_status_t AParcel_readStatusHeader(const AParcel* parcel, AStatus** status) {
::android::binder::Status bstatus;
binder_status_t ret = PruneStatusT(bstatus.readFromParcel(*parcel->get()));
if (ret == STATUS_OK) {
*status = new AStatus(std::move(bstatus));
}
return PruneStatusT(ret);
}
binder_status_t AParcel_writeString(AParcel* parcel, const char* string, int32_t length) {
if (string == nullptr) {
if (length != -1) {
LOG(WARNING) << __func__ << ": null string must be used with length == -1.";
return STATUS_BAD_VALUE;
}
status_t err = parcel->get()->writeInt32(-1);
return PruneStatusT(err);
}
if (length < 0) {
LOG(WARNING) << __func__ << ": Negative string length: " << length;
return STATUS_BAD_VALUE;
}
const uint8_t* str8 = (uint8_t*)string;
const ssize_t len16 = utf8_to_utf16_length(str8, length);
if (len16 < 0 || len16 >= std::numeric_limits<int32_t>::max()) {
LOG(WARNING) << __func__ << ": Invalid string length: " << len16;
return STATUS_BAD_VALUE;
}
status_t err = parcel->get()->writeInt32(len16);
if (err) {
return PruneStatusT(err);
}
void* str16 = parcel->get()->writeInplace((len16 + 1) * sizeof(char16_t));
if (str16 == nullptr) {
return STATUS_NO_MEMORY;
}
utf8_to_utf16(str8, length, (char16_t*)str16, (size_t)len16 + 1);
return STATUS_OK;
}
binder_status_t AParcel_readString(const AParcel* parcel, void* stringData,
AParcel_stringAllocator allocator) {
size_t len16;
const char16_t* str16 = parcel->get()->readString16Inplace(&len16);
if (str16 == nullptr) {
if (allocator(stringData, -1, nullptr)) {
return STATUS_OK;
}
return STATUS_UNEXPECTED_NULL;
}
ssize_t len8;
if (len16 == 0) {
len8 = 1;
} else {
len8 = utf16_to_utf8_length(str16, len16) + 1;
}
if (len8 <= 0 || len8 > std::numeric_limits<int32_t>::max()) {
LOG(WARNING) << __func__ << ": Invalid string length: " << len8;
return STATUS_BAD_VALUE;
}
char* str8;
bool success = allocator(stringData, len8, &str8);
if (!success || str8 == nullptr) {
LOG(WARNING) << __func__ << ": AParcel_stringAllocator failed to allocate.";
return STATUS_NO_MEMORY;
}
utf16_to_utf8(str16, len16, str8, len8);
return STATUS_OK;
}
binder_status_t AParcel_writeStringArray(AParcel* parcel, const void* arrayData, int32_t length,
AParcel_stringArrayElementGetter getter) {
// we have no clue if arrayData represents a null object or not, we can only infer from length
bool arrayIsNull = length < 0;
binder_status_t status = WriteAndValidateArraySize(parcel, arrayIsNull, length);
if (status != STATUS_OK) return status;
if (length <= 0) return STATUS_OK;
for (int32_t i = 0; i < length; i++) {
int32_t elementLength = 0;
const char* str = getter(arrayData, i, &elementLength);
if (str == nullptr && elementLength != -1) return STATUS_BAD_VALUE;
binder_status_t status = AParcel_writeString(parcel, str, elementLength);
if (status != STATUS_OK) return status;
}
return STATUS_OK;
}
// This implements AParcel_stringAllocator for a string using an array, index, and element
// allocator.
struct StringArrayElementAllocationAdapter {
void* arrayData; // stringData from the NDK
int32_t index; // index into the string array
AParcel_stringArrayElementAllocator elementAllocator;
static bool Allocator(void* stringData, int32_t length, char** buffer) {
StringArrayElementAllocationAdapter* adapter =
static_cast<StringArrayElementAllocationAdapter*>(stringData);
return adapter->elementAllocator(adapter->arrayData, adapter->index, length, buffer);
}
};
binder_status_t AParcel_readStringArray(const AParcel* parcel, void* arrayData,
AParcel_stringArrayAllocator allocator,
AParcel_stringArrayElementAllocator elementAllocator) {
const Parcel* rawParcel = parcel->get();
int32_t length;
status_t status = rawParcel->readInt32(&length);
if (status != STATUS_OK) return PruneStatusT(status);
if (length < -1) return STATUS_BAD_VALUE;
if (!allocator(arrayData, length)) return STATUS_NO_MEMORY;
if (length == -1) return STATUS_OK; // null string array
StringArrayElementAllocationAdapter adapter{
.arrayData = arrayData,
.index = 0,
.elementAllocator = elementAllocator,
};
for (; adapter.index < length; adapter.index++) {
binder_status_t status = AParcel_readString(parcel, static_cast<void*>(&adapter),
StringArrayElementAllocationAdapter::Allocator);
if (status != STATUS_OK) return status;
}
return STATUS_OK;
}
binder_status_t AParcel_writeParcelableArray(AParcel* parcel, const void* arrayData, int32_t length,
AParcel_writeParcelableElement elementWriter) {
// we have no clue if arrayData represents a null object or not, we can only infer from length
bool arrayIsNull = length < 0;
binder_status_t status = WriteAndValidateArraySize(parcel, arrayIsNull, length);
if (status != STATUS_OK) return status;
if (length <= 0) return STATUS_OK;
for (int32_t i = 0; i < length; i++) {
binder_status_t status = elementWriter(parcel, arrayData, i);
if (status != STATUS_OK) return status;
}
return STATUS_OK;
}
binder_status_t AParcel_readParcelableArray(const AParcel* parcel, void* arrayData,
AParcel_parcelableArrayAllocator allocator,
AParcel_readParcelableElement elementReader) {
const Parcel* rawParcel = parcel->get();
int32_t length;
status_t status = rawParcel->readInt32(&length);
if (status != STATUS_OK) return PruneStatusT(status);
if (length < -1) return STATUS_BAD_VALUE;
if (!allocator(arrayData, length)) return STATUS_NO_MEMORY;
if (length == -1) return STATUS_OK; // null array
for (int32_t i = 0; i < length; i++) {
binder_status_t status = elementReader(parcel, arrayData, i);
if (status != STATUS_OK) return status;
}
return STATUS_OK;
}
// See gen_parcel_helper.py. These auto-generated read/write methods use the same types for
// libbinder and this library.
// @START
binder_status_t AParcel_writeInt32(AParcel* parcel, int32_t value) {
status_t status = parcel->get()->writeInt32(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeUint32(AParcel* parcel, uint32_t value) {
status_t status = parcel->get()->writeUint32(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeInt64(AParcel* parcel, int64_t value) {
status_t status = parcel->get()->writeInt64(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeUint64(AParcel* parcel, uint64_t value) {
status_t status = parcel->get()->writeUint64(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeFloat(AParcel* parcel, float value) {
status_t status = parcel->get()->writeFloat(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeDouble(AParcel* parcel, double value) {
status_t status = parcel->get()->writeDouble(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeBool(AParcel* parcel, bool value) {
status_t status = parcel->get()->writeBool(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeChar(AParcel* parcel, char16_t value) {
status_t status = parcel->get()->writeChar(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeByte(AParcel* parcel, int8_t value) {
status_t status = parcel->get()->writeByte(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readInt32(const AParcel* parcel, int32_t* value) {
status_t status = parcel->get()->readInt32(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readUint32(const AParcel* parcel, uint32_t* value) {
status_t status = parcel->get()->readUint32(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readInt64(const AParcel* parcel, int64_t* value) {
status_t status = parcel->get()->readInt64(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readUint64(const AParcel* parcel, uint64_t* value) {
status_t status = parcel->get()->readUint64(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readFloat(const AParcel* parcel, float* value) {
status_t status = parcel->get()->readFloat(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readDouble(const AParcel* parcel, double* value) {
status_t status = parcel->get()->readDouble(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readBool(const AParcel* parcel, bool* value) {
status_t status = parcel->get()->readBool(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readChar(const AParcel* parcel, char16_t* value) {
status_t status = parcel->get()->readChar(value);
return PruneStatusT(status);
}
binder_status_t AParcel_readByte(const AParcel* parcel, int8_t* value) {
status_t status = parcel->get()->readByte(value);
return PruneStatusT(status);
}
binder_status_t AParcel_writeInt32Array(AParcel* parcel, const int32_t* arrayData, int32_t length) {
return WriteArray<int32_t>(parcel, arrayData, length);
}
binder_status_t AParcel_writeUint32Array(AParcel* parcel, const uint32_t* arrayData,
int32_t length) {
return WriteArray<uint32_t>(parcel, arrayData, length);
}
binder_status_t AParcel_writeInt64Array(AParcel* parcel, const int64_t* arrayData, int32_t length) {
return WriteArray<int64_t>(parcel, arrayData, length);
}
binder_status_t AParcel_writeUint64Array(AParcel* parcel, const uint64_t* arrayData,
int32_t length) {
return WriteArray<uint64_t>(parcel, arrayData, length);
}
binder_status_t AParcel_writeFloatArray(AParcel* parcel, const float* arrayData, int32_t length) {
return WriteArray<float>(parcel, arrayData, length);
}
binder_status_t AParcel_writeDoubleArray(AParcel* parcel, const double* arrayData, int32_t length) {
return WriteArray<double>(parcel, arrayData, length);
}
binder_status_t AParcel_writeBoolArray(AParcel* parcel, const void* arrayData, int32_t length,
AParcel_boolArrayGetter getter) {
return WriteArray<bool>(parcel, arrayData, length, getter, &Parcel::writeBool);
}
binder_status_t AParcel_writeCharArray(AParcel* parcel, const char16_t* arrayData, int32_t length) {
return WriteArray<char16_t>(parcel, arrayData, length);
}
binder_status_t AParcel_writeByteArray(AParcel* parcel, const int8_t* arrayData, int32_t length) {
return WriteArray<int8_t>(parcel, arrayData, length);
}
binder_status_t AParcel_readInt32Array(const AParcel* parcel, void* arrayData,
AParcel_int32ArrayAllocator allocator) {
return ReadArray<int32_t>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readUint32Array(const AParcel* parcel, void* arrayData,
AParcel_uint32ArrayAllocator allocator) {
return ReadArray<uint32_t>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readInt64Array(const AParcel* parcel, void* arrayData,
AParcel_int64ArrayAllocator allocator) {
return ReadArray<int64_t>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readUint64Array(const AParcel* parcel, void* arrayData,
AParcel_uint64ArrayAllocator allocator) {
return ReadArray<uint64_t>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readFloatArray(const AParcel* parcel, void* arrayData,
AParcel_floatArrayAllocator allocator) {
return ReadArray<float>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readDoubleArray(const AParcel* parcel, void* arrayData,
AParcel_doubleArrayAllocator allocator) {
return ReadArray<double>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readBoolArray(const AParcel* parcel, void* arrayData,
AParcel_boolArrayAllocator allocator,
AParcel_boolArraySetter setter) {
return ReadArray<bool>(parcel, arrayData, allocator, setter, &Parcel::readBool);
}
binder_status_t AParcel_readCharArray(const AParcel* parcel, void* arrayData,
AParcel_charArrayAllocator allocator) {
return ReadArray<char16_t>(parcel, arrayData, allocator);
}
binder_status_t AParcel_readByteArray(const AParcel* parcel, void* arrayData,
AParcel_byteArrayAllocator allocator) {
return ReadArray<int8_t>(parcel, arrayData, allocator);
}
bool AParcel_getAllowFds(const AParcel* parcel) {
return parcel->get()->allowFds();
}
binder_status_t AParcel_reset(AParcel* parcel) {
parcel->get()->freeData();
return STATUS_OK;
}
int32_t AParcel_getDataSize(const AParcel* parcel) {
return parcel->get()->dataSize();
}
binder_status_t AParcel_appendFrom(const AParcel* from, AParcel* to, int32_t start, int32_t size) {
status_t status = to->get()->appendFrom(from->get(), start, size);
return PruneStatusT(status);
}
AParcel* AParcel_create() {
return new AParcel(nullptr);
}
// @END