You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

961 lines
33 KiB

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Macros.h"
#include "InputReader.h"
#include <android-base/stringprintf.h>
#include <errno.h>
#include <input/Keyboard.h>
#include <input/VirtualKeyMap.h>
#include <inttypes.h>
#include <limits.h>
#include <log/log.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <utils/Errors.h>
#include <utils/Thread.h>
#include "InputDevice.h"
using android::base::StringPrintf;
namespace android {
// --- InputReader ---
InputReader::InputReader(std::shared_ptr<EventHubInterface> eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputListenerInterface>& listener)
: mContext(this),
mEventHub(eventHub),
mPolicy(policy),
mGlobalMetaState(0),
mLedMetaState(AMETA_NUM_LOCK_ON),
mGeneration(1),
mNextInputDeviceId(END_RESERVED_ID),
mDisableVirtualKeysTimeout(LLONG_MIN),
mNextTimeout(LLONG_MAX),
mConfigurationChangesToRefresh(0) {
mQueuedListener = new QueuedInputListener(listener);
{ // acquire lock
std::scoped_lock _l(mLock);
refreshConfigurationLocked(0);
updateGlobalMetaStateLocked();
} // release lock
}
InputReader::~InputReader() {}
status_t InputReader::start() {
if (mThread) {
return ALREADY_EXISTS;
}
mThread = std::make_unique<InputThread>(
"InputReader", [this]() { loopOnce(); }, [this]() { mEventHub->wake(); });
return OK;
}
status_t InputReader::stop() {
if (mThread && mThread->isCallingThread()) {
ALOGE("InputReader cannot be stopped from its own thread!");
return INVALID_OPERATION;
}
mThread.reset();
return OK;
}
void InputReader::loopOnce() {
int32_t oldGeneration;
int32_t timeoutMillis;
bool inputDevicesChanged = false;
std::vector<InputDeviceInfo> inputDevices;
{ // acquire lock
std::scoped_lock _l(mLock);
oldGeneration = mGeneration;
timeoutMillis = -1;
uint32_t changes = mConfigurationChangesToRefresh;
if (changes) {
mConfigurationChangesToRefresh = 0;
timeoutMillis = 0;
refreshConfigurationLocked(changes);
} else if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
}
} // release lock
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
std::scoped_lock _l(mLock);
mReaderIsAliveCondition.notify_all();
if (count) {
processEventsLocked(mEventBuffer, count);
}
if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (now >= mNextTimeout) {
#if DEBUG_RAW_EVENTS
ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
#endif
mNextTimeout = LLONG_MAX;
timeoutExpiredLocked(now);
}
}
if (oldGeneration != mGeneration) {
inputDevicesChanged = true;
inputDevices = getInputDevicesLocked();
}
} // release lock
// Send out a message that the describes the changed input devices.
if (inputDevicesChanged) {
mPolicy->notifyInputDevicesChanged(inputDevices);
}
// Flush queued events out to the listener.
// This must happen outside of the lock because the listener could potentially call
// back into the InputReader's methods, such as getScanCodeState, or become blocked
// on another thread similarly waiting to acquire the InputReader lock thereby
// resulting in a deadlock. This situation is actually quite plausible because the
// listener is actually the input dispatcher, which calls into the window manager,
// which occasionally calls into the input reader.
mQueuedListener->flush();
}
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
for (const RawEvent* rawEvent = rawEvents; count;) {
int32_t type = rawEvent->type;
size_t batchSize = 1;
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
int32_t deviceId = rawEvent->deviceId;
while (batchSize < count) {
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT ||
rawEvent[batchSize].deviceId != deviceId) {
break;
}
batchSize += 1;
}
#if DEBUG_RAW_EVENTS
ALOGD("BatchSize: %zu Count: %zu", batchSize, count);
#endif
processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
} else {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
default:
ALOG_ASSERT(false); // can't happen
break;
}
}
count -= batchSize;
rawEvent += batchSize;
}
}
void InputReader::addDeviceLocked(nsecs_t when, int32_t eventHubId) {
if (mDevices.find(eventHubId) != mDevices.end()) {
ALOGW("Ignoring spurious device added event for eventHubId %d.", eventHubId);
return;
}
InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(eventHubId);
std::shared_ptr<InputDevice> device = createDeviceLocked(eventHubId, identifier);
device->configure(when, &mConfig, 0);
device->reset(when);
if (device->isIgnored()) {
ALOGI("Device added: id=%d, eventHubId=%d, name='%s', descriptor='%s' "
"(ignored non-input device)",
device->getId(), eventHubId, identifier.name.c_str(), identifier.descriptor.c_str());
} else {
ALOGI("Device added: id=%d, eventHubId=%d, name='%s', descriptor='%s',sources=0x%08x",
device->getId(), eventHubId, identifier.name.c_str(), identifier.descriptor.c_str(),
device->getSources());
}
mDevices.emplace(eventHubId, device);
// Add device to device to EventHub ids map.
const auto mapIt = mDeviceToEventHubIdsMap.find(device);
if (mapIt == mDeviceToEventHubIdsMap.end()) {
std::vector<int32_t> ids = {eventHubId};
mDeviceToEventHubIdsMap.emplace(device, ids);
} else {
mapIt->second.push_back(eventHubId);
}
bumpGenerationLocked();
if (device->getClasses().test(InputDeviceClass::EXTERNAL_STYLUS)) {
notifyExternalStylusPresenceChangedLocked();
}
// Sensor input device is noisy, to save power disable it by default.
// Input device is classified as SENSOR when any sub device is a SENSOR device, check Eventhub
// device class to disable SENSOR sub device only.
if (mEventHub->getDeviceClasses(eventHubId).test(InputDeviceClass::SENSOR)) {
mEventHub->disableDevice(eventHubId);
}
}
void InputReader::removeDeviceLocked(nsecs_t when, int32_t eventHubId) {
auto deviceIt = mDevices.find(eventHubId);
if (deviceIt == mDevices.end()) {
ALOGW("Ignoring spurious device removed event for eventHubId %d.", eventHubId);
return;
}
std::shared_ptr<InputDevice> device = std::move(deviceIt->second);
mDevices.erase(deviceIt);
// Erase device from device to EventHub ids map.
auto mapIt = mDeviceToEventHubIdsMap.find(device);
if (mapIt != mDeviceToEventHubIdsMap.end()) {
std::vector<int32_t>& eventHubIds = mapIt->second;
eventHubIds.erase(std::remove_if(eventHubIds.begin(), eventHubIds.end(),
[eventHubId](int32_t eId) { return eId == eventHubId; }),
eventHubIds.end());
if (eventHubIds.size() == 0) {
mDeviceToEventHubIdsMap.erase(mapIt);
}
}
bumpGenerationLocked();
if (device->isIgnored()) {
ALOGI("Device removed: id=%d, eventHubId=%d, name='%s', descriptor='%s' "
"(ignored non-input device)",
device->getId(), eventHubId, device->getName().c_str(),
device->getDescriptor().c_str());
} else {
ALOGI("Device removed: id=%d, eventHubId=%d, name='%s', descriptor='%s', sources=0x%08x",
device->getId(), eventHubId, device->getName().c_str(),
device->getDescriptor().c_str(), device->getSources());
}
device->removeEventHubDevice(eventHubId);
if (device->getClasses().test(InputDeviceClass::EXTERNAL_STYLUS)) {
notifyExternalStylusPresenceChangedLocked();
}
if (device->hasEventHubDevices()) {
device->configure(when, &mConfig, 0);
}
device->reset(when);
}
std::shared_ptr<InputDevice> InputReader::createDeviceLocked(
int32_t eventHubId, const InputDeviceIdentifier& identifier) {
auto deviceIt = std::find_if(mDevices.begin(), mDevices.end(), [identifier](auto& devicePair) {
return devicePair.second->getDescriptor().size() && identifier.descriptor.size() &&
devicePair.second->getDescriptor() == identifier.descriptor;
});
std::shared_ptr<InputDevice> device;
if (deviceIt != mDevices.end()) {
device = deviceIt->second;
} else {
int32_t deviceId = (eventHubId < END_RESERVED_ID) ? eventHubId : nextInputDeviceIdLocked();
device = std::make_shared<InputDevice>(&mContext, deviceId, bumpGenerationLocked(),
identifier);
}
device->addEventHubDevice(eventHubId);
return device;
}
void InputReader::processEventsForDeviceLocked(int32_t eventHubId, const RawEvent* rawEvents,
size_t count) {
auto deviceIt = mDevices.find(eventHubId);
if (deviceIt == mDevices.end()) {
ALOGW("Discarding event for unknown eventHubId %d.", eventHubId);
return;
}
std::shared_ptr<InputDevice>& device = deviceIt->second;
if (device->isIgnored()) {
// ALOGD("Discarding event for ignored deviceId %d.", deviceId);
return;
}
device->process(rawEvents, count);
}
InputDevice* InputReader::findInputDeviceLocked(int32_t deviceId) {
auto deviceIt =
std::find_if(mDevices.begin(), mDevices.end(), [deviceId](const auto& devicePair) {
return devicePair.second->getId() == deviceId;
});
if (deviceIt != mDevices.end()) {
return deviceIt->second.get();
}
return nullptr;
}
void InputReader::timeoutExpiredLocked(nsecs_t when) {
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
if (!device->isIgnored()) {
device->timeoutExpired(when);
}
}
}
int32_t InputReader::nextInputDeviceIdLocked() {
return ++mNextInputDeviceId;
}
void InputReader::handleConfigurationChangedLocked(nsecs_t when) {
// Reset global meta state because it depends on the list of all configured devices.
updateGlobalMetaStateLocked();
// Enqueue configuration changed.
NotifyConfigurationChangedArgs args(mContext.getNextId(), when);
mQueuedListener->notifyConfigurationChanged(&args);
}
void InputReader::refreshConfigurationLocked(uint32_t changes) {
mPolicy->getReaderConfiguration(&mConfig);
mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
if (!changes) return;
ALOGI("Reconfiguring input devices, changes=%s",
InputReaderConfiguration::changesToString(changes).c_str());
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO) {
updatePointerDisplayLocked();
}
if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) {
mEventHub->requestReopenDevices();
} else {
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
device->configure(now, &mConfig, changes);
}
}
if (changes & InputReaderConfiguration::CHANGE_POINTER_CAPTURE) {
const NotifyPointerCaptureChangedArgs args(mContext.getNextId(), now,
mConfig.pointerCapture);
mQueuedListener->notifyPointerCaptureChanged(&args);
}
}
void InputReader::updateGlobalMetaStateLocked() {
mGlobalMetaState = 0;
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
mGlobalMetaState |= device->getMetaState();
}
}
int32_t InputReader::getGlobalMetaStateLocked() {
return mGlobalMetaState;
}
void InputReader::updateLedMetaStateLocked(int32_t metaState) {
mLedMetaState = metaState;
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
device->updateLedState(false);
}
}
int32_t InputReader::getLedMetaStateLocked() {
return mLedMetaState;
}
void InputReader::notifyExternalStylusPresenceChangedLocked() {
refreshConfigurationLocked(InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE);
}
void InputReader::getExternalStylusDevicesLocked(std::vector<InputDeviceInfo>& outDevices) {
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
if (device->getClasses().test(InputDeviceClass::EXTERNAL_STYLUS) && !device->isIgnored()) {
outDevices.push_back(device->getDeviceInfo());
}
}
}
void InputReader::dispatchExternalStylusStateLocked(const StylusState& state) {
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
device->updateExternalStylusState(state);
}
}
void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) {
mDisableVirtualKeysTimeout = time;
}
bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now, int32_t keyCode, int32_t scanCode) {
if (now < mDisableVirtualKeysTimeout) {
ALOGI("Dropping virtual key from device because virtual keys are "
"temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d",
(mDisableVirtualKeysTimeout - now) * 0.000001, keyCode, scanCode);
return true;
} else {
return false;
}
}
std::shared_ptr<PointerControllerInterface> InputReader::getPointerControllerLocked(
int32_t deviceId) {
std::shared_ptr<PointerControllerInterface> controller = mPointerController.lock();
if (controller == nullptr) {
controller = mPolicy->obtainPointerController(deviceId);
mPointerController = controller;
updatePointerDisplayLocked();
}
return controller;
}
void InputReader::updatePointerDisplayLocked() {
std::shared_ptr<PointerControllerInterface> controller = mPointerController.lock();
if (controller == nullptr) {
return;
}
std::optional<DisplayViewport> viewport =
mConfig.getDisplayViewportById(mConfig.defaultPointerDisplayId);
if (!viewport) {
ALOGW("Can't find the designated viewport with ID %" PRId32 " to update cursor input "
"mapper. Fall back to default display",
mConfig.defaultPointerDisplayId);
viewport = mConfig.getDisplayViewportById(ADISPLAY_ID_DEFAULT);
}
if (!viewport) {
ALOGE("Still can't find a viable viewport to update cursor input mapper. Skip setting it to"
" PointerController.");
return;
}
controller->setDisplayViewport(*viewport);
}
void InputReader::fadePointerLocked() {
std::shared_ptr<PointerControllerInterface> controller = mPointerController.lock();
if (controller != nullptr) {
controller->fade(PointerControllerInterface::Transition::GRADUAL);
}
}
void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) {
if (when < mNextTimeout) {
mNextTimeout = when;
mEventHub->wake();
}
}
int32_t InputReader::bumpGenerationLocked() {
return ++mGeneration;
}
std::vector<InputDeviceInfo> InputReader::getInputDevices() const {
std::scoped_lock _l(mLock);
return getInputDevicesLocked();
}
std::vector<InputDeviceInfo> InputReader::getInputDevicesLocked() const {
std::vector<InputDeviceInfo> outInputDevices;
outInputDevices.reserve(mDeviceToEventHubIdsMap.size());
for (const auto& [device, eventHubIds] : mDeviceToEventHubIdsMap) {
if (!device->isIgnored()) {
outInputDevices.push_back(device->getDeviceInfo());
}
}
return outInputDevices;
}
int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, int32_t keyCode) {
std::scoped_lock _l(mLock);
return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState);
}
int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, int32_t scanCode) {
std::scoped_lock _l(mLock);
return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState);
}
int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
std::scoped_lock _l(mLock);
return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState);
}
int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code,
GetStateFunc getStateFunc) {
int32_t result = AKEY_STATE_UNKNOWN;
if (deviceId >= 0) {
InputDevice* device = findInputDeviceLocked(deviceId);
if (device && !device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result = (device->*getStateFunc)(sourceMask, code);
}
} else {
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
if (!device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
// If any device reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that
// value. Otherwise, return AKEY_STATE_UP as long as one device reports it.
int32_t currentResult = (device.get()->*getStateFunc)(sourceMask, code);
if (currentResult >= AKEY_STATE_DOWN) {
return currentResult;
} else if (currentResult == AKEY_STATE_UP) {
result = currentResult;
}
}
}
}
return result;
}
void InputReader::toggleCapsLockState(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (!device) {
ALOGW("Ignoring toggleCapsLock for unknown deviceId %" PRId32 ".", deviceId);
return;
}
if (device->isIgnored()) {
return;
}
device->updateMetaState(AKEYCODE_CAPS_LOCK);
}
bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
std::scoped_lock _l(mLock);
memset(outFlags, 0, numCodes);
return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags);
}
bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask,
size_t numCodes, const int32_t* keyCodes,
uint8_t* outFlags) {
bool result = false;
if (deviceId >= 0) {
InputDevice* device = findInputDeviceLocked(deviceId);
if (device && !device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result = device->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
}
} else {
for (auto& devicePair : mDevices) {
std::shared_ptr<InputDevice>& device = devicePair.second;
if (!device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result |= device->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
}
}
}
return result;
}
void InputReader::requestRefreshConfiguration(uint32_t changes) {
std::scoped_lock _l(mLock);
if (changes) {
bool needWake = !mConfigurationChangesToRefresh;
mConfigurationChangesToRefresh |= changes;
if (needWake) {
mEventHub->wake();
}
}
}
void InputReader::vibrate(int32_t deviceId, const VibrationSequence& sequence, ssize_t repeat,
int32_t token) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
device->vibrate(sequence, repeat, token);
}
}
void InputReader::cancelVibrate(int32_t deviceId, int32_t token) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
device->cancelVibrate(token);
}
}
bool InputReader::isVibrating(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->isVibrating();
}
return false;
}
std::vector<int32_t> InputReader::getVibratorIds(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->getVibratorIds();
}
return {};
}
void InputReader::disableSensor(int32_t deviceId, InputDeviceSensorType sensorType) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
device->disableSensor(sensorType);
}
}
bool InputReader::enableSensor(int32_t deviceId, InputDeviceSensorType sensorType,
std::chrono::microseconds samplingPeriod,
std::chrono::microseconds maxBatchReportLatency) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->enableSensor(sensorType, samplingPeriod, maxBatchReportLatency);
}
return false;
}
void InputReader::flushSensor(int32_t deviceId, InputDeviceSensorType sensorType) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
device->flushSensor(sensorType);
}
}
std::optional<int32_t> InputReader::getBatteryCapacity(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->getBatteryCapacity();
}
return std::nullopt;
}
std::optional<int32_t> InputReader::getBatteryStatus(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->getBatteryStatus();
}
return std::nullopt;
}
std::vector<InputDeviceLightInfo> InputReader::getLights(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device == nullptr) {
return {};
}
return device->getDeviceInfo().getLights();
}
std::vector<InputDeviceSensorInfo> InputReader::getSensors(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device == nullptr) {
return {};
}
return device->getDeviceInfo().getSensors();
}
bool InputReader::setLightColor(int32_t deviceId, int32_t lightId, int32_t color) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->setLightColor(lightId, color);
}
return false;
}
bool InputReader::setLightPlayerId(int32_t deviceId, int32_t lightId, int32_t playerId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->setLightPlayerId(lightId, playerId);
}
return false;
}
std::optional<int32_t> InputReader::getLightColor(int32_t deviceId, int32_t lightId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->getLightColor(lightId);
}
return std::nullopt;
}
std::optional<int32_t> InputReader::getLightPlayerId(int32_t deviceId, int32_t lightId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->getLightPlayerId(lightId);
}
return std::nullopt;
}
bool InputReader::isInputDeviceEnabled(int32_t deviceId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (device) {
return device->isEnabled();
}
ALOGW("Ignoring invalid device id %" PRId32 ".", deviceId);
return false;
}
bool InputReader::canDispatchToDisplay(int32_t deviceId, int32_t displayId) {
std::scoped_lock _l(mLock);
InputDevice* device = findInputDeviceLocked(deviceId);
if (!device) {
ALOGW("Ignoring invalid device id %" PRId32 ".", deviceId);
return false;
}
if (!device->isEnabled()) {
ALOGW("Ignoring disabled device %s", device->getName().c_str());
return false;
}
std::optional<int32_t> associatedDisplayId = device->getAssociatedDisplayId();
// No associated display. By default, can dispatch to all displays.
if (!associatedDisplayId) {
return true;
}
if (*associatedDisplayId == ADISPLAY_ID_NONE) {
ALOGW("Device %s is associated with display ADISPLAY_ID_NONE.", device->getName().c_str());
return true;
}
return *associatedDisplayId == displayId;
}
void InputReader::dump(std::string& dump) {
std::scoped_lock _l(mLock);
mEventHub->dump(dump);
dump += "\n";
dump += StringPrintf("Input Reader State (Nums of device: %zu):\n",
mDeviceToEventHubIdsMap.size());
for (const auto& devicePair : mDeviceToEventHubIdsMap) {
const std::shared_ptr<InputDevice>& device = devicePair.first;
std::string eventHubDevStr = INDENT "EventHub Devices: [ ";
for (const auto& eId : devicePair.second) {
eventHubDevStr += StringPrintf("%d ", eId);
}
eventHubDevStr += "] \n";
device->dump(dump, eventHubDevStr);
}
dump += INDENT "Configuration:\n";
dump += INDENT2 "ExcludedDeviceNames: [";
for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) {
if (i != 0) {
dump += ", ";
}
dump += mConfig.excludedDeviceNames[i];
}
dump += "]\n";
dump += StringPrintf(INDENT2 "VirtualKeyQuietTime: %0.1fms\n",
mConfig.virtualKeyQuietTime * 0.000001f);
dump += StringPrintf(INDENT2 "PointerVelocityControlParameters: "
"scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, "
"acceleration=%0.3f\n",
mConfig.pointerVelocityControlParameters.scale,
mConfig.pointerVelocityControlParameters.lowThreshold,
mConfig.pointerVelocityControlParameters.highThreshold,
mConfig.pointerVelocityControlParameters.acceleration);
dump += StringPrintf(INDENT2 "WheelVelocityControlParameters: "
"scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, "
"acceleration=%0.3f\n",
mConfig.wheelVelocityControlParameters.scale,
mConfig.wheelVelocityControlParameters.lowThreshold,
mConfig.wheelVelocityControlParameters.highThreshold,
mConfig.wheelVelocityControlParameters.acceleration);
dump += StringPrintf(INDENT2 "PointerGesture:\n");
dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(mConfig.pointerGesturesEnabled));
dump += StringPrintf(INDENT3 "QuietInterval: %0.1fms\n",
mConfig.pointerGestureQuietInterval * 0.000001f);
dump += StringPrintf(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n",
mConfig.pointerGestureDragMinSwitchSpeed);
dump += StringPrintf(INDENT3 "TapInterval: %0.1fms\n",
mConfig.pointerGestureTapInterval * 0.000001f);
dump += StringPrintf(INDENT3 "TapDragInterval: %0.1fms\n",
mConfig.pointerGestureTapDragInterval * 0.000001f);
dump += StringPrintf(INDENT3 "TapSlop: %0.1fpx\n", mConfig.pointerGestureTapSlop);
dump += StringPrintf(INDENT3 "MultitouchSettleInterval: %0.1fms\n",
mConfig.pointerGestureMultitouchSettleInterval * 0.000001f);
dump += StringPrintf(INDENT3 "MultitouchMinDistance: %0.1fpx\n",
mConfig.pointerGestureMultitouchMinDistance);
dump += StringPrintf(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n",
mConfig.pointerGestureSwipeTransitionAngleCosine);
dump += StringPrintf(INDENT3 "SwipeMaxWidthRatio: %0.1f\n",
mConfig.pointerGestureSwipeMaxWidthRatio);
dump += StringPrintf(INDENT3 "MovementSpeedRatio: %0.1f\n",
mConfig.pointerGestureMovementSpeedRatio);
dump += StringPrintf(INDENT3 "ZoomSpeedRatio: %0.1f\n", mConfig.pointerGestureZoomSpeedRatio);
dump += INDENT3 "Viewports:\n";
mConfig.dump(dump);
}
void InputReader::monitor() {
// Acquire and release the lock to ensure that the reader has not deadlocked.
std::unique_lock<std::mutex> lock(mLock);
mEventHub->wake();
mReaderIsAliveCondition.wait(lock);
// Check the EventHub
mEventHub->monitor();
}
// --- InputReader::ContextImpl ---
InputReader::ContextImpl::ContextImpl(InputReader* reader)
: mReader(reader), mIdGenerator(IdGenerator::Source::INPUT_READER) {}
void InputReader::ContextImpl::updateGlobalMetaState() {
// lock is already held by the input loop
mReader->updateGlobalMetaStateLocked();
}
int32_t InputReader::ContextImpl::getGlobalMetaState() {
// lock is already held by the input loop
return mReader->getGlobalMetaStateLocked();
}
void InputReader::ContextImpl::updateLedMetaState(int32_t metaState) {
// lock is already held by the input loop
mReader->updateLedMetaStateLocked(metaState);
}
int32_t InputReader::ContextImpl::getLedMetaState() {
// lock is already held by the input loop
return mReader->getLedMetaStateLocked();
}
void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) {
// lock is already held by the input loop
mReader->disableVirtualKeysUntilLocked(time);
}
bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now, int32_t keyCode,
int32_t scanCode) {
// lock is already held by the input loop
return mReader->shouldDropVirtualKeyLocked(now, keyCode, scanCode);
}
void InputReader::ContextImpl::fadePointer() {
// lock is already held by the input loop
mReader->fadePointerLocked();
}
std::shared_ptr<PointerControllerInterface> InputReader::ContextImpl::getPointerController(
int32_t deviceId) {
// lock is already held by the input loop
return mReader->getPointerControllerLocked(deviceId);
}
void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) {
// lock is already held by the input loop
mReader->requestTimeoutAtTimeLocked(when);
}
int32_t InputReader::ContextImpl::bumpGeneration() {
// lock is already held by the input loop
return mReader->bumpGenerationLocked();
}
void InputReader::ContextImpl::getExternalStylusDevices(std::vector<InputDeviceInfo>& outDevices) {
// lock is already held by whatever called refreshConfigurationLocked
mReader->getExternalStylusDevicesLocked(outDevices);
}
void InputReader::ContextImpl::dispatchExternalStylusState(const StylusState& state) {
mReader->dispatchExternalStylusStateLocked(state);
}
InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() {
return mReader->mPolicy.get();
}
InputListenerInterface* InputReader::ContextImpl::getListener() {
return mReader->mQueuedListener.get();
}
EventHubInterface* InputReader::ContextImpl::getEventHub() {
return mReader->mEventHub.get();
}
int32_t InputReader::ContextImpl::getNextId() {
return mIdGenerator.nextId();
}
} // namespace android