You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

328 lines
14 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file contains pre-canonical-types utility code and does not includes HAL
// utilities. LegacyHalUtils.h is a superset of these utilities that includes
// HAL utilities.
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_LEGACY_UTILS_H
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_LEGACY_UTILS_H
#include <android-base/logging.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "NeuralNetworks.h"
#include "OperationResolver.h"
#include "nnapi/TypeUtils.h"
#include "nnapi/Types.h"
namespace android {
namespace nn {
// The number of data types (OperandCode) defined in NeuralNetworks.h.
const int kNumberOfDataTypes = 16;
// The number of operation types (OperationCode) defined in NeuralNetworks.h.
const int kNumberOfOperationTypes = 102;
static_assert(kNumberOfOperationTypes == BuiltinOperationResolver::kNumberOfOperationTypes);
// The number of execution preferences defined in NeuralNetworks.h.
const int kNumberOfPreferences = 3;
// The number of data types (OperandCode) defined in NeuralNetworksOEM.h.
const int kNumberOfDataTypesOEM = 2;
// The number of operation types (OperationCode) defined in NeuralNetworksOEM.h.
const int kNumberOfOperationTypesOEM = 1;
// The lowest number assigned to any OEM Code in NeuralNetworksOEM.h.
const int kOEMCodeBase = 10000;
/* IMPORTANT: if you change the following list, don't
* forget to update the corresponding 'tags' table in
* the initVlogMask() function implemented in Utils.cpp.
*/
enum VLogFlags { MODEL = 0, COMPILATION, EXECUTION, CPUEXE, MANAGER, DRIVER, MEMORY };
#define VLOG_IS_ON(TAG) ((vLogMask & (1 << (TAG))) != 0)
#define VLOG(TAG) \
if (LIKELY(!VLOG_IS_ON(TAG))) \
; \
else \
LOG(INFO)
extern int vLogMask;
void initVLogMask();
#ifdef NN_DEBUGGABLE
#define SHOW_IF_DEBUG(msg) msg
#else
#define SHOW_IF_DEBUG(msg) ""
#endif
// DEPRECATED(b/118737105). Use CHECK.
#define nnAssert(v) CHECK(v)
#define NN_RETURN_IF_ERROR(expr) \
do { \
int _errorCode = (expr); \
if (_errorCode != ANEURALNETWORKS_NO_ERROR) { \
return _errorCode; \
} \
} while (0)
// Make a Duration from a duration in nanoseconds. If the value exceeds the max duration, return the
// maximum expressible duration.
Duration makeTimeoutDuration(uint64_t nanoseconds);
// Make a Duration from a duration in nanoseconds. If the value exceeds the max duration, return the
// maximum expressible duration. If nanoseconds == -1, the duration is omitted. Precondition:
// nanoseconds >= -1
OptionalDuration makeTimeoutDuration(int64_t nanoseconds);
// Make a deadline from a duration. If the sum of the current time and the
// duration exceeds the max time, return a time point holding the maximum
// expressible time.
TimePoint makeDeadline(Duration duration);
inline TimePoint makeDeadline(uint64_t duration) {
return makeDeadline(makeTimeoutDuration(duration));
}
// Convenience function. If the duration is provided, this function creates a
// deadline using makeDeadline. If the duration is not provided, this function
// returns std::nullopt.
inline OptionalTimePoint makeDeadline(OptionalDuration duration) {
return duration.has_value() ? std::make_optional(makeDeadline(*duration)) : OptionalTimePoint{};
}
inline OptionalTimePoint makeDeadline(std::optional<uint64_t> duration) {
return duration.has_value() ? std::make_optional(makeDeadline(*duration)) : OptionalTimePoint{};
}
inline OptionalTimePoint makeDeadline(int64_t duration) {
return makeDeadline(makeTimeoutDuration(duration));
}
// Returns true if the deadline has passed. Returns false if either the deadline
// has not been exceeded or if the deadline is not present.
bool hasDeadlinePassed(const OptionalTimePoint& deadline);
// Returns true if an operand type is an extension type.
bool isExtensionOperandType(OperandType type);
// Returns true if an operation type is an extension type.
bool isExtensionOperationType(OperationType type);
// Returns the amount of space needed to store a value of the specified
// dimensions and type. For a tensor with unspecified rank or at least one
// unspecified dimension, returns zero.
//
// Aborts if the specified type is an extension type.
// Aborts if the size would overflow the return type.
//
// See also TypeManager::getSizeOfData(OperandType, const std::vector<uint32_t>&).
uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions);
// Returns the amount of space needed to store a value of the dimensions and
// type of this operand. For a tensor with unspecified rank or at least one
// unspecified dimension, returns zero.
//
// Aborts if the specified type is an extension type.
// Aborts if the size would overflow the return type.
//
// See also TypeManager::getSizeOfData(const Operand&).
inline uint32_t nonExtensionOperandSizeOfData(const Operand& operand) {
return nonExtensionOperandSizeOfData(operand.type, operand.dimensions);
}
// Returns the amount of space needed to store a value of the specified
// dimensions and element size. For a tensor with unspecified rank or at least
// one unspecified dimension, returns zero.
//
// Aborts if the size would overflow the return type.
//
// See also TypeManager::getSizeOfData(const Operand&).
uint32_t sizeOfTensorData(uint32_t sizeOfElement, const std::vector<uint32_t>& dimensions);
// Returns true if the amount of space needed to store a value of the specified
// dimensions and element size overflows the uint32_t type.
//
// Aborts if the specified type is an extension type.
//
// See also TypeManager::sizeOfDataOverflowsUInt32(OperandType, const std::vector<uint32_t>&).
bool nonExtensionOperandSizeOfDataOverflowsUInt32(OperandType type,
const std::vector<uint32_t>& dimensions);
// Returns true if the amount of space needed to store a value of the specified
// dimensions and element size overflows the uint32_t type.
//
// See also TypeManager::sizeOfDataOverflowsUInt32(OperandType, const std::vector<uint32_t>&).
bool sizeOfTensorDataOverflowsUInt32(uint32_t elementSize, const std::vector<uint32_t>& dimensions);
// Returns true if a non-extension operand type is a scalar type.
//
// Aborts if the specified type is an extension type.
//
// See also TypeManager::isTensorType(OperandType).
bool nonExtensionOperandTypeIsScalar(int type);
// Whether an operand of tensor type has unspecified dimensions.
//
// Undefined behavior if the operand type is a scalar type.
bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount);
bool tensorHasUnspecifiedDimensions(OperandType type, const std::vector<uint32_t>& dimensions);
bool tensorHasUnspecifiedDimensions(OperandType type, const Dimensions& dimensions);
bool tensorHasUnspecifiedDimensions(const Operand& operand);
bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type);
// Returns the number of padding bytes needed to align data starting at `index` with `length` number
// of bytes such that `index` + returned number of padding bytes is aligned. Refer to
// `getAlignmentForLength` for more information on alignment (such as what the current alignments
// are for different data lengths).
uint32_t alignBytesNeeded(uint32_t index, size_t length);
// Does a detailed LOG(INFO) of the model
void logModelToInfo(const Model& model);
inline std::string toString(uint32_t obj) {
return std::to_string(obj);
}
template <typename Type>
std::string toString(const std::vector<Type>& range) {
std::string os = "[";
for (size_t i = 0; i < range.size(); ++i) {
os += (i == 0 ? "" : ", ") + toString(range[i]);
}
return os += "]";
}
template <typename A, typename B>
std::string toString(const std::pair<A, B>& pair) {
std::ostringstream oss;
oss << "(" << pair.first << ", " << pair.second << ")";
return oss.str();
}
inline bool validCode(uint32_t codeCount, uint32_t codeCountOEM, uint32_t code) {
return (code < codeCount) || (code >= kOEMCodeBase && (code - kOEMCodeBase) < codeCountOEM);
}
// Validates an operand type.
//
// extensionOperandTypeInfo must be nullptr iff the type is not an extension type.
//
// If allowPartial is true, the dimensions may be underspecified.
int validateOperandType(const ANeuralNetworksOperandType& type,
const Extension::OperandTypeInformation* const extensionOperandTypeInfo,
const char* tag, bool allowPartial);
int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount,
const char* tag);
// A set of functions to help validate models containing IF or WHILE operations.
struct SubgraphValidationHelper {
// Checks if a given operand is a SUBGRAPH operand with a valid offset.
std::function<bool(const Operand&)> isValidSubgraphReference;
// Gets the input count of a subgraph referenced by a given operand.
std::function<uint32_t(const Operand&)> getSubgraphInputCount;
// Gets the output count of a subgraph referenced by a given operand.
std::function<uint32_t(const Operand&)> getSubgraphOutputCount;
// Gets the specified input operand of a subgraph referenced by a given operand.
std::function<const Operand*(const Operand&, uint32_t)> getSubgraphInputOperand;
// Gets the specified output operand of a subgraph referenced by a given operand.
std::function<const Operand*(const Operand&, uint32_t)> getSubgraphOutputOperand;
// Whether control flow operations with inner or outer input or output
// operands of unknown size are allowed.
bool allowControlFlowOperationWithOperandOfUnknownSize;
};
// Returns ANEURALNETWORKS_NO_ERROR if the corresponding operation is defined and can handle the
// provided operand types in the given HAL version, otherwise returns ANEURALNETWORKS_BAD_DATA.
// The last argument is only used for validating IF and WHILE operations.
int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount,
const uint32_t* inputIndexes, uint32_t outputCount,
const uint32_t* outputIndexes, const std::vector<Operand>& operands,
HalVersion halVersion, const SubgraphValidationHelper& helper);
inline size_t getSizeFromInts(int lower, int higher) {
return (uint32_t)(lower) + ((uint64_t)(uint32_t)(higher) << 32);
}
// Convert ANEURALNETWORKS_* result code to ErrorStatus.
// Not guaranteed to be a 1-to-1 mapping.
ErrorStatus convertResultCodeToErrorStatus(int resultCode);
// Convert ErrorStatus to ANEURALNETWORKS_* result code.
// Not guaranteed to be a 1-to-1 mapping.
int convertErrorStatusToResultCode(ErrorStatus status);
// Convert execution results to runtime format. Additionally checks that the
// returned results abide by the HAL specification, and logs an error if the
// result violates the specification.
std::tuple<int, std::vector<OutputShape>, Timing> getExecutionResult(
ErrorStatus status, std::vector<OutputShape> outputShapes, Timing timing);
constexpr Priority convertToCanonicalPriority(int32_t priority) {
switch (priority) {
case ANEURALNETWORKS_PRIORITY_LOW:
return Priority::LOW;
case ANEURALNETWORKS_PRIORITY_MEDIUM:
return Priority::MEDIUM;
case ANEURALNETWORKS_PRIORITY_HIGH:
return Priority::HIGH;
}
LOG(FATAL) << "unrecognized priority: " << priority;
return {};
}
// The function syncWait() has the same semantics as the system function
// ::sync_wait(), except that the syncWait() return value is semantically
// richer. The timeout parameter is in msecs.
enum class FenceState {
ACTIVE, // fence has not been signaled
SIGNALED, // fence has been signaled
ERROR, // fence has been placed in the error state
UNKNOWN, // either bad argument passed to syncWait(), or internal error
};
FenceState syncWait(int fd, int timeout);
#ifdef NN_DEBUGGABLE
uint32_t getProp(const char* str, uint32_t defaultValue = 0);
#endif // NN_DEBUGGABLE
struct ApiVersion {
Version canonical;
int64_t featureLevel;
};
constexpr auto kHalVersionV1_0ToApi = ApiVersion{.canonical = Version::ANDROID_OC_MR1,
.featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_1};
constexpr auto kHalVersionV1_1ToApi = ApiVersion{.canonical = Version::ANDROID_P,
.featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_2};
constexpr auto kHalVersionV1_2ToApi = ApiVersion{.canonical = Version::ANDROID_Q,
.featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_3};
constexpr auto kHalVersionV1_3ToApi = ApiVersion{.canonical = Version::ANDROID_R,
.featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_4};
} // namespace nn
} // namespace android
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_LEGACY_UTILS_H