You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
328 lines
15 KiB
328 lines
15 KiB
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Operations"
|
|
|
|
#include <algorithm>
|
|
#include <cfloat>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "OperationResolver.h"
|
|
#include "Tracing.h"
|
|
#include "nnapi/Validation.h"
|
|
|
|
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
|
|
#include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
|
|
#include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
|
|
|
|
#include "CpuOperationUtils.h"
|
|
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
|
|
|
|
namespace android {
|
|
namespace nn {
|
|
|
|
namespace softmax {
|
|
|
|
constexpr char kOperationName[] = "SOFTMAX";
|
|
|
|
constexpr uint32_t kNumInputs = 3;
|
|
constexpr uint32_t kInputTensor = 0;
|
|
constexpr uint32_t kBetaScalar = 1;
|
|
constexpr uint32_t kAxisScalar = 2;
|
|
|
|
constexpr uint32_t kNumOutputs = 1;
|
|
constexpr uint32_t kOutputTensor = 0;
|
|
|
|
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
|
|
namespace {
|
|
|
|
inline bool softmaxSlowFloat32(const float* inputData, const Shape& inputShape, const float beta,
|
|
int32_t axis, float* outputData, const Shape& outputShape) {
|
|
NNTRACE_TRANS("softmaxFloatSlow32");
|
|
const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
|
|
const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
|
|
const uint32_t innerSize =
|
|
getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
|
|
for (uint32_t outer = 0; outer < outerSize; ++outer) {
|
|
const float* inputBeg = inputData + outer * axisSize * innerSize;
|
|
const float* inputEnd = inputBeg + axisSize * innerSize;
|
|
float* outputBeg = outputData + outer * axisSize * innerSize;
|
|
for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
|
|
// Find max
|
|
float maxValue = -FLT_MAX;
|
|
for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
|
|
maxValue = std::max(maxValue, *p);
|
|
}
|
|
// Compute sum
|
|
float sum = 0.0f;
|
|
for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
|
|
sum += std::exp((*p - maxValue) * beta);
|
|
}
|
|
// Compute result
|
|
float* pOut = outputBeg;
|
|
for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
|
|
*pOut = std::exp((*p - maxValue) * beta) / sum;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis,
|
|
float* outputData, const Shape& outputShape) {
|
|
int32_t ndim = getNumberOfDimensions(inputShape);
|
|
NN_CHECK(handleNegativeAxis(inputShape, &axis));
|
|
// TFLite optimized implementation only supports computation along the last axis
|
|
if (axis == ndim - 1) {
|
|
NNTRACE_COMP("optimized_ops::Softmax::float");
|
|
tflite::SoftmaxParams param = {.beta = beta};
|
|
tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData,
|
|
convertShapeToTflshape(outputShape), outputData);
|
|
return true;
|
|
} else {
|
|
return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape);
|
|
}
|
|
}
|
|
|
|
bool softmaxFloat16(const _Float16* inputData, const Shape& inputShape, const float beta,
|
|
int32_t axis, _Float16* outputData, const Shape& outputShape) {
|
|
NNTRACE_TRANS("softmaxFloat16");
|
|
std::vector<float> inputData_float32(getNumberOfElements(inputShape));
|
|
convertFloat16ToFloat32(inputData, &inputData_float32);
|
|
std::vector<float> outputData_float32(getNumberOfElements(outputShape));
|
|
|
|
softmaxFloat32(inputData_float32.data(), inputShape, beta, axis, outputData_float32.data(),
|
|
outputShape);
|
|
convertFloat32ToFloat16(outputData_float32, outputData);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool softmaxQuant8Impl(const T* inputData, const Shape& inputShape, const float beta, int32_t axis,
|
|
int32_t inputMultiplier, int32_t inputLeftShift, float diffMin,
|
|
T* outputData, const Shape& outputShape) {
|
|
NNTRACE_TRANS("softmaxQuant8");
|
|
// The representation chosen for the input to the exp() function is Q5.26.
|
|
// We need to leave extra space since values that we skip might be as large as
|
|
// -32 before multiplying by input_beta_multiplier, and therefore as large as
|
|
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
|
|
// accumulation, but exp(-16) definitely is.
|
|
static const int32_t kScaledDiffIntegerBits = 5;
|
|
static const int kAccumulationIntegerBits = 12;
|
|
using FixedPointScaledDiff = gemmlowp::FixedPoint<int32_t, kScaledDiffIntegerBits>;
|
|
using FixedPointAccum = gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
|
|
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
|
|
|
|
const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
|
|
const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
|
|
const uint32_t innerSize =
|
|
getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
|
|
for (uint32_t outer = 0; outer < outerSize; ++outer) {
|
|
const T* inputBeg = inputData + outer * axisSize * innerSize;
|
|
const T* inputEnd = inputBeg + axisSize * innerSize;
|
|
T* outputBeg = outputData + outer * axisSize * innerSize;
|
|
for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
|
|
// Find max
|
|
T maxValue = std::is_same_v<T, int8_t> ? -128 : 0;
|
|
for (const T* p = inputBeg; p < inputEnd; p += innerSize) {
|
|
maxValue = std::max(maxValue, *p);
|
|
}
|
|
|
|
// Compute sum
|
|
FixedPointAccum sum_of_exps = FixedPointAccum::Zero();
|
|
for (const T* p = inputBeg; p < inputEnd; p += innerSize) {
|
|
int32_t input_diff = static_cast<int32_t>(*p) - maxValue;
|
|
if (input_diff >= diffMin) {
|
|
const int32_t input_diff_rescaled =
|
|
tflite::MultiplyByQuantizedMultiplierGreaterThanOne(
|
|
input_diff, inputMultiplier, inputLeftShift);
|
|
const auto scaled_diff_f8 = FixedPointScaledDiff::FromRaw(input_diff_rescaled);
|
|
sum_of_exps = sum_of_exps + gemmlowp::Rescale<kAccumulationIntegerBits>(
|
|
exp_on_negative_values(scaled_diff_f8));
|
|
}
|
|
}
|
|
|
|
uint32_t fixed_sum_of_exps = static_cast<uint32_t>(sum_of_exps.raw());
|
|
int32_t headroom_plus_one = tflite::CountLeadingZeros(fixed_sum_of_exps);
|
|
// This is the number of bits to the left of the binary point above 1.0.
|
|
// Consider fixed_sum_of_exps=1.25. In that case shifted_scale=0.8 and
|
|
// no later adjustment will be needed.
|
|
int32_t num_bits_over_unit = kAccumulationIntegerBits - headroom_plus_one;
|
|
int32_t shifted_sum_minus_one = static_cast<int32_t>(
|
|
(fixed_sum_of_exps << headroom_plus_one) - (static_cast<uint32_t>(1) << 31));
|
|
|
|
FixedPoint0 shifted_scale = gemmlowp::one_over_one_plus_x_for_x_in_0_1(
|
|
FixedPoint0::FromRaw(shifted_sum_minus_one));
|
|
|
|
// Compute result
|
|
constexpr int32_t q_min = std::numeric_limits<T>::min();
|
|
constexpr int32_t q_max = std::numeric_limits<T>::max();
|
|
T* pOut = outputBeg;
|
|
for (const T* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
|
|
int32_t input_diff = static_cast<int32_t>(*p) - maxValue;
|
|
if (input_diff >= diffMin) {
|
|
const int32_t input_diff_rescaled =
|
|
tflite::MultiplyByQuantizedMultiplierGreaterThanOne(
|
|
input_diff, inputMultiplier, inputLeftShift);
|
|
const auto scaled_diff_f8 = FixedPointScaledDiff::FromRaw(input_diff_rescaled);
|
|
|
|
FixedPoint0 exp_in_0 = exp_on_negative_values(scaled_diff_f8);
|
|
int32_t unsat_output = gemmlowp::RoundingDivideByPOT(
|
|
(shifted_scale * exp_in_0).raw(), num_bits_over_unit + 31 - 8);
|
|
if (std::is_same_v<T, int8_t>) {
|
|
unsat_output -= 128;
|
|
}
|
|
|
|
*pOut = static_cast<T>(std::max(std::min(unsat_output, q_max), q_min));
|
|
|
|
} else {
|
|
*pOut = std::is_same_v<T, int8_t> ? -128 : 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool softmaxQuant8(const T* inputData, const Shape& inputShape, const float beta, int32_t axis,
|
|
T* outputData, const Shape& outputShape) {
|
|
int32_t ndim = getNumberOfDimensions(inputShape);
|
|
NN_CHECK(handleNegativeAxis(inputShape, &axis));
|
|
|
|
if ((inputShape.type == OperandType::TENSOR_QUANT8_ASYMM && outputShape.offset != 0) ||
|
|
(inputShape.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED &&
|
|
outputShape.offset != -128) ||
|
|
outputShape.scale != 1.f / 256) {
|
|
LOG(ERROR) << "incorrect scale / offset for output";
|
|
return false;
|
|
}
|
|
|
|
static const int32_t kScaledDiffIntegerBits = 5;
|
|
const double input_beta_real_multiplier =
|
|
std::min(1.0 * beta * inputShape.scale * (1 << (31 - kScaledDiffIntegerBits)),
|
|
(1LL << 31) - 1.0);
|
|
|
|
int32_t inputMultiplier = 0, inputLeftShift = 0;
|
|
if (!QuantizeMultiplierGreaterThanOne(input_beta_real_multiplier, &inputMultiplier,
|
|
&inputLeftShift)) {
|
|
return false;
|
|
}
|
|
int32_t diffMin = -CalculateInputRadius(kScaledDiffIntegerBits, inputLeftShift);
|
|
|
|
return softmaxQuant8Impl(inputData, inputShape, beta, axis, inputMultiplier, inputLeftShift,
|
|
diffMin, outputData, outputShape);
|
|
}
|
|
|
|
} // namespace
|
|
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
|
|
|
|
Result<Version> validate(const IOperationValidationContext* context) {
|
|
NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
|
|
context->getNumInputs() == kNumInputs - 1);
|
|
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
|
|
auto inputType = context->getInputType(kInputTensor);
|
|
std::vector<OperandType> inExpectedTypes;
|
|
auto minSupportedVersion = Version::ANDROID_OC_MR1;
|
|
if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
|
minSupportedVersion = Version::ANDROID_OC_MR1;
|
|
inExpectedTypes = {inputType, OperandType::FLOAT32};
|
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
|
minSupportedVersion = Version::ANDROID_Q;
|
|
inExpectedTypes = {inputType, OperandType::FLOAT16};
|
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
|
minSupportedVersion = Version::ANDROID_R;
|
|
inExpectedTypes = {inputType, OperandType::FLOAT32};
|
|
} else {
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
|
|
}
|
|
const auto inputRank = getNumberOfDimensions(context->getInputShape(kInputTensor));
|
|
if (inputRank != 0) {
|
|
NN_RET_CHECK_LE(inputRank, 4);
|
|
}
|
|
if (context->getNumInputs() == kNumInputs) {
|
|
minSupportedVersion = combineVersions(minSupportedVersion, Version::ANDROID_Q);
|
|
inExpectedTypes.push_back(OperandType::INT32);
|
|
} else {
|
|
if (inputRank != 2 && inputRank != 4 && inputRank != 0) {
|
|
minSupportedVersion = combineVersions(minSupportedVersion, Version::ANDROID_Q);
|
|
}
|
|
}
|
|
NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
|
|
NN_RET_CHECK(validateOutputTypes(context, {inputType}));
|
|
return minSupportedVersion;
|
|
}
|
|
|
|
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
|
|
bool prepare(IOperationExecutionContext* context) {
|
|
Shape input = context->getInputShape(kInputTensor);
|
|
float beta = (input.type == OperandType::TENSOR_FLOAT16)
|
|
? context->getInputValue<_Float16>(kBetaScalar)
|
|
: context->getInputValue<float>(kBetaScalar);
|
|
NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
|
|
NN_RET_CHECK_GT(beta, 0.0f);
|
|
Shape output = context->getOutputShape(kOutputTensor);
|
|
output.dimensions = input.dimensions;
|
|
return context->setOutputShape(kOutputTensor, output);
|
|
}
|
|
|
|
bool execute(IOperationExecutionContext* context) {
|
|
// Bypass execution in the case of zero-sized input.
|
|
if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
|
|
int32_t axis = (context->getNumInputs() == kNumInputs)
|
|
? context->getInputValue<int32_t>(kAxisScalar)
|
|
: -1;
|
|
switch (context->getInputType(kInputTensor)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return softmaxFloat16(context->getInputBuffer<_Float16>(kInputTensor),
|
|
context->getInputShape(kInputTensor),
|
|
context->getInputValue<_Float16>(kBetaScalar), axis,
|
|
context->getOutputBuffer<_Float16>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return softmaxFloat32(context->getInputBuffer<float>(kInputTensor),
|
|
context->getInputShape(kInputTensor),
|
|
context->getInputValue<float>(kBetaScalar), axis,
|
|
context->getOutputBuffer<float>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return softmaxQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
|
|
context->getInputShape(kInputTensor),
|
|
context->getInputValue<float>(kBetaScalar), axis,
|
|
context->getOutputBuffer<uint8_t>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return softmaxQuant8(context->getInputBuffer<int8_t>(kInputTensor),
|
|
context->getInputShape(kInputTensor),
|
|
context->getInputValue<float>(kBetaScalar), axis,
|
|
context->getOutputBuffer<int8_t>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
|
|
}
|
|
}
|
|
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
|
|
|
|
} // namespace softmax
|
|
|
|
NN_REGISTER_OPERATION(SOFTMAX, "SOFTMAX", softmax::validate, softmax::prepare, softmax::execute,
|
|
.allowZeroSizedInput = true);
|
|
|
|
} // namespace nn
|
|
} // namespace android
|