You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2475 lines
91 KiB

/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <memory.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/epoll.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/limits.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <unistd.h>
#define LOG_TAG "EventHub"
// #define LOG_NDEBUG 0
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <cutils/properties.h>
#include <input/KeyCharacterMap.h>
#include <input/KeyLayoutMap.h>
#include <input/VirtualKeyMap.h>
#include <openssl/sha.h>
#include <statslog.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <filesystem>
#include <regex>
#include "EventHub.h"
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
using android::base::StringPrintf;
using namespace android::flag_operators;
namespace android {
static const char* DEVICE_PATH = "/dev/input";
// v4l2 devices go directly into /dev
static const char* VIDEO_DEVICE_PATH = "/dev";
static constexpr size_t OBFUSCATED_LENGTH = 8;
static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
// Mapping for input battery class node IDs lookup.
// https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
{{"capacity", InputBatteryClass::CAPACITY},
{"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
{"status", InputBatteryClass::STATUS}};
// Mapping for input battery class node names lookup.
// https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
{{InputBatteryClass::CAPACITY, "capacity"},
{InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
{InputBatteryClass::STATUS, "status"}};
// must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
{{"Unknown", BATTERY_STATUS_UNKNOWN},
{"Charging", BATTERY_STATUS_CHARGING},
{"Discharging", BATTERY_STATUS_DISCHARGING},
{"Not charging", BATTERY_STATUS_NOT_CHARGING},
{"Full", BATTERY_STATUS_FULL}};
// Mapping taken from
// https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
{"Low", 10},
{"Normal", 55},
{"High", 70},
{"Full", 100},
{"Unknown", 50}};
// Mapping for input led class node names lookup.
// https://www.kernel.org/doc/html/latest/leds/leds-class.html
static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
{{"red", InputLightClass::RED},
{"green", InputLightClass::GREEN},
{"blue", InputLightClass::BLUE},
{"global", InputLightClass::GLOBAL},
{"brightness", InputLightClass::BRIGHTNESS},
{"multi_index", InputLightClass::MULTI_INDEX},
{"multi_intensity", InputLightClass::MULTI_INTENSITY},
{"max_brightness", InputLightClass::MAX_BRIGHTNESS}};
// Mapping for input multicolor led class node names.
// https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
{{InputLightClass::BRIGHTNESS, "brightness"},
{InputLightClass::MULTI_INDEX, "multi_index"},
{InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
// Mapping for light color name and the light color
const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
{"green", LightColor::GREEN},
{"blue", LightColor::BLUE}};
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static std::string sha1(const std::string& in) {
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
u_char digest[SHA_DIGEST_LENGTH];
SHA1_Final(digest, &ctx);
std::string out;
for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
out += StringPrintf("%02x", digest[i]);
}
return out;
}
/**
* Return true if name matches "v4l-touch*"
*/
static bool isV4lTouchNode(std::string name) {
return name.find("v4l-touch") != std::string::npos;
}
/**
* Returns true if V4L devices should be scanned.
*
* The system property ro.input.video_enabled can be used to control whether
* EventHub scans and opens V4L devices. As V4L does not support multiple
* clients, EventHub effectively blocks access to these devices when it opens
* them.
*
* Setting this to "false" would prevent any video devices from being discovered and
* associated with input devices.
*
* This property can be used as follows:
* 1. To turn off features that are dependent on video device presence.
* 2. During testing and development, to allow other clients to read video devices
* directly from /dev.
*/
static bool isV4lScanningEnabled() {
return property_get_bool("ro.input.video_enabled", true /* default_value */);
}
static nsecs_t processEventTimestamp(const struct input_event& event) {
// Use the time specified in the event instead of the current time
// so that downstream code can get more accurate estimates of
// event dispatch latency from the time the event is enqueued onto
// the evdev client buffer.
//
// The event's timestamp fortuitously uses the same monotonic clock
// time base as the rest of Android. The kernel event device driver
// (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
// The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
// calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
// system call that also queries ktime_get_ts().
const nsecs_t inputEventTime = seconds_to_nanoseconds(event.time.tv_sec) +
microseconds_to_nanoseconds(event.time.tv_usec);
return inputEventTime;
}
/**
* Returns the sysfs root path of the input device
*
*/
static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
std::error_code errorCode;
// Stat the device path to get the major and minor number of the character file
struct stat statbuf;
if (stat(devicePath, &statbuf) == -1) {
ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
return std::nullopt;
}
unsigned int major_num = major(statbuf.st_rdev);
unsigned int minor_num = minor(statbuf.st_rdev);
// Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
auto sysfsPath = std::filesystem::path("/sys/dev/char/");
sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
// Make sure nothing went wrong in call to canonical()
if (errorCode) {
ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
errorCode.message().c_str());
return std::nullopt;
}
// Continue to go up a directory until we reach a directory named "input"
while (sysfsPath != "/" && sysfsPath.filename() != "input") {
sysfsPath = sysfsPath.parent_path();
}
// Then go up one more and you will be at the sysfs root of the device
sysfsPath = sysfsPath.parent_path();
// Make sure we didn't reach root path and that directory actually exists
if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
if (errorCode) {
ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
errorCode.message().c_str());
}
// Not found
return std::nullopt;
}
return sysfsPath;
}
/**
* Returns the list of files under a specified path.
*/
static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
std::vector<std::filesystem::path> nodes;
std::error_code errorCode;
auto iter = std::filesystem::directory_iterator(path, errorCode);
while (!errorCode && iter != std::filesystem::directory_iterator()) {
nodes.push_back(iter->path());
iter++;
}
return nodes;
}
/**
* Returns the list of files under a specified directory in a sysfs path.
* Example:
* findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
* in the sysfs path.
*/
static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
SysfsClass clazz) {
std::string nodeStr = NamedEnum::string(clazz);
std::for_each(nodeStr.begin(), nodeStr.end(),
[](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
std::vector<std::filesystem::path> nodes;
for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
nodes = allFilesInPath(path / nodeStr);
}
return nodes;
}
static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
std::filesystem::path path) {
std::string indexStr;
if (!base::ReadFileToString(path, &indexStr)) {
return std::nullopt;
}
// Parse the multi color LED index file, refer to kernel docs
// leds/leds-class-multicolor.html
std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
std::smatch results;
std::array<LightColor, COLOR_NUM> colors;
if (!std::regex_match(indexStr, results, indexPattern)) {
return std::nullopt;
}
for (size_t i = 1; i < results.size(); i++) {
const auto it = LIGHT_COLORS.find(results[i].str());
if (it != LIGHT_COLORS.end()) {
// intensities.emplace(it->second, 0);
colors[i - 1] = it->second;
}
}
return colors;
}
// --- Global Functions ---
Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis, Flags<InputDeviceClass> deviceClasses) {
// Touch devices get dibs on touch-related axes.
if (deviceClasses.test(InputDeviceClass::TOUCH)) {
switch (axis) {
case ABS_X:
case ABS_Y:
case ABS_PRESSURE:
case ABS_TOOL_WIDTH:
case ABS_DISTANCE:
case ABS_TILT_X:
case ABS_TILT_Y:
case ABS_MT_SLOT:
case ABS_MT_TOUCH_MAJOR:
case ABS_MT_TOUCH_MINOR:
case ABS_MT_WIDTH_MAJOR:
case ABS_MT_WIDTH_MINOR:
case ABS_MT_ORIENTATION:
case ABS_MT_POSITION_X:
case ABS_MT_POSITION_Y:
case ABS_MT_TOOL_TYPE:
case ABS_MT_BLOB_ID:
case ABS_MT_TRACKING_ID:
case ABS_MT_PRESSURE:
case ABS_MT_DISTANCE:
return InputDeviceClass::TOUCH;
}
}
if (deviceClasses.test(InputDeviceClass::SENSOR)) {
switch (axis) {
case ABS_X:
case ABS_Y:
case ABS_Z:
case ABS_RX:
case ABS_RY:
case ABS_RZ:
return InputDeviceClass::SENSOR;
}
}
// External stylus gets the pressure axis
if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
if (axis == ABS_PRESSURE) {
return InputDeviceClass::EXTERNAL_STYLUS;
}
}
// Joystick devices get the rest.
return deviceClasses & InputDeviceClass::JOYSTICK;
}
// --- EventHub::Device ---
EventHub::Device::Device(int fd, int32_t id, const std::string& path,
const InputDeviceIdentifier& identifier)
: fd(fd),
id(id),
path(path),
identifier(identifier),
classes(0),
configuration(nullptr),
virtualKeyMap(nullptr),
ffEffectPlaying(false),
ffEffectId(-1),
associatedDevice(nullptr),
controllerNumber(0),
enabled(true),
isVirtual(fd < 0) {}
EventHub::Device::~Device() {
close();
}
void EventHub::Device::close() {
if (fd >= 0) {
::close(fd);
fd = -1;
}
}
status_t EventHub::Device::enable() {
fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
if (fd < 0) {
ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
return -errno;
}
enabled = true;
return OK;
}
status_t EventHub::Device::disable() {
close();
enabled = false;
return OK;
}
bool EventHub::Device::hasValidFd() const {
return !isVirtual && enabled;
}
const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
return keyMap.keyCharacterMap;
}
template <std::size_t N>
status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
if (!hasValidFd()) {
return BAD_VALUE;
}
if ((_IOC_SIZE(ioctlCode) == 0)) {
ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
}
typename BitArray<N>::Buffer buffer;
status_t ret = ioctl(fd, ioctlCode, buffer.data());
bitArray.loadFromBuffer(buffer);
return ret;
}
void EventHub::Device::configureFd() {
// Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
if (classes.test(InputDeviceClass::KEYBOARD)) {
// Disable kernel key repeat since we handle it ourselves
unsigned int repeatRate[] = {0, 0};
if (ioctl(fd, EVIOCSREP, repeatRate)) {
ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
}
}
// Tell the kernel that we want to use the monotonic clock for reporting timestamps
// associated with input events. This is important because the input system
// uses the timestamps extensively and assumes they were recorded using the monotonic
// clock.
int clockId = CLOCK_MONOTONIC;
if (classes.test(InputDeviceClass::SENSOR)) {
// Each new sensor event should use the same time base as
// SystemClock.elapsedRealtimeNanos().
clockId = CLOCK_BOOTTIME;
}
bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
}
bool EventHub::Device::hasKeycodeLocked(int keycode) const {
if (!keyMap.haveKeyLayout()) {
return false;
}
std::vector<int32_t> scanCodes;
keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
int32_t sc = scanCodes[i];
if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
return true;
}
}
return false;
}
void EventHub::Device::loadConfigurationLocked() {
configurationFile =
getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
InputDeviceConfigurationFileType::
CONFIGURATION);
if (configurationFile.empty()) {
ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
} else {
android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
PropertyMap::load(configurationFile.c_str());
if (!propertyMap.ok()) {
ALOGE("Error loading input device configuration file for device '%s'. "
"Using default configuration.",
identifier.name.c_str());
} else {
configuration = std::move(*propertyMap);
}
}
}
bool EventHub::Device::loadVirtualKeyMapLocked() {
// The virtual key map is supplied by the kernel as a system board property file.
std::string propPath = "/sys/board_properties/virtualkeys.";
propPath += identifier.getCanonicalName();
if (access(propPath.c_str(), R_OK)) {
return false;
}
virtualKeyMap = VirtualKeyMap::load(propPath);
return virtualKeyMap != nullptr;
}
status_t EventHub::Device::loadKeyMapLocked() {
return keyMap.load(identifier, configuration.get());
}
bool EventHub::Device::isExternalDeviceLocked() {
if (configuration) {
bool value;
if (configuration->tryGetProperty(String8("device.internal"), value)) {
return !value;
}
}
return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
}
bool EventHub::Device::deviceHasMicLocked() {
if (configuration) {
bool value;
if (configuration->tryGetProperty(String8("audio.mic"), value)) {
return value;
}
}
return false;
}
void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
int32_t sc;
if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_LED;
ev.code = sc;
ev.value = on ? 1 : 0;
ssize_t nWrite;
do {
nWrite = write(fd, &ev, sizeof(struct input_event));
} while (nWrite == -1 && errno == EINTR);
}
}
void EventHub::Device::setLedForControllerLocked() {
for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
}
}
status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
if (!keyMap.haveKeyLayout()) {
return NAME_NOT_FOUND;
}
int32_t scanCode;
if (keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
if (scanCode >= 0 && scanCode <= LED_MAX && ledBitmask.test(scanCode)) {
*outScanCode = scanCode;
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
// Check the sysfs path for any input device batteries, returns true if battery found.
bool EventHub::AssociatedDevice::configureBatteryLocked() {
nextBatteryId = 0;
// Check if device has any battery.
const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
for (const auto& nodePath : paths) {
RawBatteryInfo info;
info.id = ++nextBatteryId;
info.path = nodePath;
info.name = nodePath.filename();
// Scan the path for all the files
// Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
const auto& files = allFilesInPath(nodePath);
for (const auto& file : files) {
const auto it = BATTERY_CLASSES.find(file.filename().string());
if (it != BATTERY_CLASSES.end()) {
info.flags |= it->second;
}
}
batteryInfos.insert_or_assign(info.id, info);
ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
}
return !batteryInfos.empty();
}
// Check the sysfs path for any input device lights, returns true if lights found.
bool EventHub::AssociatedDevice::configureLightsLocked() {
nextLightId = 0;
// Check if device has any lights.
const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
for (const auto& nodePath : paths) {
RawLightInfo info;
info.id = ++nextLightId;
info.path = nodePath;
info.name = nodePath.filename();
info.maxBrightness = std::nullopt;
size_t nameStart = info.name.rfind(":");
if (nameStart != std::string::npos) {
// Trim the name to color name
info.name = info.name.substr(nameStart + 1);
// Set InputLightClass flag for colors
const auto it = LIGHT_CLASSES.find(info.name);
if (it != LIGHT_CLASSES.end()) {
info.flags |= it->second;
}
}
// Scan the path for all the files
// Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
const auto& files = allFilesInPath(nodePath);
for (const auto& file : files) {
const auto it = LIGHT_CLASSES.find(file.filename().string());
if (it != LIGHT_CLASSES.end()) {
info.flags |= it->second;
// If the node has maximum brightness, read it
if (it->second == InputLightClass::MAX_BRIGHTNESS) {
std::string str;
if (base::ReadFileToString(file, &str)) {
info.maxBrightness = std::stoi(str);
}
}
}
}
lightInfos.insert_or_assign(info.id, info);
ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
}
return !lightInfos.empty();
}
/**
* Get the capabilities for the current process.
* Crashes the system if unable to create / check / destroy the capabilities object.
*/
class Capabilities final {
public:
explicit Capabilities() {
mCaps = cap_get_proc();
LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
}
/**
* Check whether the current process has a specific capability
* in the set of effective capabilities.
* Return CAP_SET if the process has the requested capability
* Return CAP_CLEAR otherwise.
*/
cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
cap_flag_value_t value;
const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
return value;
}
~Capabilities() {
const int result = cap_free(mCaps);
LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
}
private:
cap_t mCaps;
};
static void ensureProcessCanBlockSuspend() {
Capabilities capabilities;
const bool canBlockSuspend =
capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
"Input must be able to block suspend to properly process events");
}
// --- EventHub ---
const int EventHub::EPOLL_MAX_EVENTS;
EventHub::EventHub(void)
: mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
mNextDeviceId(1),
mControllerNumbers(),
mNeedToSendFinishedDeviceScan(false),
mNeedToReopenDevices(false),
mNeedToScanDevices(true),
mPendingEventCount(0),
mPendingEventIndex(0),
mPendingINotify(false) {
ensureProcessCanBlockSuspend();
mEpollFd = epoll_create1(EPOLL_CLOEXEC);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
mINotifyFd = inotify_init();
mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(mInputWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
strerror(errno));
if (isV4lScanningEnabled()) {
mVideoWd = inotify_add_watch(mINotifyFd, VIDEO_DEVICE_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(mVideoWd < 0, "Could not register INotify for %s: %s",
VIDEO_DEVICE_PATH, strerror(errno));
} else {
mVideoWd = -1;
ALOGI("Video device scanning disabled");
}
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = mINotifyFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
int wakeFds[2];
result = pipe(wakeFds);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
mWakeReadPipeFd = wakeFds[0];
mWakeWritePipeFd = wakeFds[1];
result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
errno);
result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
errno);
eventItem.data.fd = mWakeReadPipeFd;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
errno);
}
EventHub::~EventHub(void) {
closeAllDevicesLocked();
::close(mEpollFd);
::close(mINotifyFd);
::close(mWakeReadPipeFd);
::close(mWakeWritePipeFd);
}
InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->identifier : InputDeviceIdentifier();
}
Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->classes : Flags<InputDeviceClass>(0);
}
int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->controllerNumber : 0;
}
void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->configuration) {
*outConfiguration = *device->configuration;
} else {
outConfiguration->clear();
}
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
if (axis >= 0 && axis <= ABS_MAX) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
struct input_absinfo info;
if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
device->identifier.name.c_str(), device->fd, errno);
return -errno;
}
if (info.minimum != info.maximum) {
outAxisInfo->valid = true;
outAxisInfo->minValue = info.minimum;
outAxisInfo->maxValue = info.maximum;
outAxisInfo->flat = info.flat;
outAxisInfo->fuzz = info.fuzz;
outAxisInfo->resolution = info.resolution;
}
return OK;
}
}
return -1;
}
bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
if (axis >= 0 && axis <= REL_MAX) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->relBitmask.test(axis) : false;
}
return false;
}
bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
? device->propBitmask.test(property)
: false;
}
bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
? device->mscBitmask.test(mscEvent)
: false;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() && device->keyBitmask.test(scanCode)) {
if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
std::vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
if (scanCodes.size() != 0) {
if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
for (size_t i = 0; i < scanCodes.size(); i++) {
int32_t sc = scanCodes[i];
if (sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
if (sw >= 0 && sw <= SW_MAX) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() && device->swBitmask.test(sw)) {
if (device->readDeviceBitMask(EVIOCGSW(0), device->swState) >= 0) {
return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
*outValue = 0;
if (axis >= 0 && axis <= ABS_MAX) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
struct input_absinfo info;
if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
device->identifier.name.c_str(), device->fd, errno);
return -errno;
}
*outValue = info.value;
return OK;
}
}
return -1;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
uint8_t* outFlags) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->keyMap.haveKeyLayout()) {
std::vector<int32_t> scanCodes;
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
scanCodes.clear();
status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCodes[codeIndex],
&scanCodes);
if (!err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (device->keyBitmask.test(scanCodes[sc])) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
return true;
}
return false;
}
status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
status_t status = NAME_NOT_FOUND;
if (device != nullptr) {
// Check the key character map first.
const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
if (kcm) {
if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
*outFlags = 0;
status = NO_ERROR;
}
}
// Check the key layout next.
if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
status = NO_ERROR;
}
}
if (status == NO_ERROR) {
if (kcm) {
kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
} else {
*outMetaState = metaState;
}
}
}
if (status != NO_ERROR) {
*outKeycode = 0;
*outFlags = 0;
*outMetaState = metaState;
}
return status;
}
status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
int32_t absCode) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->keyMap.haveKeyLayout()) {
return device->keyMap.keyLayoutMap->mapSensor(absCode);
}
return Errorf("Device not found or device has no key layout.");
}
// Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
// associated with the device ID. Returns an empty map if no miscellaneous device found.
const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
int32_t deviceId) const {
static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->associatedDevice) {
return EMPTY_BATTERY_INFO;
}
return device->associatedDevice->batteryInfos;
}
const std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) {
std::scoped_lock _l(mLock);
std::vector<int32_t> batteryIds;
for (const auto [id, info] : getBatteryInfoLocked(deviceId)) {
batteryIds.push_back(id);
}
return batteryIds;
}
std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId, int32_t batteryId) {
std::scoped_lock _l(mLock);
const auto infos = getBatteryInfoLocked(deviceId);
auto it = infos.find(batteryId);
if (it != infos.end()) {
return it->second;
}
return std::nullopt;
}
// Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
// with the deivice ID. Returns an empty map if no miscellaneous device found.
const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
int32_t deviceId) const {
static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->associatedDevice) {
return EMPTY_LIGHT_INFO;
}
return device->associatedDevice->lightInfos;
}
const std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) {
std::scoped_lock _l(mLock);
std::vector<int32_t> lightIds;
for (const auto [id, info] : getLightInfoLocked(deviceId)) {
lightIds.push_back(id);
}
return lightIds;
}
std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto it = infos.find(lightId);
if (it != infos.end()) {
return it->second;
}
return std::nullopt;
}
std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto it = infos.find(lightId);
if (it == infos.end()) {
return std::nullopt;
}
std::string buffer;
if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
&buffer)) {
return std::nullopt;
}
return std::stoi(buffer);
}
std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
int32_t deviceId, int32_t lightId) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto lightIt = infos.find(lightId);
if (lightIt == infos.end()) {
return std::nullopt;
}
auto ret =
getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
if (!ret.has_value()) {
return std::nullopt;
}
std::array<LightColor, COLOR_NUM> colors = ret.value();
std::string intensityStr;
if (!base::ReadFileToString(lightIt->second.path /
LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
&intensityStr)) {
return std::nullopt;
}
// Intensity node outputs 3 color values
std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
std::smatch results;
if (!std::regex_match(intensityStr, results, intensityPattern)) {
return std::nullopt;
}
std::unordered_map<LightColor, int32_t> intensities;
for (size_t i = 1; i < results.size(); i++) {
int value = std::stoi(results[i].str());
intensities.emplace(colors[i - 1], value);
}
return intensities;
}
void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto lightIt = infos.find(lightId);
if (lightIt == infos.end()) {
ALOGE("%s lightId %d not found ", __func__, lightId);
return;
}
if (!base::WriteStringToFile(std::to_string(brightness),
lightIt->second.path /
LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
ALOGE("Can not write to file, error: %s", strerror(errno));
}
}
void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
std::unordered_map<LightColor, int32_t> intensities) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto lightIt = infos.find(lightId);
if (lightIt == infos.end()) {
ALOGE("Light Id %d does not exist.", lightId);
return;
}
auto ret =
getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
if (!ret.has_value()) {
return;
}
std::array<LightColor, COLOR_NUM> colors = ret.value();
std::string rgbStr;
for (size_t i = 0; i < COLOR_NUM; i++) {
auto it = intensities.find(colors[i]);
if (it != intensities.end()) {
rgbStr += std::to_string(it->second);
// Insert space between colors
if (i < COLOR_NUM - 1) {
rgbStr += " ";
}
}
}
// Append new line
rgbStr += "\n";
if (!base::WriteStringToFile(rgbStr,
lightIt->second.path /
LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
ALOGE("Can not write to file, error: %s", strerror(errno));
}
}
void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
std::scoped_lock _l(mLock);
mExcludedDevices = devices;
}
bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
return device->keyBitmask.test(scanCode);
}
return false;
}
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
int32_t sc;
if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
return device->ledBitmask.test(sc);
}
return false;
}
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd()) {
device->setLedStateLocked(led, on);
}
}
void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->virtualKeyMap) {
const std::vector<VirtualKeyDefinition> virtualKeys =
device->virtualKeyMap->getVirtualKeys();
outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
}
}
const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr) {
return device->getKeyCharacterMap();
}
return nullptr;
}
bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && map != nullptr && device->keyMap.keyCharacterMap != nullptr) {
device->keyMap.keyCharacterMap->combine(*map);
device->keyMap.keyCharacterMapFile = device->keyMap.keyCharacterMap->getLoadFileName();
return true;
}
return false;
}
static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
std::string rawDescriptor;
rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
// TODO add handling for USB devices to not uniqueify kbs that show up twice
if (!identifier.uniqueId.empty()) {
rawDescriptor += "uniqueId:";
rawDescriptor += identifier.uniqueId;
} else if (identifier.nonce != 0) {
rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
}
if (identifier.vendor == 0 && identifier.product == 0) {
// If we don't know the vendor and product id, then the device is probably
// built-in so we need to rely on other information to uniquely identify
// the input device. Usually we try to avoid relying on the device name or
// location but for built-in input device, they are unlikely to ever change.
if (!identifier.name.empty()) {
rawDescriptor += "name:";
rawDescriptor += identifier.name;
} else if (!identifier.location.empty()) {
rawDescriptor += "location:";
rawDescriptor += identifier.location;
}
}
identifier.descriptor = sha1(rawDescriptor);
return rawDescriptor;
}
void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
// Compute a device descriptor that uniquely identifies the device.
// The descriptor is assumed to be a stable identifier. Its value should not
// change between reboots, reconnections, firmware updates or new releases
// of Android. In practice we sometimes get devices that cannot be uniquely
// identified. In this case we enforce uniqueness between connected devices.
// Ideally, we also want the descriptor to be short and relatively opaque.
identifier.nonce = 0;
std::string rawDescriptor = generateDescriptor(identifier);
if (identifier.uniqueId.empty()) {
// If it didn't have a unique id check for conflicts and enforce
// uniqueness if necessary.
while (getDeviceByDescriptorLocked(identifier.descriptor) != nullptr) {
identifier.nonce++;
rawDescriptor = generateDescriptor(identifier);
}
}
ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
identifier.descriptor.c_str());
}
void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd()) {
ff_effect effect;
memset(&effect, 0, sizeof(effect));
effect.type = FF_RUMBLE;
effect.id = device->ffEffectId;
// evdev FF_RUMBLE effect only supports two channels of vibration.
effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
effect.replay.length = element.duration.count();
effect.replay.delay = 0;
if (ioctl(device->fd, EVIOCSFF, &effect)) {
ALOGW("Could not upload force feedback effect to device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
device->ffEffectId = effect.id;
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_FF;
ev.code = device->ffEffectId;
ev.value = 1;
if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
ALOGW("Could not start force feedback effect on device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
device->ffEffectPlaying = true;
}
}
void EventHub::cancelVibrate(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd()) {
if (device->ffEffectPlaying) {
device->ffEffectPlaying = false;
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_FF;
ev.code = device->ffEffectId;
ev.value = 0;
if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
ALOGW("Could not stop force feedback effect on device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
}
}
}
std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) {
std::scoped_lock _l(mLock);
std::vector<int32_t> vibrators;
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() &&
device->classes.test(InputDeviceClass::VIBRATOR)) {
vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
}
return vibrators;
}
EventHub::Device* EventHub::getDeviceByDescriptorLocked(const std::string& descriptor) const {
for (const auto& [id, device] : mDevices) {
if (descriptor == device->identifier.descriptor) {
return device.get();
}
}
return nullptr;
}
EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
deviceId = mBuiltInKeyboardId;
}
const auto& it = mDevices.find(deviceId);
return it != mDevices.end() ? it->second.get() : nullptr;
}
EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
for (const auto& [id, device] : mDevices) {
if (device->path == devicePath) {
return device.get();
}
}
return nullptr;
}
/**
* The file descriptor could be either input device, or a video device (associated with a
* specific input device). Check both cases here, and return the device that this event
* belongs to. Caller can compare the fd's once more to determine event type.
* Looks through all input devices, and only attached video devices. Unattached video
* devices are ignored.
*/
EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
for (const auto& [id, device] : mDevices) {
if (device->fd == fd) {
// This is an input device event
return device.get();
}
if (device->videoDevice && device->videoDevice->getFd() == fd) {
// This is a video device event
return device.get();
}
}
// We do not check mUnattachedVideoDevices here because they should not participate in epoll,
// and therefore should never be looked up by fd.
return nullptr;
}
std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
std::scoped_lock _l(mLock);
const auto infos = getBatteryInfoLocked(deviceId);
auto it = infos.find(batteryId);
if (it == infos.end()) {
return std::nullopt;
}
std::string buffer;
// Some devices report battery capacity as an integer through the "capacity" file
if (base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
&buffer)) {
return std::stoi(base::Trim(buffer));
}
// Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
// These values are taken from kernel source code include/linux/power_supply.h
if (base::ReadFileToString(it->second.path /
BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
&buffer)) {
// Remove any white space such as trailing new line
const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
if (levelIt != BATTERY_LEVEL.end()) {
return levelIt->second;
}
}
return std::nullopt;
}
std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
std::scoped_lock _l(mLock);
const auto infos = getBatteryInfoLocked(deviceId);
auto it = infos.find(batteryId);
if (it == infos.end()) {
return std::nullopt;
}
std::string buffer;
if (!base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::STATUS),
&buffer)) {
ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
return std::nullopt;
}
// Remove white space like trailing new line
const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
if (statusIt != BATTERY_STATUS.end()) {
return statusIt->second;
}
return std::nullopt;
}
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
ALOG_ASSERT(bufferSize >= 1);
std::scoped_lock _l(mLock);
struct input_event readBuffer[bufferSize];
RawEvent* event = buffer;
size_t capacity = bufferSize;
bool awoken = false;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (mNeedToReopenDevices) {
mNeedToReopenDevices = false;
ALOGI("Reopening all input devices due to a configuration change.");
closeAllDevicesLocked();
mNeedToScanDevices = true;
break; // return to the caller before we actually rescan
}
// Report any devices that had last been added/removed.
for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
std::unique_ptr<Device> device = std::move(*it);
ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
event->when = now;
event->deviceId = (device->id == mBuiltInKeyboardId)
? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
: device->id;
event->type = DEVICE_REMOVED;
event += 1;
it = mClosingDevices.erase(it);
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevicesLocked();
mNeedToSendFinishedDeviceScan = true;
}
while (!mOpeningDevices.empty()) {
std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
mOpeningDevices.pop_back();
ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_ADDED;
event += 1;
// Try to find a matching video device by comparing device names
for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
it++) {
std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
if (tryAddVideoDeviceLocked(*device, videoDevice)) {
// videoDevice was transferred to 'device'
it = mUnattachedVideoDevices.erase(it);
break;
}
}
auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
if (!inserted) {
ALOGW("Device id %d exists, replaced.", device->id);
}
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
event->when = now;
event->type = FINISHED_DEVICE_SCAN;
event += 1;
if (--capacity == 0) {
break;
}
}
// Grab the next input event.
bool deviceChanged = false;
while (mPendingEventIndex < mPendingEventCount) {
const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
if (eventItem.data.fd == mINotifyFd) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
if (eventItem.data.fd == mWakeReadPipeFd) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char wakeReadBuffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
Device* device = getDeviceByFdLocked(eventItem.data.fd);
if (device == nullptr) {
ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
eventItem.data.fd);
ALOG_ASSERT(!DEBUG);
continue;
}
if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
if (eventItem.events & EPOLLIN) {
size_t numFrames = device->videoDevice->readAndQueueFrames();
if (numFrames == 0) {
ALOGE("Received epoll event for video device %s, but could not read frame",
device->videoDevice->getName().c_str());
}
} else if (eventItem.events & EPOLLHUP) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
ALOGI("Removing video device %s due to epoll hang-up event.",
device->videoDevice->getName().c_str());
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->videoDevice->getName().c_str());
ALOG_ASSERT(!DEBUG);
}
continue;
}
// This must be an input event
if (eventItem.events & EPOLLIN) {
int32_t readSize =
read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
// Device was removed before INotify noticed.
ALOGW("could not get event, removed? (fd: %d size: %" PRId32
" bufferSize: %zu capacity: %zu errno: %d)\n",
device->fd, readSize, bufferSize, capacity, errno);
deviceChanged = true;
closeDeviceLocked(*device);
} else if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
ALOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
ALOGE("could not get event (wrong size: %d)", readSize);
} else {
int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
struct input_event& iev = readBuffer[i];
event->when = processEventTimestamp(iev);
event->readTime = systemTime(SYSTEM_TIME_MONOTONIC);
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
capacity -= 1;
}
if (capacity == 0) {
// The result buffer is full. Reset the pending event index
// so we will try to read the device again on the next iteration.
mPendingEventIndex -= 1;
break;
}
}
} else if (eventItem.events & EPOLLHUP) {
ALOGI("Removing device %s due to epoll hang-up event.",
device->identifier.name.c_str());
deviceChanged = true;
closeDeviceLocked(*device);
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->identifier.name.c_str());
}
}
// readNotify() will modify the list of devices so this must be done after
// processing all other events to ensure that we read all remaining events
// before closing the devices.
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
}
// Report added or removed devices immediately.
if (deviceChanged) {
continue;
}
// Return now if we have collected any events or if we were explicitly awoken.
if (event != buffer || awoken) {
break;
}
// Poll for events.
// When a device driver has pending (unread) events, it acquires
// a kernel wake lock. Once the last pending event has been read, the device
// driver will release the kernel wake lock, but the epoll will hold the wakelock,
// since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
// is called again for the same fd that produced the event.
// Thus the system can only sleep if there are no events pending or
// currently being processed.
//
// The timeout is advisory only. If the device is asleep, it will not wake just to
// service the timeout.
mPendingEventIndex = 0;
mLock.unlock(); // release lock before poll
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mLock.lock(); // reacquire lock after poll
if (pollResult == 0) {
// Timed out.
mPendingEventCount = 0;
break;
}
if (pollResult < 0) {
// An error occurred.
mPendingEventCount = 0;
// Sleep after errors to avoid locking up the system.
// Hopefully the error is transient.
if (errno != EINTR) {
ALOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
} else {
// Some events occurred.
mPendingEventCount = size_t(pollResult);
}
}
// All done, return the number of events we read.
return event - buffer;
}
std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->videoDevice) {
return {};
}
return device->videoDevice->consumeFrames();
}
void EventHub::wake() {
ALOGV("wake() called");
ssize_t nWrite;
do {
nWrite = write(mWakeWritePipeFd, "W", 1);
} while (nWrite == -1 && errno == EINTR);
if (nWrite != 1 && errno != EAGAIN) {
ALOGW("Could not write wake signal: %s", strerror(errno));
}
}
void EventHub::scanDevicesLocked() {
status_t result = scanDirLocked(DEVICE_PATH);
if (result < 0) {
ALOGE("scan dir failed for %s", DEVICE_PATH);
}
if (isV4lScanningEnabled()) {
result = scanVideoDirLocked(VIDEO_DEVICE_PATH);
if (result != OK) {
ALOGE("scan video dir failed for %s", VIDEO_DEVICE_PATH);
}
}
if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
createVirtualKeyboardLocked();
}
}
// ----------------------------------------------------------------------------
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, //
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, //
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, //
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, //
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, //
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, //
};
status_t EventHub::registerFdForEpoll(int fd) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = fd;
if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
return -errno;
}
return OK;
}
status_t EventHub::unregisterFdFromEpoll(int fd) {
if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
return -errno;
}
return OK;
}
status_t EventHub::registerDeviceForEpollLocked(Device& device) {
status_t result = registerFdForEpoll(device.fd);
if (result != OK) {
ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
return result;
}
if (device.videoDevice) {
registerVideoDeviceForEpollLocked(*device.videoDevice);
}
return result;
}
void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
status_t result = registerFdForEpoll(videoDevice.getFd());
if (result != OK) {
ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
}
}
status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
if (device.hasValidFd()) {
status_t result = unregisterFdFromEpoll(device.fd);
if (result != OK) {
ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
return result;
}
}
if (device.videoDevice) {
unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
}
return OK;
}
void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
if (videoDevice.hasValidFd()) {
status_t result = unregisterFdFromEpoll(videoDevice.getFd());
if (result != OK) {
ALOGW("Could not remove video device fd from epoll for device: %s",
videoDevice.getName().c_str());
}
}
}
void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
Flags<InputDeviceClass> classes) {
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
identifier.uniqueId.size());
std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
SHA256_Final(digest.data(), &ctx);
std::string obfuscatedId;
for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
obfuscatedId += StringPrintf("%02x", digest[i]);
}
android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
identifier.vendor, identifier.product, identifier.version,
identifier.bus, obfuscatedId.c_str(), classes.get());
}
void EventHub::openDeviceLocked(const std::string& devicePath) {
// If an input device happens to register around the time when EventHub's constructor runs, it
// is possible that the same input event node (for example, /dev/input/event3) will be noticed
// in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
// from getting registered, ensure that this path is not already covered by an existing device.
for (const auto& [deviceId, device] : mDevices) {
if (device->path == devicePath) {
return; // device was already registered
}
}
char buffer[80];
ALOGV("Opening device: %s", devicePath.c_str());
int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
if (fd < 0) {
ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
return;
}
InputDeviceIdentifier identifier;
// Get device name.
if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.name = buffer;
}
// Check to see if the device is on our excluded list
for (size_t i = 0; i < mExcludedDevices.size(); i++) {
const std::string& item = mExcludedDevices[i];
if (identifier.name == item) {
ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
close(fd);
return;
}
}
// Get device driver version.
int driverVersion;
if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
close(fd);
return;
}
// Get device identifier.
struct input_id inputId;
if (ioctl(fd, EVIOCGID, &inputId)) {
ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
close(fd);
return;
}
identifier.bus = inputId.bustype;
identifier.product = inputId.product;
identifier.vendor = inputId.vendor;
identifier.version = inputId.version;
// Get device physical location.
if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
// fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.location = buffer;
}
// Get device unique id.
if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
// fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.uniqueId = buffer;
}
// Fill in the descriptor.
assignDescriptorLocked(identifier);
// Allocate device. (The device object takes ownership of the fd at this point.)
int32_t deviceId = mNextDeviceId++;
std::unique_ptr<Device> device = std::make_unique<Device>(fd, deviceId, devicePath, identifier);
ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
ALOGV(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
identifier.bus, identifier.vendor, identifier.product, identifier.version);
ALOGV(" name: \"%s\"\n", identifier.name.c_str());
ALOGV(" location: \"%s\"\n", identifier.location.c_str());
ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
driverVersion & 0xff);
// Load the configuration file for the device.
device->loadConfigurationLocked();
bool hasBattery = false;
bool hasLights = false;
// Check the sysfs root path
std::optional<std::filesystem::path> sysfsRootPath = getSysfsRootPath(devicePath.c_str());
if (sysfsRootPath.has_value()) {
std::shared_ptr<AssociatedDevice> associatedDevice;
for (const auto& [id, dev] : mDevices) {
if (device->identifier.descriptor == dev->identifier.descriptor &&
!dev->associatedDevice) {
associatedDevice = dev->associatedDevice;
}
}
if (!associatedDevice) {
associatedDevice = std::make_shared<AssociatedDevice>(sysfsRootPath.value());
}
hasBattery = associatedDevice->configureBatteryLocked();
hasLights = associatedDevice->configureLightsLocked();
device->associatedDevice = associatedDevice;
}
// Figure out the kinds of events the device reports.
device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
// See if this is a keyboard. Ignore everything in the button range except for
// joystick and gamepad buttons which are handled like keyboards for the most part.
bool haveKeyboardKeys =
device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
if (haveKeyboardKeys || haveGamepadButtons) {
device->classes |= InputDeviceClass::KEYBOARD;
}
// See if this is a cursor device such as a trackball or mouse.
if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
device->relBitmask.test(REL_Y)) {
device->classes |= InputDeviceClass::CURSOR;
}
// See if this is a rotary encoder type device.
String8 deviceType = String8();
if (device->configuration &&
device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
if (!deviceType.compare(String8("rotaryEncoder"))) {
device->classes |= InputDeviceClass::ROTARY_ENCODER;
}
}
// See if this is a touch pad.
// Is this a new modern multi-touch driver?
if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
// Some joysticks such as the PS3 controller report axes that conflict
// with the ABS_MT range. Try to confirm that the device really is
// a touch screen.
if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
}
// Is this an old style single-touch driver?
} else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
device->absBitmask.test(ABS_Y)) {
device->classes |= InputDeviceClass::TOUCH;
// Is this a BT stylus?
} else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
!device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
// Keyboard will try to claim some of the buttons but we really want to reserve those so we
// can fuse it with the touch screen data, so just take them back. Note this means an
// external stylus cannot also be a keyboard device.
device->classes &= ~InputDeviceClass::KEYBOARD;
}
// See if this device is a joystick.
// Assumes that joysticks always have gamepad buttons in order to distinguish them
// from other devices such as accelerometers that also have absolute axes.
if (haveGamepadButtons) {
auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
for (int i = 0; i <= ABS_MAX; i++) {
if (device->absBitmask.test(i) &&
(getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
device->classes = assumedClasses;
break;
}
}
}
// Check whether this device is an accelerometer.
if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
device->classes |= InputDeviceClass::SENSOR;
}
// Check whether this device has switches.
for (int i = 0; i <= SW_MAX; i++) {
if (device->swBitmask.test(i)) {
device->classes |= InputDeviceClass::SWITCH;
break;
}
}
// Check whether this device supports the vibrator.
if (device->ffBitmask.test(FF_RUMBLE)) {
device->classes |= InputDeviceClass::VIBRATOR;
}
// Configure virtual keys.
if ((device->classes.test(InputDeviceClass::TOUCH))) {
// Load the virtual keys for the touch screen, if any.
// We do this now so that we can make sure to load the keymap if necessary.
bool success = device->loadVirtualKeyMapLocked();
if (success) {
device->classes |= InputDeviceClass::KEYBOARD;
}
}
// Load the key map.
// We need to do this for joysticks too because the key layout may specify axes, and for
// sensor as well because the key layout may specify the axes to sensor data mapping.
status_t keyMapStatus = NAME_NOT_FOUND;
if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
InputDeviceClass::SENSOR)) {
// Load the keymap for the device.
keyMapStatus = device->loadKeyMapLocked();
}
// Configure the keyboard, gamepad or virtual keyboard.
if (device->classes.test(InputDeviceClass::KEYBOARD)) {
// Register the keyboard as a built-in keyboard if it is eligible.
if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
&device->keyMap)) {
mBuiltInKeyboardId = device->id;
}
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (device->hasKeycodeLocked(AKEYCODE_Q)) {
device->classes |= InputDeviceClass::ALPHAKEY;
}
// See if this device has a DPAD.
if (device->hasKeycodeLocked(AKEYCODE_DPAD_UP) &&
device->hasKeycodeLocked(AKEYCODE_DPAD_DOWN) &&
device->hasKeycodeLocked(AKEYCODE_DPAD_LEFT) &&
device->hasKeycodeLocked(AKEYCODE_DPAD_RIGHT) &&
device->hasKeycodeLocked(AKEYCODE_DPAD_CENTER)) {
device->classes |= InputDeviceClass::DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES) / sizeof(GAMEPAD_KEYCODES[0]); i++) {
if (device->hasKeycodeLocked(GAMEPAD_KEYCODES[i])) {
device->classes |= InputDeviceClass::GAMEPAD;
break;
}
}
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == Flags<InputDeviceClass>(0)) {
ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
device->identifier.name.c_str());
return;
}
// Classify InputDeviceClass::BATTERY.
if (hasBattery) {
device->classes |= InputDeviceClass::BATTERY;
}
// Classify InputDeviceClass::LIGHT.
if (hasLights) {
device->classes |= InputDeviceClass::LIGHT;
}
// Determine whether the device has a mic.
if (device->deviceHasMicLocked()) {
device->classes |= InputDeviceClass::MIC;
}
// Determine whether the device is external or internal.
if (device->isExternalDeviceLocked()) {
device->classes |= InputDeviceClass::EXTERNAL;
}
if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
device->classes.test(InputDeviceClass::GAMEPAD)) {
device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
device->setLedForControllerLocked();
}
if (registerDeviceForEpollLocked(*device) != OK) {
return;
}
device->configureFd();
ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
"configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
device->classes.string().c_str(), device->configurationFile.c_str(),
device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
toString(mBuiltInKeyboardId == deviceId));
addDeviceLocked(std::move(device));
}
void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
if (!videoDevice) {
ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
return;
}
// Transfer ownership of this video device to a matching input device
for (const auto& [id, device] : mDevices) {
if (tryAddVideoDeviceLocked(*device, videoDevice)) {
return; // 'device' now owns 'videoDevice'
}
}
// Couldn't find a matching input device, so just add it to a temporary holding queue.
// A matching input device may appear later.
ALOGI("Adding video device %s to list of unattached video devices",
videoDevice->getName().c_str());
mUnattachedVideoDevices.push_back(std::move(videoDevice));
}
bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
std::unique_ptr<TouchVideoDevice>& videoDevice) {
if (videoDevice->getName() != device.identifier.name) {
return false;
}
device.videoDevice = std::move(videoDevice);
if (device.enabled) {
registerVideoDeviceForEpollLocked(*device.videoDevice);
}
return true;
}
bool EventHub::isDeviceEnabled(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return false;
}
return device->enabled;
}
status_t EventHub::enableDevice(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (device->enabled) {
ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
return OK;
}
status_t result = device->enable();
if (result != OK) {
ALOGE("Failed to enable device %" PRId32, deviceId);
return result;
}
device->configureFd();
return registerDeviceForEpollLocked(*device);
}
status_t EventHub::disableDevice(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (!device->enabled) {
ALOGW("Duplicate call to %s, input device already disabled", __func__);
return OK;
}
unregisterDeviceFromEpollLocked(*device);
return device->disable();
}
void EventHub::createVirtualKeyboardLocked() {
InputDeviceIdentifier identifier;
identifier.name = "Virtual";
identifier.uniqueId = "<virtual>";
assignDescriptorLocked(identifier);
std::unique_ptr<Device> device =
std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
identifier);
device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
device->loadKeyMapLocked();
addDeviceLocked(std::move(device));
}
void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
mOpeningDevices.push_back(std::move(device));
}
int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
if (mControllerNumbers.isFull()) {
ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
name.c_str());
return 0;
}
// Since the controller number 0 is reserved for non-controllers, translate all numbers up by
// one
return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
}
void EventHub::releaseControllerNumberLocked(int32_t num) {
if (num > 0) {
mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
}
}
void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
Device* device = getDeviceByPathLocked(devicePath);
if (device != nullptr) {
closeDeviceLocked(*device);
return;
}
ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
}
/**
* Find the video device by filename, and close it.
* The video device is closed by path during an inotify event, where we don't have the
* additional context about the video device fd, or the associated input device.
*/
void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
// A video device may be owned by an existing input device, or it may be stored in
// the mUnattachedVideoDevices queue. Check both locations.
for (const auto& [id, device] : mDevices) {
if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
return;
}
}
mUnattachedVideoDevices
.erase(std::remove_if(mUnattachedVideoDevices.begin(), mUnattachedVideoDevices.end(),
[&devicePath](
const std::unique_ptr<TouchVideoDevice>& videoDevice) {
return videoDevice->getPath() == devicePath;
}),
mUnattachedVideoDevices.end());
}
void EventHub::closeAllDevicesLocked() {
mUnattachedVideoDevices.clear();
while (!mDevices.empty()) {
closeDeviceLocked(*(mDevices.begin()->second));
}
}
void EventHub::closeDeviceLocked(Device& device) {
ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
if (device.id == mBuiltInKeyboardId) {
ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device.path.c_str(), mBuiltInKeyboardId);
mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
}
unregisterDeviceFromEpollLocked(device);
if (device.videoDevice) {
// This must be done after the video device is removed from epoll
mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
}
releaseControllerNumberLocked(device.controllerNumber);
device.controllerNumber = 0;
device.close();
mClosingDevices.push_back(std::move(mDevices[device.id]));
mDevices.erase(device.id);
}
status_t EventHub::readNotifyLocked() {
int res;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event* event;
ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
res = read(mINotifyFd, event_buf, sizeof(event_buf));
if (res < (int)sizeof(*event)) {
if (errno == EINTR) return 0;
ALOGW("could not get event, %s\n", strerror(errno));
return -1;
}
while (res >= (int)sizeof(*event)) {
event = (struct inotify_event*)(event_buf + event_pos);
if (event->len) {
if (event->wd == mInputWd) {
std::string filename = std::string(DEVICE_PATH) + "/" + event->name;
if (event->mask & IN_CREATE) {
openDeviceLocked(filename);
} else {
ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
closeDeviceByPathLocked(filename);
}
} else if (event->wd == mVideoWd) {
if (isV4lTouchNode(event->name)) {
std::string filename = std::string(VIDEO_DEVICE_PATH) + "/" + event->name;
if (event->mask & IN_CREATE) {
openVideoDeviceLocked(filename);
} else {
ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
closeVideoDeviceByPathLocked(filename);
}
}
} else {
LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event->wd);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
return 0;
}
status_t EventHub::scanDirLocked(const std::string& dirname) {
for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
openDeviceLocked(entry.path());
}
return 0;
}
/**
* Look for all dirname/v4l-touch* devices, and open them.
*/
status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
if (isV4lTouchNode(entry.path())) {
ALOGI("Found touch video device %s", entry.path().c_str());
openVideoDeviceLocked(entry.path());
}
}
return OK;
}
void EventHub::requestReopenDevices() {
ALOGV("requestReopenDevices() called");
std::scoped_lock _l(mLock);
mNeedToReopenDevices = true;
}
void EventHub::dump(std::string& dump) {
dump += "Event Hub State:\n";
{ // acquire lock
std::scoped_lock _l(mLock);
dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
dump += INDENT "Devices:\n";
for (const auto& [id, device] : mDevices) {
if (mBuiltInKeyboardId == device->id) {
dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
device->id, device->identifier.name.c_str());
} else {
dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
device->identifier.name.c_str());
}
dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
"product=0x%04x, version=0x%04x\n",
device->identifier.bus, device->identifier.vendor,
device->identifier.product, device->identifier.version);
dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
device->keyMap.keyLayoutFile.c_str());
dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
device->keyMap.keyCharacterMapFile.c_str());
dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
device->configurationFile.c_str());
dump += INDENT3 "VideoDevice: ";
if (device->videoDevice) {
dump += device->videoDevice->dump() + "\n";
} else {
dump += "<none>\n";
}
}
dump += INDENT "Unattached video devices:\n";
for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
dump += INDENT2 + videoDevice->dump() + "\n";
}
if (mUnattachedVideoDevices.empty()) {
dump += INDENT2 "<none>\n";
}
} // release lock
}
void EventHub::monitor() {
// Acquire and release the lock to ensure that the event hub has not deadlocked.
std::unique_lock<std::mutex> lock(mLock);
}
}; // namespace android