You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

708 lines
24 KiB

#include "rsCpuScriptGroup2.h"
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#ifndef RS_COMPATIBILITY_LIB
#include "bcc/Config.h"
#endif
#include "cpu_ref/rsCpuCore.h"
#include "rsClosure.h"
#include "rsContext.h"
#include "rsCpuCore.h"
#include "rsCpuExecutable.h"
#include "rsCpuScript.h"
#include "rsScript.h"
#include "rsScriptGroup2.h"
#include "rsScriptIntrinsic.h"
using std::string;
using std::vector;
namespace android {
namespace renderscript {
namespace {
const size_t DefaultKernelArgCount = 2;
void groupRoot(const RsExpandKernelDriverInfo *kinfo, uint32_t xstart,
uint32_t xend, uint32_t outstep) {
const List<CPUClosure*>& closures = *(List<CPUClosure*>*)kinfo->usr;
RsExpandKernelDriverInfo *mutable_kinfo = const_cast<RsExpandKernelDriverInfo *>(kinfo);
const size_t oldInLen = mutable_kinfo->inLen;
decltype(mutable_kinfo->inStride) oldInStride;
memcpy(&oldInStride, &mutable_kinfo->inStride, sizeof(oldInStride));
for (CPUClosure* cpuClosure : closures) {
const Closure* closure = cpuClosure->mClosure;
// There had better be enough space in mutable_kinfo
rsAssert(closure->mNumArg <= RS_KERNEL_INPUT_LIMIT);
for (size_t i = 0; i < closure->mNumArg; i++) {
const void* arg = closure->mArgs[i];
const Allocation* a = (const Allocation*)arg;
const uint32_t eStride = a->mHal.state.elementSizeBytes;
const uint8_t* ptr = (uint8_t*)(a->mHal.drvState.lod[0].mallocPtr) +
eStride * xstart;
if (kinfo->dim.y > 1) {
ptr += a->mHal.drvState.lod[0].stride * kinfo->current.y;
}
mutable_kinfo->inPtr[i] = ptr;
mutable_kinfo->inStride[i] = eStride;
}
mutable_kinfo->inLen = closure->mNumArg;
const Allocation* out = closure->mReturnValue;
const uint32_t ostep = out->mHal.state.elementSizeBytes;
const uint8_t* ptr = (uint8_t *)(out->mHal.drvState.lod[0].mallocPtr) +
ostep * xstart;
if (kinfo->dim.y > 1) {
ptr += out->mHal.drvState.lod[0].stride * kinfo->current.y;
}
mutable_kinfo->outPtr[0] = const_cast<uint8_t*>(ptr);
// The implementation of an intrinsic relies on kinfo->usr being
// the "this" pointer to the intrinsic (an RsdCpuScriptIntrinsic object)
mutable_kinfo->usr = cpuClosure->mSi;
cpuClosure->mFunc(kinfo, xstart, xend, ostep);
}
mutable_kinfo->inLen = oldInLen;
mutable_kinfo->usr = &closures;
memcpy(&mutable_kinfo->inStride, &oldInStride, sizeof(oldInStride));
}
} // namespace
Batch::Batch(CpuScriptGroup2Impl* group, const char* name) :
mGroup(group), mFunc(nullptr) {
mName = strndup(name, strlen(name));
}
Batch::~Batch() {
for (CPUClosure* c : mClosures) {
delete c;
}
free(mName);
}
bool Batch::conflict(CPUClosure* cpuClosure) const {
if (mClosures.empty()) {
return false;
}
const Closure* closure = cpuClosure->mClosure;
if (!closure->mIsKernel || !mClosures.front()->mClosure->mIsKernel) {
// An invoke should be in a batch by itself, so it conflicts with any other
// closure.
return true;
}
const auto& globalDeps = closure->mGlobalDeps;
const auto& argDeps = closure->mArgDeps;
for (CPUClosure* c : mClosures) {
const Closure* batched = c->mClosure;
if (globalDeps.find(batched) != globalDeps.end()) {
return true;
}
const auto& it = argDeps.find(batched);
if (it != argDeps.end()) {
const auto& args = (*it).second;
for (const auto &p1 : *args) {
if (p1.second.get() != nullptr) {
return true;
}
}
}
}
// The compiler fusion pass in bcc expects that kernels chained up through
// (1st) input and output.
const Closure* lastBatched = mClosures.back()->mClosure;
const auto& it = argDeps.find(lastBatched);
if (it == argDeps.end()) {
return true;
}
const auto& args = (*it).second;
for (const auto &p1 : *args) {
if (p1.first == 0 && p1.second.get() == nullptr) {
// The new closure depends on the last batched closure's return
// value (fieldId being nullptr) for its first argument (argument 0)
return false;
}
}
return true;
}
CpuScriptGroup2Impl::CpuScriptGroup2Impl(RsdCpuReferenceImpl *cpuRefImpl,
const ScriptGroupBase *sg) :
mCpuRefImpl(cpuRefImpl), mGroup((const ScriptGroup2*)(sg)),
mExecutable(nullptr), mScriptObj(nullptr) {
rsAssert(!mGroup->mClosures.empty());
mCpuRefImpl->lockMutex();
Batch* batch = new Batch(this, "Batch0");
int i = 0;
for (Closure* closure: mGroup->mClosures) {
CPUClosure* cc;
const IDBase* funcID = closure->mFunctionID.get();
RsdCpuScriptImpl* si =
(RsdCpuScriptImpl *)mCpuRefImpl->lookupScript(funcID->mScript);
if (closure->mIsKernel) {
MTLaunchStructForEach mtls;
si->forEachKernelSetup(funcID->mSlot, &mtls);
cc = new CPUClosure(closure, si, (ExpandFuncTy)mtls.kernel);
} else {
cc = new CPUClosure(closure, si);
}
if (batch->conflict(cc)) {
mBatches.push_back(batch);
std::stringstream ss;
ss << "Batch" << ++i;
std::string batchStr(ss.str());
batch = new Batch(this, batchStr.c_str());
}
batch->mClosures.push_back(cc);
}
rsAssert(!batch->mClosures.empty());
mBatches.push_back(batch);
#ifndef RS_COMPATIBILITY_LIB
compile(mGroup->mCacheDir);
if (mScriptObj != nullptr && mExecutable != nullptr) {
for (Batch* batch : mBatches) {
batch->resolveFuncPtr(mScriptObj);
}
}
#endif // RS_COMPATIBILITY_LIB
mCpuRefImpl->unlockMutex();
}
void Batch::resolveFuncPtr(void* sharedObj) {
std::string funcName(mName);
if (mClosures.front()->mClosure->mIsKernel) {
funcName.append(".expand");
}
mFunc = dlsym(sharedObj, funcName.c_str());
rsAssert (mFunc != nullptr);
}
CpuScriptGroup2Impl::~CpuScriptGroup2Impl() {
for (Batch* batch : mBatches) {
delete batch;
}
delete mExecutable;
// TODO: move this dlclose into ~ScriptExecutable().
if (mScriptObj != nullptr) {
dlclose(mScriptObj);
}
}
namespace {
#ifndef RS_COMPATIBILITY_LIB
string getCoreLibPath(Context* context, string* coreLibRelaxedPath) {
*coreLibRelaxedPath = "";
// If we're debugging, use the debug library.
if (context->getContextType() == RS_CONTEXT_TYPE_DEBUG) {
return SYSLIBPATH_BC"/libclcore_debug.bc";
}
// Check for a platform specific library
#if defined(ARCH_ARM_HAVE_NEON) && !defined(DISABLE_CLCORE_NEON)
// NEON-capable ARMv7a devices can use an accelerated math library
// for all reduced precision scripts.
// ARMv8 does not use NEON, as ASIMD can be used with all precision
// levels.
*coreLibRelaxedPath = SYSLIBPATH_BC"/libclcore_neon.bc";
#endif
#if defined(__i386__) || defined(__x86_64__)
// x86 devices will use an optimized library.
return SYSLIBPATH_BC"/libclcore_x86.bc";
#else
return SYSLIBPATH_BC"/libclcore.bc";
#endif
}
void setupCompileArguments(
const vector<const char*>& inputs, const vector<string>& kernelBatches,
const vector<string>& invokeBatches,
const char* outputDir, const char* outputFileName,
const char* coreLibPath, const char* coreLibRelaxedPath,
const bool emitGlobalInfo, const bool emitGlobalInfoSkipConstant,
int optLevel, vector<const char*>* args) {
args->push_back(RsdCpuScriptImpl::BCC_EXE_PATH);
args->push_back("-fPIC");
args->push_back("-embedRSInfo");
if (emitGlobalInfo) {
args->push_back("-rs-global-info");
if (emitGlobalInfoSkipConstant) {
args->push_back("-rs-global-info-skip-constant");
}
}
args->push_back("-mtriple");
args->push_back(DEFAULT_TARGET_TRIPLE_STRING);
args->push_back("-bclib");
args->push_back(coreLibPath);
args->push_back("-bclib_relaxed");
args->push_back(coreLibRelaxedPath);
for (const char* input : inputs) {
args->push_back(input);
}
for (const string& batch : kernelBatches) {
args->push_back("-merge");
args->push_back(batch.c_str());
}
for (const string& batch : invokeBatches) {
args->push_back("-invoke");
args->push_back(batch.c_str());
}
args->push_back("-output_path");
args->push_back(outputDir);
args->push_back("-O");
switch (optLevel) {
case 0:
args->push_back("0");
break;
case 3:
args->push_back("3");
break;
default:
ALOGW("Expected optimization level of 0 or 3. Received %d", optLevel);
args->push_back("3");
break;
}
// The output filename has to be the last, in case we need to pop it out and
// replace with a different name.
args->push_back("-o");
args->push_back(outputFileName);
}
void generateSourceSlot(RsdCpuReferenceImpl* ctxt,
const Closure& closure,
const std::vector<const char*>& inputs,
std::stringstream& ss) {
const IDBase* funcID = (const IDBase*)closure.mFunctionID.get();
const Script* script = funcID->mScript;
rsAssert (!script->isIntrinsic());
const RsdCpuScriptImpl *cpuScript =
(const RsdCpuScriptImpl *)ctxt->lookupScript(script);
const string& bitcodeFilename = cpuScript->getBitcodeFilePath();
const int index = find(inputs.begin(), inputs.end(), bitcodeFilename) -
inputs.begin();
ss << index << "," << funcID->mSlot << ".";
}
#endif // RS_COMPATIBILTY_LIB
} // anonymous namespace
// This function is used by the debugger to inspect ScriptGroup
// compilations.
//
// "__attribute__((noinline))" and "__asm__" are used to prevent the
// function call from being eliminated as a no-op (see the "noinline"
// attribute in gcc documentation).
//
// "__attribute__((weak))" is used to prevent callers from recognizing
// that this is guaranteed to be the function definition, recognizing
// that certain arguments are unused, and optimizing away the passing
// of those arguments (see the LLVM optimization
// DeadArgumentElimination). Theoretically, the compiler could get
// aggressive enough with link-time optimization that even marking the
// entry point as a weak definition wouldn't solve the problem.
//
extern __attribute__((noinline)) __attribute__((weak))
void debugHintScriptGroup2(const char* groupName,
const uint32_t groupNameSize,
const ExpandFuncTy* kernel,
const uint32_t kernelCount) {
ALOGV("group name: %d:%s\n", groupNameSize, groupName);
for (uint32_t i=0; i < kernelCount; ++i) {
const char* f1 = (const char*)(kernel[i]);
__asm__ __volatile__("");
ALOGV(" closure: %p\n", (const void*)f1);
}
// do nothing, this is just a hook point for the debugger.
return;
}
void CpuScriptGroup2Impl::compile(const char* cacheDir) {
#ifndef RS_COMPATIBILITY_LIB
if (mGroup->mClosures.size() < 2) {
return;
}
const int optLevel = getCpuRefImpl()->getContext()->getOptLevel();
if (optLevel == 0) {
std::vector<ExpandFuncTy> kernels;
for (const Batch* b : mBatches)
for (const CPUClosure* c : b->mClosures)
kernels.push_back(c->mFunc);
if (kernels.size()) {
// pass this information on to the debugger via a hint function.
debugHintScriptGroup2(mGroup->mName,
strlen(mGroup->mName),
kernels.data(),
kernels.size());
}
// skip script group compilation forcing the driver to use the fallback
// execution path which currently has better support for debugging.
return;
}
auto comparator = [](const char* str1, const char* str2) -> bool {
return strcmp(str1, str2) < 0;
};
std::set<const char*, decltype(comparator)> inputSet(comparator);
for (Closure* closure : mGroup->mClosures) {
const Script* script = closure->mFunctionID.get()->mScript;
// If any script is an intrinsic, give up trying fusing the kernels.
if (script->isIntrinsic()) {
return;
}
const RsdCpuScriptImpl *cpuScript =
(const RsdCpuScriptImpl *)mCpuRefImpl->lookupScript(script);
const char* bitcodeFilename = cpuScript->getBitcodeFilePath();
inputSet.insert(bitcodeFilename);
}
std::vector<const char*> inputs(inputSet.begin(), inputSet.end());
std::vector<string> kernelBatches;
std::vector<string> invokeBatches;
int i = 0;
for (const auto& batch : mBatches) {
rsAssert(batch->size() > 0);
std::stringstream ss;
ss << batch->mName << ":";
if (!batch->mClosures.front()->mClosure->mIsKernel) {
rsAssert(batch->size() == 1);
generateSourceSlot(mCpuRefImpl, *batch->mClosures.front()->mClosure, inputs, ss);
invokeBatches.push_back(ss.str());
} else {
for (const auto& cpuClosure : batch->mClosures) {
generateSourceSlot(mCpuRefImpl, *cpuClosure->mClosure, inputs, ss);
}
kernelBatches.push_back(ss.str());
}
}
rsAssert(cacheDir != nullptr);
string objFilePath(cacheDir);
objFilePath.append("/");
objFilePath.append(mGroup->mName);
objFilePath.append(".o");
const char* resName = mGroup->mName;
string coreLibRelaxedPath;
const string& coreLibPath = getCoreLibPath(getCpuRefImpl()->getContext(),
&coreLibRelaxedPath);
vector<const char*> arguments;
bool emitGlobalInfo = getCpuRefImpl()->getEmbedGlobalInfo();
bool emitGlobalInfoSkipConstant = getCpuRefImpl()->getEmbedGlobalInfoSkipConstant();
setupCompileArguments(inputs, kernelBatches, invokeBatches, cacheDir,
resName, coreLibPath.c_str(), coreLibRelaxedPath.c_str(),
emitGlobalInfo, emitGlobalInfoSkipConstant,
optLevel, &arguments);
std::unique_ptr<const char> cmdLine(rsuJoinStrings(arguments.size() - 1,
arguments.data()));
inputs.push_back(coreLibPath.c_str());
inputs.push_back(coreLibRelaxedPath.c_str());
uint32_t checksum = constructBuildChecksum(nullptr, 0, cmdLine.get(),
inputs.data(), inputs.size());
if (checksum == 0) {
return;
}
std::stringstream ss;
ss << std::hex << checksum;
std::string checksumStr(ss.str());
//===--------------------------------------------------------------------===//
// Try to load a shared lib from code cache matching filename and checksum
//===--------------------------------------------------------------------===//
bool alreadyLoaded = false;
std::string cloneName;
const bool useRSDebugContext =
(mCpuRefImpl->getContext()->getContextType() == RS_CONTEXT_TYPE_DEBUG);
const bool reuse = !is_force_recompile() && !useRSDebugContext;
if (reuse) {
mScriptObj = SharedLibraryUtils::loadSharedLibrary(cacheDir, resName, nullptr,
&alreadyLoaded);
}
if (mScriptObj != nullptr) {
// A shared library named resName is found in code cache directory
// cacheDir, and loaded with the handle stored in mScriptObj.
mExecutable = ScriptExecutable::createFromSharedObject(
mScriptObj, checksum);
if (mExecutable != nullptr) {
// The loaded shared library in mScriptObj has a matching checksum.
// An executable object has been created.
return;
}
ALOGV("Failed to create an executable object from so file due to "
"mismatching checksum");
if (alreadyLoaded) {
// The shared object found in code cache has already been loaded.
// A different file name is needed for the new shared library, to
// avoid corrupting the currently loaded instance.
cloneName.append(resName);
cloneName.append("#");
cloneName.append(SharedLibraryUtils::getRandomString(6).c_str());
// The last element in arguments is the output filename.
arguments.pop_back();
arguments.push_back(cloneName.c_str());
}
dlclose(mScriptObj);
mScriptObj = nullptr;
}
//===--------------------------------------------------------------------===//
// Fuse the input kernels and generate native code in an object file
//===--------------------------------------------------------------------===//
arguments.push_back("-build-checksum");
arguments.push_back(checksumStr.c_str());
arguments.push_back(nullptr);
bool compiled = rsuExecuteCommand(RsdCpuScriptImpl::BCC_EXE_PATH,
arguments.size()-1,
arguments.data());
if (!compiled) {
return;
}
//===--------------------------------------------------------------------===//
// Create and load the shared lib
//===--------------------------------------------------------------------===//
std::string SOPath;
if (!SharedLibraryUtils::createSharedLibrary(
getCpuRefImpl()->getContext()->getDriverName(), cacheDir, resName,
reuse, &SOPath)) {
ALOGE("Failed to link object file '%s'", resName);
unlink(objFilePath.c_str());
return;
}
unlink(objFilePath.c_str());
if (reuse) {
mScriptObj = SharedLibraryUtils::loadSharedLibrary(cacheDir, resName);
} else {
mScriptObj = SharedLibraryUtils::loadAndDeleteSharedLibrary(SOPath.c_str());
}
if (mScriptObj == nullptr) {
ALOGE("Unable to load '%s'", resName);
return;
}
if (alreadyLoaded) {
// Delete the temporary, random-named file that we created to avoid
// interfering with an already loaded shared library.
string cloneFilePath(cacheDir);
cloneFilePath.append("/");
cloneFilePath.append(cloneName.c_str());
cloneFilePath.append(".so");
unlink(cloneFilePath.c_str());
}
mExecutable = ScriptExecutable::createFromSharedObject(mScriptObj);
#endif // RS_COMPATIBILITY_LIB
}
void CpuScriptGroup2Impl::execute() {
for (auto batch : mBatches) {
batch->setGlobalsForBatch();
batch->run();
}
}
void Batch::setGlobalsForBatch() {
for (CPUClosure* cpuClosure : mClosures) {
const Closure* closure = cpuClosure->mClosure;
const IDBase* funcID = closure->mFunctionID.get();
Script* s = funcID->mScript;;
for (const auto& p : closure->mGlobals) {
const int64_t value = p.second.first;
int size = p.second.second;
if (value == 0 && size == 0) {
// This indicates the current closure depends on another closure for a
// global in their shared module (script). In this case we don't need to
// copy the value. For example, an invoke intializes a global variable
// which a kernel later reads.
continue;
}
rsAssert(p.first != nullptr);
Script* script = p.first->mScript;
rsAssert(script == s);
RsdCpuReferenceImpl* ctxt = mGroup->getCpuRefImpl();
const RsdCpuScriptImpl *cpuScript =
(const RsdCpuScriptImpl *)ctxt->lookupScript(script);
int slot = p.first->mSlot;
ScriptExecutable* exec = mGroup->getExecutable();
if (exec != nullptr) {
const char* varName = cpuScript->getFieldName(slot);
void* addr = exec->getFieldAddress(varName);
if (size < 0) {
rsrSetObject(mGroup->getCpuRefImpl()->getContext(),
(rs_object_base*)addr, (ObjectBase*)value);
} else {
memcpy(addr, (const void*)&value, size);
}
} else {
// We use -1 size to indicate an ObjectBase rather than a primitive type
if (size < 0) {
s->setVarObj(slot, (ObjectBase*)value);
} else {
s->setVar(slot, (const void*)&value, size);
}
}
}
}
}
void Batch::run() {
if (!mClosures.front()->mClosure->mIsKernel) {
rsAssert(mClosures.size() == 1);
// This batch contains a single closure for an invoke function
CPUClosure* cc = mClosures.front();
const Closure* c = cc->mClosure;
if (mFunc != nullptr) {
// TODO: Need align pointers for x86_64.
// See RsdCpuScriptImpl::invokeFunction in rsCpuScript.cpp
((InvokeFuncTy)mFunc)(c->mParams, c->mParamLength);
} else {
const ScriptInvokeID* invokeID = (const ScriptInvokeID*)c->mFunctionID.get();
rsAssert(invokeID != nullptr);
cc->mSi->invokeFunction(invokeID->mSlot, c->mParams, c->mParamLength);
}
return;
}
if (mFunc != nullptr) {
MTLaunchStructForEach mtls;
const CPUClosure* firstCpuClosure = mClosures.front();
const CPUClosure* lastCpuClosure = mClosures.back();
firstCpuClosure->mSi->forEachMtlsSetup(
(const Allocation**)firstCpuClosure->mClosure->mArgs,
firstCpuClosure->mClosure->mNumArg,
lastCpuClosure->mClosure->mReturnValue,
nullptr, 0, nullptr, &mtls);
mtls.script = nullptr;
mtls.fep.usr = nullptr;
mtls.kernel = (ForEachFunc_t)mFunc;
mGroup->getCpuRefImpl()->launchForEach(
(const Allocation**)firstCpuClosure->mClosure->mArgs,
firstCpuClosure->mClosure->mNumArg,
lastCpuClosure->mClosure->mReturnValue,
nullptr, &mtls);
return;
}
for (CPUClosure* cpuClosure : mClosures) {
const Closure* closure = cpuClosure->mClosure;
const ScriptKernelID* kernelID =
(const ScriptKernelID*)closure->mFunctionID.get();
cpuClosure->mSi->preLaunch(kernelID->mSlot,
(const Allocation**)closure->mArgs,
closure->mNumArg, closure->mReturnValue,
nullptr, 0, nullptr);
}
const CPUClosure* cpuClosure = mClosures.front();
const Closure* closure = cpuClosure->mClosure;
MTLaunchStructForEach mtls;
if (cpuClosure->mSi->forEachMtlsSetup((const Allocation**)closure->mArgs,
closure->mNumArg,
closure->mReturnValue,
nullptr, 0, nullptr, &mtls)) {
mtls.script = nullptr;
mtls.kernel = &groupRoot;
mtls.fep.usr = &mClosures;
mGroup->getCpuRefImpl()->launchForEach(nullptr, 0, nullptr, nullptr, &mtls);
}
for (CPUClosure* cpuClosure : mClosures) {
const Closure* closure = cpuClosure->mClosure;
const ScriptKernelID* kernelID =
(const ScriptKernelID*)closure->mFunctionID.get();
cpuClosure->mSi->postLaunch(kernelID->mSlot,
(const Allocation**)closure->mArgs,
closure->mNumArg, closure->mReturnValue,
nullptr, 0, nullptr);
}
}
} // namespace renderscript
} // namespace android