You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1752 lines
63 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "chpp/transport.h"
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "chpp/app.h"
#include "chpp/clients.h"
#include "chpp/clients/discovery.h"
#include "chpp/crc.h"
#include "chpp/link.h"
#include "chpp/log.h"
#include "chpp/macros.h"
#include "chpp/memory.h"
#include "chpp/platform/platform_link.h"
#include "chpp/time.h"
/************************************************
* Prototypes
***********************************************/
static void chppSetRxState(struct ChppTransportState *context,
enum ChppRxState newState);
static size_t chppConsumePreamble(struct ChppTransportState *context,
const uint8_t *buf, size_t len);
static size_t chppConsumeHeader(struct ChppTransportState *context,
const uint8_t *buf, size_t len);
static size_t chppConsumePayload(struct ChppTransportState *context,
const uint8_t *buf, size_t len);
static size_t chppConsumeFooter(struct ChppTransportState *context,
const uint8_t *buf, size_t len);
static void chppAbortRxPacket(struct ChppTransportState *context);
#ifdef CHPP_SERVICE_ENABLED_TRANSPORT_LOOPBACK
static void chppProcessTransportLoopbackRequest(
struct ChppTransportState *context);
#endif
#ifdef CHPP_CLIENT_ENABLED_TRANSPORT_LOOPBACK
static void chppProcessTransportLoopbackResponse(
struct ChppTransportState *context);
#endif
static void chppSetResetComplete(struct ChppTransportState *context);
static void chppProcessResetAck(struct ChppTransportState *context);
static void chppProcessRxPacket(struct ChppTransportState *context);
static void chppProcessRxPayload(struct ChppTransportState *context);
static void chppClearRxDatagram(struct ChppTransportState *context);
static bool chppRxChecksumIsOk(const struct ChppTransportState *context);
static enum ChppTransportErrorCode chppRxHeaderCheck(
const struct ChppTransportState *context);
static void chppRegisterRxAck(struct ChppTransportState *context);
static void chppEnqueueTxPacket(struct ChppTransportState *context,
uint8_t packetCode);
static size_t chppAddPreamble(uint8_t *buf);
static struct ChppTransportHeader *chppAddHeader(
struct ChppTransportState *context);
static void chppAddPayload(struct ChppTransportState *context);
static void chppAddFooter(struct PendingTxPacket *packet);
size_t chppDequeueTxDatagram(struct ChppTransportState *context);
static void chppClearTxDatagramQueue(struct ChppTransportState *context);
static void chppTransportDoWork(struct ChppTransportState *context);
static void chppAppendToPendingTxPacket(struct PendingTxPacket *packet,
const uint8_t *buf, size_t len);
static const char *chppGetPacketAttrStr(uint8_t packetCode);
static bool chppEnqueueTxDatagram(struct ChppTransportState *context,
uint8_t packetCode, void *buf, size_t len);
enum ChppLinkErrorCode chppSendPendingPacket(
struct ChppTransportState *context);
static void chppResetTransportContext(struct ChppTransportState *context);
static void chppReset(struct ChppTransportState *context,
enum ChppTransportPacketAttributes resetType,
enum ChppTransportErrorCode error);
#ifdef CHPP_CLIENT_ENABLED
struct ChppAppHeader *chppTransportGetClientRequestTimeoutResponse(
struct ChppTransportState *context);
#endif
/************************************************
* Private Functions
***********************************************/
/**
* Called any time the Rx state needs to be changed. Ensures that the location
* counter among that state (rxStatus.locInState) is also reset at the same
* time.
*
* @param context Maintains status for each transport layer instance.
* @param newState Next Rx state.
*/
static void chppSetRxState(struct ChppTransportState *context,
enum ChppRxState newState) {
CHPP_LOGD("Changing RX transport state from %" PRIu8 " to %" PRIu8
" after %" PRIuSIZE " bytes",
context->rxStatus.state, newState, context->rxStatus.locInState);
context->rxStatus.locInState = 0;
context->rxStatus.state = newState;
}
/**
* Called by chppRxDataCb to find a preamble (i.e. packet start delimiter) in
* the incoming data stream.
* Moves the state to CHPP_STATE_HEADER as soon as it has seen a complete
* preamble.
* Any future backwards-incompatible versions of CHPP Transport will use a
* different preamble.
*
* @param context Maintains status for each transport layer instance.
* @param buf Input data.
* @param len Length of input data in bytes.
*
* @return Length of consumed data in bytes.
*/
static size_t chppConsumePreamble(struct ChppTransportState *context,
const uint8_t *buf, size_t len) {
size_t consumed = 0;
// TODO: Optimize loop, maybe using memchr() / memcmp() / SIMD, especially if
// serial port calling chppRxDataCb does not implement zero filter
while (consumed < len &&
context->rxStatus.locInState < CHPP_PREAMBLE_LEN_BYTES) {
size_t offset = context->rxStatus.locInState;
if ((offset == 0 && buf[consumed] == CHPP_PREAMBLE_BYTE_FIRST) ||
(offset == 1 && buf[consumed] == CHPP_PREAMBLE_BYTE_SECOND)) {
// Correct byte of preamble observed
context->rxStatus.locInState++;
} else if (buf[consumed] == CHPP_PREAMBLE_BYTE_FIRST) {
// Previous search failed but first byte of another preamble observed
context->rxStatus.locInState = 1;
} else {
// Continue search for a valid preamble from the start
context->rxStatus.locInState = 0;
}
consumed++;
}
// Let's see why we exited the above loop
if (context->rxStatus.locInState == CHPP_PREAMBLE_LEN_BYTES) {
// Complete preamble observed, move on to next state
context->rxStatus.packetStartTimeNs = chppGetCurrentTimeNs();
chppSetRxState(context, CHPP_STATE_HEADER);
}
return consumed;
}
/**
* Called by chppRxDataCb to process the packet header from the incoming data
* stream.
* Moves the Rx state to CHPP_STATE_PAYLOAD afterwards.
*
* @param context Maintains status for each transport layer instance.
* @param buf Input data.
* @param len Length of input data in bytes.
*
* @return Length of consumed data in bytes.
*/
static size_t chppConsumeHeader(struct ChppTransportState *context,
const uint8_t *buf, size_t len) {
CHPP_ASSERT(context->rxStatus.locInState <
sizeof(struct ChppTransportHeader));
size_t bytesToCopy = MIN(
len, (sizeof(struct ChppTransportHeader) - context->rxStatus.locInState));
memcpy(((uint8_t *)&context->rxHeader) + context->rxStatus.locInState, buf,
bytesToCopy);
context->rxStatus.locInState += bytesToCopy;
if (context->rxStatus.locInState == sizeof(struct ChppTransportHeader)) {
// Header fully copied. Move on
enum ChppTransportErrorCode headerCheckResult = chppRxHeaderCheck(context);
if (headerCheckResult != CHPP_TRANSPORT_ERROR_NONE) {
// Header fails consistency check. NACK and return to preamble state
chppEnqueueTxPacket(
context, CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(CHPP_TRANSPORT_ATTR_NONE,
headerCheckResult));
chppSetRxState(context, CHPP_STATE_PREAMBLE);
} else if (context->rxHeader.length == 0) {
// Non-payload packet
chppSetRxState(context, CHPP_STATE_FOOTER);
} else {
// Payload bearing packet
uint8_t *tempPayload;
if (context->rxDatagram.length == 0) {
// Packet is a new datagram
tempPayload = chppMalloc(context->rxHeader.length);
} else {
// Packet is a continuation of a fragmented datagram
tempPayload =
chppRealloc(context->rxDatagram.payload,
context->rxDatagram.length + context->rxHeader.length,
context->rxDatagram.length);
}
if (tempPayload == NULL) {
CHPP_LOG_OOM();
chppEnqueueTxPacket(context, CHPP_TRANSPORT_ERROR_OOM);
chppSetRxState(context, CHPP_STATE_PREAMBLE);
} else {
context->rxDatagram.payload = tempPayload;
context->rxDatagram.length += context->rxHeader.length;
chppSetRxState(context, CHPP_STATE_PAYLOAD);
}
}
}
return bytesToCopy;
}
/**
* Called by chppRxDataCb to copy the payload, the length of which is determined
* by the header, from the incoming data stream.
* Moves the Rx state to CHPP_STATE_FOOTER afterwards.
*
* @param context Maintains status for each transport layer instance.
* @param buf Input data
* @param len Length of input data in bytes
*
* @return Length of consumed data in bytes
*/
static size_t chppConsumePayload(struct ChppTransportState *context,
const uint8_t *buf, size_t len) {
CHPP_ASSERT(context->rxStatus.locInState < context->rxHeader.length);
size_t bytesToCopy =
MIN(len, (context->rxHeader.length - context->rxStatus.locInState));
memcpy(context->rxDatagram.payload + context->rxStatus.locInDatagram, buf,
bytesToCopy);
context->rxStatus.locInDatagram += bytesToCopy;
context->rxStatus.locInState += bytesToCopy;
if (context->rxStatus.locInState == context->rxHeader.length) {
// Entire packet payload copied. Move on
chppSetRxState(context, CHPP_STATE_FOOTER);
}
return bytesToCopy;
}
/**
* Called by chppRxDataCb to process the packet footer from the incoming data
* stream. Checks checksum, triggering the correct response (ACK / NACK).
* Moves the Rx state to CHPP_STATE_PREAMBLE afterwards.
*
* @param context Maintains status for each transport layer instance.
* @param buf Input data.
* @param len Length of input data in bytes.
*
* @return Length of consumed data in bytes.
*/
static size_t chppConsumeFooter(struct ChppTransportState *context,
const uint8_t *buf, size_t len) {
CHPP_ASSERT(context->rxStatus.locInState <
sizeof(struct ChppTransportFooter));
size_t bytesToCopy = MIN(
len, (sizeof(struct ChppTransportFooter) - context->rxStatus.locInState));
memcpy(((uint8_t *)&context->rxFooter) + context->rxStatus.locInState, buf,
bytesToCopy);
context->rxStatus.locInState += bytesToCopy;
if (context->rxStatus.locInState == sizeof(struct ChppTransportFooter)) {
// Footer copied. Move on
if (CHPP_TRANSPORT_GET_ERROR(context->rxHeader.packetCode) !=
CHPP_TRANSPORT_ERROR_NONE) {
CHPP_LOGE("RX packet len=%" PRIu16 " seq=%" PRIu8 " ackSeq=%" PRIu8
" attr=0x%" PRIx8 " ERR=%" PRIu8 " flags=0x%" PRIx8,
context->rxHeader.length, context->rxHeader.seq,
context->rxHeader.ackSeq,
(uint8_t)CHPP_TRANSPORT_GET_ATTR(context->rxHeader.packetCode),
(uint8_t)CHPP_TRANSPORT_GET_ERROR(context->rxHeader.packetCode),
context->rxHeader.flags);
} else {
CHPP_LOGD("RX packet len=%" PRIu16 " seq=%" PRIu8 " ackSeq=%" PRIu8
" attr=0x%" PRIx8 " err=%" PRIu8 " flags=0x%" PRIx8,
context->rxHeader.length, context->rxHeader.seq,
context->rxHeader.ackSeq,
(uint8_t)CHPP_TRANSPORT_GET_ATTR(context->rxHeader.packetCode),
(uint8_t)CHPP_TRANSPORT_GET_ERROR(context->rxHeader.packetCode),
context->rxHeader.flags);
}
if (CHPP_TRANSPORT_GET_ATTR(context->rxHeader.packetCode) ==
CHPP_TRANSPORT_ATTR_LOOPBACK_REQUEST) {
#ifdef CHPP_SERVICE_ENABLED_TRANSPORT_LOOPBACK
chppProcessTransportLoopbackRequest(context);
#endif
} else if (CHPP_TRANSPORT_GET_ATTR(context->rxHeader.packetCode) ==
CHPP_TRANSPORT_ATTR_LOOPBACK_RESPONSE) {
#ifdef CHPP_CLIENT_ENABLED_TRANSPORT_LOOPBACK
chppProcessTransportLoopbackResponse(context);
#endif
} else if (!chppRxChecksumIsOk(context)) {
CHPP_LOGE("Bad checksum. seq=%" PRIu8 " len=%" PRIu16,
context->rxHeader.seq, context->rxHeader.length);
chppAbortRxPacket(context);
chppEnqueueTxPacket(context, CHPP_TRANSPORT_ERROR_CHECKSUM); // NACK
} else if (CHPP_TRANSPORT_GET_ATTR(context->rxHeader.packetCode) ==
CHPP_TRANSPORT_ATTR_RESET) {
CHPP_LOGI("RX RESET packet seq=%" PRIu8 " err=%" PRIu8,
context->rxHeader.seq,
CHPP_TRANSPORT_GET_ERROR(context->rxHeader.packetCode));
chppMutexUnlock(&context->mutex);
chppReset(context, CHPP_TRANSPORT_ATTR_RESET_ACK,
CHPP_TRANSPORT_ERROR_NONE);
chppMutexLock(&context->mutex);
} else if (context->resetState == CHPP_RESET_STATE_PERMANENT_FAILURE) {
// Only a reset is accepted in this state
CHPP_LOGE("RX discarded in perm fail. seq=%" PRIu8 " len=%" PRIu16,
context->rxHeader.seq, context->rxHeader.length);
chppAbortRxPacket(context);
} else if (CHPP_TRANSPORT_GET_ATTR(context->rxHeader.packetCode) ==
CHPP_TRANSPORT_ATTR_RESET_ACK) {
CHPP_LOGI("RX RESET-ACK packet. seq=%" PRIu8, context->rxHeader.seq);
chppProcessResetAck(context);
} else if (context->resetState == CHPP_RESET_STATE_RESETTING) {
CHPP_LOGE("RX discarded in reset. seq=%" PRIu8 " len=%" PRIu16,
context->rxHeader.seq, context->rxHeader.length);
chppAbortRxPacket(context);
} else {
chppProcessRxPacket(context);
}
// Done with this packet. Wait for next packet
chppSetRxState(context, CHPP_STATE_PREAMBLE);
}
return bytesToCopy;
}
/**
* Discards of an incomplete Rx packet during receive (e.g. due to a timeout or
* bad checksum).
*
* @param context Maintains status for each transport layer instance.
*/
static void chppAbortRxPacket(struct ChppTransportState *context) {
size_t undoLen = 0;
size_t undoLoc = 0;
switch (context->rxStatus.state) {
case (CHPP_STATE_PREAMBLE):
case (CHPP_STATE_HEADER): {
break;
}
case (CHPP_STATE_PAYLOAD): {
undoLen = context->rxHeader.length;
undoLoc = context->rxStatus.locInState;
break;
}
case (CHPP_STATE_FOOTER): {
undoLen = context->rxHeader.length;
undoLoc = context->rxHeader.length;
break;
}
default: {
CHPP_DEBUG_ASSERT(false);
}
}
if (undoLen > 0) {
// Packet has a payload we need to discard of
CHPP_ASSERT(context->rxDatagram.length >= undoLen);
CHPP_ASSERT(context->rxStatus.locInDatagram >= undoLoc);
context->rxDatagram.length -= undoLen;
context->rxStatus.locInDatagram -= undoLoc;
if (context->rxDatagram.length == 0) {
// Discarding this packet == discarding entire datagram
CHPP_FREE_AND_NULLIFY(context->rxDatagram.payload);
} else {
// Discarding this packet == discarding part of datagram
uint8_t *tempPayload =
chppRealloc(context->rxDatagram.payload, context->rxDatagram.length,
context->rxDatagram.length + undoLen);
if (tempPayload == NULL) {
CHPP_LOG_OOM();
} else {
context->rxDatagram.payload = tempPayload;
}
}
}
chppSetRxState(context, CHPP_STATE_PREAMBLE);
}
/**
* Processes a request that is determined to be for a transport-layer loopback.
*
* @param context Maintains status for each transport layer instance.
*/
#ifdef CHPP_SERVICE_ENABLED_TRANSPORT_LOOPBACK
static void chppProcessTransportLoopbackRequest(
struct ChppTransportState *context) {
if (context->txStatus.linkBusy) {
CHPP_LOGE("Link busy; transport-loopback dropped");
} else {
context->txStatus.linkBusy = true;
context->pendingTxPacket.length = 0;
context->pendingTxPacket.length +=
chppAddPreamble(&context->pendingTxPacket.payload[0]);
struct ChppTransportHeader *txHeader =
(struct ChppTransportHeader *)&context->pendingTxPacket
.payload[context->pendingTxPacket.length];
context->pendingTxPacket.length += sizeof(*txHeader);
*txHeader = context->rxHeader;
txHeader->packetCode = CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(
CHPP_TRANSPORT_ATTR_LOOPBACK_RESPONSE, txHeader->packetCode);
size_t payloadLen =
MIN(context->rxDatagram.length, CHPP_TRANSPORT_TX_MTU_BYTES);
chppAppendToPendingTxPacket(&context->pendingTxPacket,
context->rxDatagram.payload, payloadLen);
CHPP_FREE_AND_NULLIFY(context->rxDatagram.payload);
chppClearRxDatagram(context);
chppAddFooter(&context->pendingTxPacket);
CHPP_LOGI("Trans-looping back len=%" PRIu16 " RX len=%" PRIuSIZE,
txHeader->length, context->rxDatagram.length);
enum ChppLinkErrorCode error = chppSendPendingPacket(context);
if (error != CHPP_LINK_ERROR_NONE_QUEUED) {
chppLinkSendDoneCb(&context->linkParams, error);
}
}
}
#endif
/**
* Processes a response that is determined to be for a transport-layer loopback.
*
* @param context Maintains status for each transport layer instance.
*/
#ifdef CHPP_CLIENT_ENABLED_TRANSPORT_LOOPBACK
static void chppProcessTransportLoopbackResponse(
struct ChppTransportState *context) {
if (context->transportLoopbackData.length != context->rxDatagram.length) {
CHPP_LOGE("rx len=%" PRIuSIZE " != tx len=%" PRIuSIZE,
context->rxDatagram.length,
context->transportLoopbackData.length - CHPP_PREAMBLE_LEN_BYTES -
sizeof(struct ChppTransportHeader) -
sizeof(struct ChppTransportFooter));
context->loopbackResult = CHPP_APP_ERROR_INVALID_LENGTH;
} else if (memcmp(context->rxDatagram.payload,
context->transportLoopbackData.payload,
context->rxDatagram.length) != 0) {
CHPP_LOGE("rx & tx data don't match: len=%" PRIuSIZE,
context->rxDatagram.length);
context->loopbackResult = CHPP_APP_ERROR_INVALID_ARG;
} else {
context->loopbackResult = CHPP_APP_ERROR_NONE;
CHPP_LOGD("Rx successful transport-loopback (payload len=%" PRIuSIZE ")",
context->rxDatagram.length);
}
context->transportLoopbackData.length = 0;
CHPP_FREE_AND_NULLIFY(context->transportLoopbackData.payload);
CHPP_FREE_AND_NULLIFY(context->rxDatagram.payload);
chppClearRxDatagram(context);
}
#endif
/**
* Method to invoke when the reset sequence is completed.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppSetResetComplete(struct ChppTransportState *context) {
context->resetState = CHPP_RESET_STATE_NONE;
context->resetCount = 0;
chppConditionVariableSignal(&context->resetCondVar);
}
/**
* An incoming reset-ack packet indicates that a reset is complete at the other
* end of the CHPP link.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppProcessResetAck(struct ChppTransportState *context) {
if (context->resetState == CHPP_RESET_STATE_NONE) {
CHPP_LOGE("Unexpected reset-ack seq=%" PRIu8 " code=0x%" PRIx8,
context->rxHeader.seq, context->rxHeader.packetCode);
// In a reset race condition with both endpoints sending resets and
// reset-acks, the sent resets and reset-acks will both have a sequence
// number of 0.
// By ignoring the received reset-ack, the next expected sequence number
// will remain at 1 (following a reset with a sequence number of 0).
// Therefore, no further correction is necessary (beyond ignoring the
// received reset-ack), as the next packet (e.g. discovery) will have a
// sequence number of 1.
chppDatagramProcessDoneCb(context, context->rxDatagram.payload);
chppClearRxDatagram(context);
return;
}
chppSetResetComplete(context);
context->rxStatus.receivedPacketCode = context->rxHeader.packetCode;
context->rxStatus.expectedSeq = context->rxHeader.seq + 1;
chppRegisterRxAck(context);
// TODO: Configure transport layer based on (optional?) received config
chppDatagramProcessDoneCb(context, context->rxDatagram.payload);
chppClearRxDatagram(context);
#ifdef CHPP_CLIENT_ENABLED_DISCOVERY
if (!context->appContext->isDiscoveryComplete) {
chppMutexUnlock(&context->mutex);
chppInitiateDiscovery(context->appContext);
chppMutexLock(&context->mutex);
} else {
chppEnqueueTxPacket(context, CHPP_TRANSPORT_ERROR_NONE);
}
#else
chppEnqueueTxPacket(context, CHPP_TRANSPORT_ERROR_NONE);
#endif
// Inform the App Layer that a reset has completed
chppMutexUnlock(&context->mutex);
chppAppProcessReset(context->appContext);
chppMutexLock(&context->mutex);
}
/**
* Process a received, checksum-validated packet.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppProcessRxPacket(struct ChppTransportState *context) {
uint64_t now = chppGetCurrentTimeNs();
context->rxStatus.lastGoodPacketTimeMs = (uint32_t)(now / CHPP_NSEC_PER_MSEC);
context->rxStatus.receivedPacketCode = context->rxHeader.packetCode;
chppRegisterRxAck(context);
enum ChppTransportErrorCode errorCode = CHPP_TRANSPORT_ERROR_NONE;
if (context->rxHeader.length > 0 &&
context->rxHeader.seq != context->rxStatus.expectedSeq) {
// Out of order payload
errorCode = CHPP_TRANSPORT_ERROR_ORDER;
}
if (context->txDatagramQueue.pending > 0 ||
errorCode == CHPP_TRANSPORT_ERROR_ORDER) {
// There are packets to send out (could be new or retx)
// Note: For a future ACK window > 1, makes more sense to cap the NACKs
// to one instead of flooding with out of order NACK errors.
chppEnqueueTxPacket(context, CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(
CHPP_TRANSPORT_ATTR_NONE, errorCode));
}
if (errorCode == CHPP_TRANSPORT_ERROR_ORDER) {
CHPP_LOGE("Out of order RX discarded seq=%" PRIu8 " expect=%" PRIu8
" len=%" PRIu16,
context->rxHeader.seq, context->rxStatus.expectedSeq,
context->rxHeader.length);
chppAbortRxPacket(context);
} else if (context->rxHeader.length > 0) {
// Process payload and send ACK
chppProcessRxPayload(context);
}
}
/**
* Process the payload of a validated payload-bearing packet and send out the
* ACK.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppProcessRxPayload(struct ChppTransportState *context) {
context->rxStatus.expectedSeq++; // chppProcessRxPacket() already confirms
// that context->rxStatus.expectedSeq ==
// context->rxHeader.seq, protecting against
// duplicate and out-of-order packets.
if (context->rxHeader.flags & CHPP_TRANSPORT_FLAG_UNFINISHED_DATAGRAM) {
// Packet is part of a larger datagram
CHPP_LOGD("RX packet for unfinished datagram. Seq=%" PRIu8 " len=%" PRIu16
". Datagram len=%" PRIuSIZE ". Sending ACK=%" PRIu8,
context->rxHeader.seq, context->rxHeader.length,
context->rxDatagram.length, context->rxStatus.expectedSeq);
} else {
// End of this packet is end of a datagram
// Send the payload to the App Layer
// Note that it is up to the app layer to free the buffer using
// chppDatagramProcessDoneCb() after is is done.
chppMutexUnlock(&context->mutex);
chppAppProcessRxDatagram(context->appContext, context->rxDatagram.payload,
context->rxDatagram.length);
chppMutexLock(&context->mutex);
CHPP_LOGD("App layer processed datagram with len=%" PRIuSIZE
", ending packet seq=%" PRIu8 ", len=%" PRIu16
". Sending ACK=%" PRIu8 " (previously sent=%" PRIu8 ")",
context->rxDatagram.length, context->rxHeader.seq,
context->rxHeader.length, context->rxStatus.expectedSeq,
context->txStatus.sentAckSeq);
chppClearRxDatagram(context);
}
// Send ACK because we had RX a payload-bearing packet
chppEnqueueTxPacket(context, CHPP_TRANSPORT_ERROR_NONE);
}
/**
* Resets the incoming datagram state, i.e. after the datagram has been
* processed.
* Note that this is independent from freeing the payload. It is up to the app
* layer to inform the transport layer using chppDatagramProcessDoneCb() once it
* is done with the buffer so it is freed.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppClearRxDatagram(struct ChppTransportState *context) {
context->rxStatus.locInDatagram = 0;
context->rxDatagram.length = 0;
context->rxDatagram.payload = NULL;
}
/**
* Validates the checksum of an incoming packet.
*
* @param context Maintains status for each transport layer instance.
*
* @return True if and only if the checksum is correct.
*/
static bool chppRxChecksumIsOk(const struct ChppTransportState *context) {
uint32_t crc = chppCrc32(0, (const uint8_t *)&context->rxHeader,
sizeof(context->rxHeader));
crc = chppCrc32(
crc,
&context->rxDatagram
.payload[context->rxStatus.locInDatagram - context->rxHeader.length],
context->rxHeader.length);
#ifndef CHPP_CHECKSUM_ENABLED
CHPP_LOGD("Assuming Rx checksum 0x%" PRIx32 " = calculated 0x%" PRIx32,
context->rxFooter.checksum, crc);
crc = context->rxFooter.checksum;
#endif // CHPP_CHECKSUM_ENABLED
if (context->rxFooter.checksum != crc) {
CHPP_LOGE("Rx BAD checksum: footer=0x%" PRIx32 ", calc=0x%" PRIx32
", len=%" PRIuSIZE,
context->rxFooter.checksum, crc,
(size_t)(context->rxHeader.length +
sizeof(struct ChppTransportHeader)));
}
return (context->rxFooter.checksum == crc);
}
/**
* Performs consistency checks on received packet header to determine if it is
* obviously corrupt / invalid / duplicate / out-of-order.
*
* @param context Maintains status for each transport layer instance.
*
* @return True if and only if header passes checks
*/
static enum ChppTransportErrorCode chppRxHeaderCheck(
const struct ChppTransportState *context) {
enum ChppTransportErrorCode result = CHPP_TRANSPORT_ERROR_NONE;
if (context->rxHeader.length > CHPP_TRANSPORT_RX_MTU_BYTES) {
result = CHPP_TRANSPORT_ERROR_HEADER;
}
if (result != CHPP_TRANSPORT_ERROR_NONE) {
CHPP_LOGE("Bad header. seq=%" PRIu8 " expect=%" PRIu8 " len=%" PRIu16
" err=%" PRIu8,
context->rxHeader.seq, context->rxStatus.expectedSeq,
context->rxHeader.length, result);
}
return result;
}
/**
* Registers a received ACK. If an outgoing datagram is fully ACKed, it is
* popped from the Tx queue.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppRegisterRxAck(struct ChppTransportState *context) {
uint8_t rxAckSeq = context->rxHeader.ackSeq;
if (context->rxStatus.receivedAckSeq != rxAckSeq) {
// A previously sent packet was actually ACKed
// Note: For a future ACK window >1, we should loop by # of ACKed packets
if ((uint8_t)(context->rxStatus.receivedAckSeq + 1) != rxAckSeq) {
CHPP_LOGE("Out of order ACK: last=%" PRIu8 " rx=%" PRIu8,
context->rxStatus.receivedAckSeq, rxAckSeq);
} else {
CHPP_LOGD(
"ACK received (last registered=%" PRIu8 ", received=%" PRIu8
"). Prior queue depth=%" PRIu8 ", front datagram=%" PRIu8
" at loc=%" PRIuSIZE " of len=%" PRIuSIZE,
context->rxStatus.receivedAckSeq, rxAckSeq,
context->txDatagramQueue.pending, context->txDatagramQueue.front,
context->txStatus.ackedLocInDatagram,
context->txDatagramQueue.datagram[context->txDatagramQueue.front]
.length);
context->rxStatus.receivedAckSeq = rxAckSeq;
if (context->txStatus.txAttempts > 1) {
CHPP_LOGW("Seq %" PRIu8 " ACK'd after %" PRIuSIZE " reTX",
context->rxHeader.seq, context->txStatus.txAttempts - 1);
}
context->txStatus.txAttempts = 0;
// Process and if necessary pop from Tx datagram queue
context->txStatus.ackedLocInDatagram += CHPP_TRANSPORT_TX_MTU_BYTES;
if (context->txStatus.ackedLocInDatagram >=
context->txDatagramQueue.datagram[context->txDatagramQueue.front]
.length) {
// We are done with datagram
context->txStatus.ackedLocInDatagram = 0;
context->txStatus.sentLocInDatagram = 0;
// Note: For a future ACK window >1, we need to update the queue
// position of the datagram being sent as well (relative to the
// front-of-queue). e.g. context->txStatus.datagramBeingSent--;
if (chppDequeueTxDatagram(context) == 0) {
context->txStatus.hasPacketsToSend = false;
}
}
}
} // else {nothing was ACKed}
}
/**
* Enqueues an outgoing packet with the specified error code. The error code
* refers to the optional reason behind a NACK, if any. An error code of
* CHPP_TRANSPORT_ERROR_NONE indicates that no error was reported (i.e. either
* an ACK or an implicit NACK)
*
* Note that the decision as to wheather to include a payload will be taken
* later, i.e. before the packet is being sent out from the queue. A payload is
* expected to be included if there is one or more pending Tx datagrams and we
* are not waiting on a pending ACK. A (repeat) payload is also included if we
* have received a NACK.
*
* Further note that even for systems with an ACK window greater than one, we
* would only need to send an ACK for the last (correct) packet, hence we only
* need a queue length of one here.
*
* @param context Maintains status for each transport layer instance.
* @param packetCode Error code and packet attributes to be sent.
*/
static void chppEnqueueTxPacket(struct ChppTransportState *context,
uint8_t packetCode) {
context->txStatus.hasPacketsToSend = true;
context->txStatus.packetCodeToSend = packetCode;
CHPP_LOGD("chppEnqueueTxPacket called with packet code=0x%" PRIx8,
packetCode);
// Notifies the main CHPP Transport Layer to run chppTransportDoWork().
chppNotifierSignal(&context->notifier, CHPP_TRANSPORT_SIGNAL_EVENT);
}
/**
* Adds a CHPP preamble to the beginning of buf.
*
* @param buf The CHPP preamble will be added to buf.
*
* @return Size of the added preamble.
*/
static size_t chppAddPreamble(uint8_t *buf) {
buf[0] = CHPP_PREAMBLE_BYTE_FIRST;
buf[1] = CHPP_PREAMBLE_BYTE_SECOND;
return CHPP_PREAMBLE_LEN_BYTES;
}
/**
* Adds the packet header to pendingTxPacket.
*
* @param context Maintains status for each transport layer instance.
*
* @return Pointer to the added packet header.
*/
static struct ChppTransportHeader *chppAddHeader(
struct ChppTransportState *context) {
struct ChppTransportHeader *txHeader =
(struct ChppTransportHeader *)&context->pendingTxPacket
.payload[context->pendingTxPacket.length];
context->pendingTxPacket.length += sizeof(*txHeader);
txHeader->packetCode = context->txStatus.packetCodeToSend;
context->txStatus.packetCodeToSend = CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(
context->txStatus.packetCodeToSend, CHPP_TRANSPORT_ERROR_NONE);
txHeader->ackSeq = context->rxStatus.expectedSeq;
context->txStatus.sentAckSeq = txHeader->ackSeq;
return txHeader;
}
/**
* Adds the packet payload to pendingTxPacket.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppAddPayload(struct ChppTransportState *context) {
struct ChppTransportHeader *txHeader =
(struct ChppTransportHeader *)&context->pendingTxPacket
.payload[CHPP_PREAMBLE_LEN_BYTES];
size_t remainingBytes =
context->txDatagramQueue.datagram[context->txDatagramQueue.front].length -
context->txStatus.ackedLocInDatagram;
CHPP_LOGD("Adding payload to seq=%" PRIu8 ", remainingBytes=%" PRIuSIZE
" of pending datagrams=%" PRIu8,
txHeader->seq, remainingBytes, context->txDatagramQueue.pending);
if (remainingBytes > CHPP_TRANSPORT_TX_MTU_BYTES) {
// Send an unfinished part of a datagram
txHeader->flags = CHPP_TRANSPORT_FLAG_UNFINISHED_DATAGRAM;
txHeader->length = CHPP_TRANSPORT_TX_MTU_BYTES;
} else {
// Send final (or only) part of a datagram
txHeader->flags = CHPP_TRANSPORT_FLAG_FINISHED_DATAGRAM;
txHeader->length = (uint16_t)remainingBytes;
}
// Copy payload
chppAppendToPendingTxPacket(
&context->pendingTxPacket,
context->txDatagramQueue.datagram[context->txDatagramQueue.front]
.payload +
context->txStatus.ackedLocInDatagram,
txHeader->length);
context->txStatus.sentLocInDatagram =
context->txStatus.ackedLocInDatagram + txHeader->length;
}
/**
* Adds a footer (containing the checksum) to a packet.
*
* @param packet The packet from which to calculate the checksum and append the
* footer.
*/
static void chppAddFooter(struct PendingTxPacket *packet) {
struct ChppTransportFooter footer;
footer.checksum = chppCrc32(0, &packet->payload[CHPP_PREAMBLE_LEN_BYTES],
packet->length - CHPP_PREAMBLE_LEN_BYTES);
CHPP_LOGD("Adding transport footer. Checksum=0x%" PRIx32 ", len: %" PRIuSIZE
" -> %" PRIuSIZE,
footer.checksum, packet->length, packet->length + sizeof(footer));
chppAppendToPendingTxPacket(packet, (const uint8_t *)&footer, sizeof(footer));
}
/**
* Dequeues the datagram at the front of the datagram tx queue, if any, and
* frees the payload. Returns the number of remaining datagrams in the queue.
*
* @param context Maintains status for each transport layer instance.
* @return Number of remaining datagrams in queue.
*/
size_t chppDequeueTxDatagram(struct ChppTransportState *context) {
if (context->txDatagramQueue.pending == 0) {
CHPP_LOGE("Can not dequeue datagram because queue is empty");
} else {
CHPP_LOGD("Dequeuing front datagram with index=%" PRIu8 ", len=%" PRIuSIZE
". Queue depth: %" PRIu8 "->%d",
context->txDatagramQueue.front,
context->txDatagramQueue.datagram[context->txDatagramQueue.front]
.length,
context->txDatagramQueue.pending,
context->txDatagramQueue.pending - 1);
CHPP_FREE_AND_NULLIFY(
context->txDatagramQueue.datagram[context->txDatagramQueue.front]
.payload);
context->txDatagramQueue.datagram[context->txDatagramQueue.front].length =
0;
context->txDatagramQueue.pending--;
context->txDatagramQueue.front++;
context->txDatagramQueue.front %= CHPP_TX_DATAGRAM_QUEUE_LEN;
}
return context->txDatagramQueue.pending;
}
/**
* Flushes the Tx datagram queue of any pending packets.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppClearTxDatagramQueue(struct ChppTransportState *context) {
while (context->txDatagramQueue.pending > 0) {
chppDequeueTxDatagram(context);
}
context->txStatus.hasPacketsToSend = false;
}
/**
* Sends out a pending outgoing packet based on a notification from
* chppEnqueueTxPacket().
*
* A payload may or may not be included be according the following:
* No payload: If Tx datagram queue is empty OR we are waiting on a pending ACK.
* New payload: If there is one or more pending Tx datagrams and we are not
* waiting on a pending ACK.
* Repeat payload: If we haven't received an ACK yet for our previous payload,
* i.e. we have registered an explicit or implicit NACK.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppTransportDoWork(struct ChppTransportState *context) {
bool havePacketForLinkLayer = false;
struct ChppTransportHeader *txHeader;
struct ChppAppHeader *timeoutResponse = NULL;
// Note: For a future ACK window >1, there needs to be a loop outside the lock
chppMutexLock(&context->mutex);
if (context->txStatus.hasPacketsToSend && !context->txStatus.linkBusy) {
// There are pending outgoing packets and the link isn't busy
havePacketForLinkLayer = true;
context->txStatus.linkBusy = true;
context->pendingTxPacket.length = 0;
memset(&context->pendingTxPacket.payload, 0, CHPP_LINK_TX_MTU_BYTES);
// Add preamble
context->pendingTxPacket.length +=
chppAddPreamble(&context->pendingTxPacket.payload[0]);
// Add header
txHeader = chppAddHeader(context);
// If applicable, add payload
if ((context->txDatagramQueue.pending > 0)) {
// Note: For a future ACK window >1, we need to rewrite this payload
// adding code to base the next packet on the sent location within the
// last sent datagram, except for the case of a NACK (explicit or
// timeout). For a NACK, we would need to base the next packet off the
// last ACKed location.
txHeader->seq = context->rxStatus.receivedAckSeq;
context->txStatus.sentSeq = txHeader->seq;
if (context->txStatus.txAttempts > CHPP_TRANSPORT_MAX_RETX &&
context->resetState != CHPP_RESET_STATE_RESETTING) {
CHPP_LOGE("Resetting after %d retries", CHPP_TRANSPORT_MAX_RETX);
havePacketForLinkLayer = false;
chppMutexUnlock(&context->mutex);
chppReset(context, CHPP_TRANSPORT_ATTR_RESET,
CHPP_TRANSPORT_ERROR_MAX_RETRIES);
chppMutexLock(&context->mutex);
} else {
chppAddPayload(context);
context->txStatus.txAttempts++;
}
} else {
// No payload
context->txStatus.hasPacketsToSend = false;
}
chppAddFooter(&context->pendingTxPacket);
} else {
CHPP_LOGW(
"DoWork nothing to send. hasPackets=%d, linkBusy=%d, pending=%" PRIu8
", Rx ACK=%" PRIu8 ", Tx seq=%" PRIu8 ", RX state=%" PRIu8,
context->txStatus.hasPacketsToSend, context->txStatus.linkBusy,
context->txDatagramQueue.pending, context->rxStatus.receivedAckSeq,
context->txStatus.sentSeq, context->rxStatus.state);
}
chppMutexUnlock(&context->mutex);
if (havePacketForLinkLayer) {
CHPP_LOGD("TX->Link: len=%" PRIuSIZE " flags=0x%" PRIx8 " code=0x%" PRIx8
" ackSeq=%" PRIu8 " seq=%" PRIu8 " payloadLen=%" PRIu16
" pending=%" PRIu8,
context->pendingTxPacket.length, txHeader->flags,
txHeader->packetCode, txHeader->ackSeq, txHeader->seq,
txHeader->length, context->txDatagramQueue.pending);
enum ChppLinkErrorCode error = chppSendPendingPacket(context);
if (error != CHPP_LINK_ERROR_NONE_QUEUED) {
// Platform implementation for platformLinkSend() is synchronous or an
// error occurred. In either case, we should call chppLinkSendDoneCb()
// here to release the contents of pendingTxPacket.
chppLinkSendDoneCb(&context->linkParams, error);
}
}
#ifdef CHPP_CLIENT_ENABLED
timeoutResponse = chppTransportGetClientRequestTimeoutResponse(context);
#endif
if (timeoutResponse != NULL) {
CHPP_LOGE("Response timeout H#%" PRIu8 " cmd=%" PRIu16 " ID=%" PRIu8,
timeoutResponse->handle, timeoutResponse->command,
timeoutResponse->transaction);
chppAppProcessRxDatagram(context->appContext, (uint8_t *)timeoutResponse,
sizeof(struct ChppAppHeader));
}
}
/**
* Appends data from a buffer of length len to a PendingTxPacket, updating its
* length.
*
* @param packet The PendingTxBuffer to be appended to.
* @param buf Input data to be copied from.
* @param len Length of input data in bytes.
*/
static void chppAppendToPendingTxPacket(struct PendingTxPacket *packet,
const uint8_t *buf, size_t len) {
CHPP_ASSERT(packet->length + len <= sizeof(packet->payload));
memcpy(&packet->payload[packet->length], buf, len);
packet->length += len;
}
/**
* @return A human readable form of the packet attribution.
*/
static const char *chppGetPacketAttrStr(uint8_t packetCode) {
switch (CHPP_TRANSPORT_GET_ATTR(packetCode)) {
case CHPP_TRANSPORT_ATTR_RESET:
return "(RESET)";
case CHPP_TRANSPORT_ATTR_RESET_ACK:
return "(RESET-ACK)";
case CHPP_TRANSPORT_ATTR_LOOPBACK_REQUEST:
return "(LOOP-REQ)";
case CHPP_TRANSPORT_ATTR_LOOPBACK_RESPONSE:
return "(LOOP-RES)";
default:
return "";
}
}
/**
* Enqueues an outgoing datagram of a specified length. The payload must have
* been allocated by the caller using chppMalloc.
*
* If enqueueing is successful, the payload will be freed by this function
* once it has been sent out.
* If enqueueing is unsuccessful, it is up to the caller to decide when or if
* to free the payload and/or resend it later.
*
* @param context Maintains status for each transport layer instance.
* @param packetCode Error code and packet attributes to be sent.
* @param buf Datagram payload allocated through chppMalloc. Cannot be null.
* @param len Datagram length in bytes.
*
* @return True informs the sender that the datagram was successfully enqueued.
* False informs the sender that the queue was full.
*/
static bool chppEnqueueTxDatagram(struct ChppTransportState *context,
uint8_t packetCode, void *buf, size_t len) {
bool success = false;
if (len == 0) {
CHPP_LOGE("Enqueue tx with len 0");
CHPP_DEBUG_ASSERT(false);
} else {
if ((len < sizeof(struct ChppAppHeader)) ||
(CHPP_TRANSPORT_GET_ATTR(packetCode) != 0)) {
CHPP_LOGI("Enqueue TX: code=0x%" PRIx8 "%s len=%" PRIuSIZE
" pending=%" PRIu8,
packetCode, chppGetPacketAttrStr(packetCode), len,
(uint8_t)(context->txDatagramQueue.pending + 1));
} else {
struct ChppAppHeader *header = buf;
CHPP_LOGI(
"Enqueue TX: len=%" PRIuSIZE " H#%" PRIu8 " type=0x%" PRIx8
" ID=%" PRIu8 " err=%" PRIu8 " cmd=0x%" PRIx16 " pending=%" PRIu8,
len, header->handle, header->type, header->transaction, header->error,
header->command, (uint8_t)(context->txDatagramQueue.pending + 1));
}
chppMutexLock(&context->mutex);
if (context->txDatagramQueue.pending >= CHPP_TX_DATAGRAM_QUEUE_LEN) {
CHPP_LOGE("Cannot enqueue TX datagram");
} else {
uint16_t end =
(context->txDatagramQueue.front + context->txDatagramQueue.pending) %
CHPP_TX_DATAGRAM_QUEUE_LEN;
context->txDatagramQueue.datagram[end].length = len;
context->txDatagramQueue.datagram[end].payload = buf;
context->txDatagramQueue.pending++;
if (context->txDatagramQueue.pending == 1) {
// Queue was empty prior. Need to kickstart transmission.
chppEnqueueTxPacket(context, packetCode);
}
success = true;
}
chppMutexUnlock(&context->mutex);
}
return success;
}
/**
* Sends the pending outgoing packet (context->pendingTxPacket) over to the link
* layer using chppPlatformLinkSend() and updates the last Tx packet time.
*
* @param context Maintains status for each transport layer instance.
*
* @return Result of chppPlatformLinkSend().
*/
enum ChppLinkErrorCode chppSendPendingPacket(
struct ChppTransportState *context) {
enum ChppLinkErrorCode error = chppPlatformLinkSend(
&context->linkParams, context->pendingTxPacket.payload,
context->pendingTxPacket.length);
context->txStatus.lastTxTimeNs = chppGetCurrentTimeNs();
return error;
}
/**
* Resets the transport state, maintaining the link layer parameters.
*
* @param context Maintains status for each transport layer instance.
*/
static void chppResetTransportContext(struct ChppTransportState *context) {
memset(&context->rxStatus, 0, sizeof(struct ChppRxStatus));
memset(&context->rxDatagram, 0, sizeof(struct ChppDatagram));
memset(&context->txStatus, 0, sizeof(struct ChppTxStatus));
memset(&context->txDatagramQueue, 0, sizeof(struct ChppTxDatagramQueue));
context->txStatus.sentSeq =
UINT8_MAX; // So that the seq # of the first TX packet is 0
context->resetState = CHPP_RESET_STATE_RESETTING;
}
/**
* Re-initializes the CHPP transport and app layer states, e.g. when receiving a
* reset packet, and sends out a reset or reset-ack packet over the link in
* order to reset the remote side or inform the counterpart of a reset,
* respectively.
*
* If the link layer is busy, this function will reset the link as well.
* This function retains and restores the platform-specific values of
* transportContext.linkParams.
*
* @param transportContext Maintains status for each transport layer instance.
* @param resetType Type of reset to send after resetting CHPP (reset vs.
* reset-ack), as defined in the ChppTransportPacketAttributes struct.
* @param error Provides the error that led to the reset.
*/
static void chppReset(struct ChppTransportState *transportContext,
enum ChppTransportPacketAttributes resetType,
enum ChppTransportErrorCode error) {
// TODO: Configure transport layer based on (optional?) received config before
// datagram is wiped
chppMutexLock(&transportContext->mutex);
struct ChppAppState *appContext = transportContext->appContext;
transportContext->resetState = CHPP_RESET_STATE_RESETTING;
// Reset asynchronous link layer if busy
if (transportContext->txStatus.linkBusy == true) {
// TODO: Give time for link layer to finish before resorting to a reset
chppPlatformLinkReset(&transportContext->linkParams);
}
// Free memory allocated for any ongoing rx datagrams
if (transportContext->rxDatagram.length > 0) {
transportContext->rxDatagram.length = 0;
CHPP_FREE_AND_NULLIFY(transportContext->rxDatagram.payload);
}
// Free memory allocated for any ongoing tx datagrams
for (size_t i = 0; i < CHPP_TX_DATAGRAM_QUEUE_LEN; i++) {
if (transportContext->txDatagramQueue.datagram[i].length > 0) {
CHPP_FREE_AND_NULLIFY(
transportContext->txDatagramQueue.datagram[i].payload);
}
}
// Reset Transport Layer but restore Rx sequence number and packet code
// (context->rxHeader is not wiped in reset)
chppResetTransportContext(transportContext);
transportContext->rxStatus.receivedPacketCode =
transportContext->rxHeader.packetCode;
transportContext->rxStatus.expectedSeq = transportContext->rxHeader.seq + 1;
// Send reset or reset-ACK
chppMutexUnlock(&transportContext->mutex);
chppTransportSendReset(transportContext, resetType, error);
// Inform the App Layer that a reset has completed
if (resetType == CHPP_TRANSPORT_ATTR_RESET_ACK) {
chppAppProcessReset(appContext);
} // else reset is sent out. Rx of reset-ack will indicate completion.
}
/**
* Checks for a timed out client request and generates a timeout response if a
* client request timeout has occurred.
*
* @param context Maintains status for each transport layer instance.
* @return App layer response header if a timeout has occurred. Null otherwise.
*/
#ifdef CHPP_CLIENT_ENABLED
struct ChppAppHeader *chppTransportGetClientRequestTimeoutResponse(
struct ChppTransportState *context) {
struct ChppAppHeader *response = NULL;
bool timeoutClientFound = false;
uint8_t timedOutClient;
uint16_t timedOutCmd;
chppMutexLock(&context->mutex);
if (context->appContext->nextRequestTimeoutNs <= chppGetCurrentTimeNs()) {
// Determine which request has timed out
uint64_t lowestTimeout = CHPP_TIME_MAX;
for (uint8_t clientIdx = 0;
clientIdx < context->appContext->registeredClientCount; clientIdx++) {
for (uint16_t cmdIdx = 0;
cmdIdx <
context->appContext->registeredClients[clientIdx]->rRStateCount;
cmdIdx++) {
struct ChppRequestResponseState *rRState =
&context->appContext->registeredClientStates[clientIdx]
->rRStates[cmdIdx];
if (rRState->requestState == CHPP_REQUEST_STATE_REQUEST_SENT &&
rRState->responseTimeNs != CHPP_TIME_NONE &&
rRState->responseTimeNs < lowestTimeout) {
lowestTimeout = rRState->responseTimeNs;
timedOutClient = clientIdx;
timedOutCmd = cmdIdx;
timeoutClientFound = true;
}
}
}
if (!timeoutClientFound) {
CHPP_LOGE("Timeout at %" PRIu64 " but no client",
context->appContext->nextRequestTimeoutNs / CHPP_NSEC_PER_MSEC);
chppClientRecalculateNextTimeout(context->appContext);
}
}
if (timeoutClientFound) {
CHPP_LOGE("Client=%" PRIu8 " cmd=%" PRIu16 " timed out", timedOutClient,
timedOutCmd);
response = chppMalloc(sizeof(struct ChppAppHeader));
if (response == NULL) {
CHPP_LOG_OOM();
} else {
response->handle = CHPP_SERVICE_HANDLE_OF_INDEX(timedOutClient);
response->type = CHPP_MESSAGE_TYPE_SERVICE_RESPONSE;
response->transaction =
context->appContext->registeredClientStates[timedOutClient]
->rRStates[timedOutCmd]
.transaction;
response->error = CHPP_APP_ERROR_TIMEOUT;
response->command = timedOutCmd;
}
}
chppMutexUnlock(&context->mutex);
return response;
}
#endif
/************************************************
* Public Functions
***********************************************/
void chppTransportInit(struct ChppTransportState *transportContext,
struct ChppAppState *appContext) {
CHPP_NOT_NULL(transportContext);
CHPP_NOT_NULL(appContext);
CHPP_ASSERT_LOG(!transportContext->initialized,
"CHPP transport already initialized");
CHPP_LOGD("Initializing CHPP transport");
chppResetTransportContext(transportContext);
chppMutexInit(&transportContext->mutex);
chppNotifierInit(&transportContext->notifier);
chppConditionVariableInit(&transportContext->resetCondVar);
transportContext->appContext = appContext;
transportContext->initialized = true;
chppPlatformLinkInit(&transportContext->linkParams);
}
void chppTransportDeinit(struct ChppTransportState *transportContext) {
CHPP_NOT_NULL(transportContext);
CHPP_ASSERT_LOG(transportContext->initialized,
"CHPP transport already deinitialized");
chppPlatformLinkDeinit(&transportContext->linkParams);
chppConditionVariableDeinit(&transportContext->resetCondVar);
chppNotifierDeinit(&transportContext->notifier);
chppMutexDeinit(&transportContext->mutex);
chppClearTxDatagramQueue(transportContext);
transportContext->initialized = false;
}
bool chppTransportWaitForResetComplete(
struct ChppTransportState *transportContext, uint64_t timeoutMs) {
bool success = true;
chppMutexLock(&transportContext->mutex);
while (success && transportContext->resetState != CHPP_RESET_STATE_NONE) {
success = chppConditionVariableTimedWait(&transportContext->resetCondVar,
&transportContext->mutex,
timeoutMs * CHPP_NSEC_PER_MSEC);
}
chppMutexUnlock(&transportContext->mutex);
return success;
}
bool chppRxDataCb(struct ChppTransportState *context, const uint8_t *buf,
size_t len) {
CHPP_NOT_NULL(buf);
CHPP_NOT_NULL(context);
chppMutexLock(&context->mutex);
if (context->rxStatus.state != CHPP_STATE_PREAMBLE &&
chppGetCurrentTimeNs() >
context->rxStatus.packetStartTimeNs + CHPP_TRANSPORT_RX_TIMEOUT_NS) {
CHPP_LOGE("Packet RX timeout");
chppAbortRxPacket(context);
}
chppMutexUnlock(&context->mutex);
CHPP_LOGD("RX %" PRIuSIZE " bytes: state=%" PRIu8, len,
context->rxStatus.state);
uint64_t now = chppGetCurrentTimeNs();
context->rxStatus.lastDataTimeMs = (uint32_t)(now / CHPP_NSEC_PER_MSEC);
context->rxStatus.numTotalDataBytes += len;
size_t consumed = 0;
while (consumed < len) {
chppMutexLock(&context->mutex);
// TODO: Investigate fine-grained locking, e.g. separating variables that
// are only relevant to a particular path.
// Also consider removing some of the finer-grained locks altogether for
// non-multithreaded environments with clear documentation.
switch (context->rxStatus.state) {
case CHPP_STATE_PREAMBLE:
consumed +=
chppConsumePreamble(context, &buf[consumed], len - consumed);
break;
case CHPP_STATE_HEADER:
consumed += chppConsumeHeader(context, &buf[consumed], len - consumed);
break;
case CHPP_STATE_PAYLOAD:
consumed += chppConsumePayload(context, &buf[consumed], len - consumed);
break;
case CHPP_STATE_FOOTER:
consumed += chppConsumeFooter(context, &buf[consumed], len - consumed);
break;
default:
CHPP_LOGE("Invalid RX state %" PRIu8, context->rxStatus.state);
CHPP_DEBUG_ASSERT(false);
chppSetRxState(context, CHPP_STATE_PREAMBLE);
}
chppMutexUnlock(&context->mutex);
}
return (context->rxStatus.state == CHPP_STATE_PREAMBLE &&
context->rxStatus.locInState == 0);
}
void chppRxPacketCompleteCb(struct ChppTransportState *context) {
chppMutexLock(&context->mutex);
if (context->rxStatus.state != CHPP_STATE_PREAMBLE) {
CHPP_LOGE("Rx pkt ended early: state=%" PRIu8 " packet=%" PRIu8
" len=%" PRIu16,
context->rxStatus.state, context->rxHeader.seq,
context->rxHeader.length);
chppAbortRxPacket(context);
chppEnqueueTxPacket(context, CHPP_TRANSPORT_ERROR_HEADER); // NACK
}
chppMutexUnlock(&context->mutex);
}
bool chppEnqueueTxDatagramOrFail(struct ChppTransportState *context, void *buf,
size_t len) {
bool success = false;
bool resetting = (context->resetState == CHPP_RESET_STATE_RESETTING);
if (len == 0) {
CHPP_LOGE("Enqueue datagram len 0");
CHPP_DEBUG_ASSERT(false);
} else if (resetting || !chppEnqueueTxDatagram(
context, CHPP_TRANSPORT_ERROR_NONE, buf, len)) {
uint8_t *handle = buf;
CHPP_LOGE("Resetting=%d. Discarding %" PRIuSIZE " bytes for H#%" PRIu8,
resetting, len, *handle);
CHPP_FREE_AND_NULLIFY(buf);
} else {
success = true;
}
return success;
}
// TODO(b/192359485): Consider removing this function, or making it more robust.
void chppEnqueueTxErrorDatagram(struct ChppTransportState *context,
enum ChppTransportErrorCode errorCode) {
bool resetting = (context->resetState == CHPP_RESET_STATE_RESETTING);
if (resetting) {
CHPP_LOGE("Discarding app error 0x%" PRIx8 " (resetting)", errorCode);
} else {
switch (errorCode) {
case CHPP_TRANSPORT_ERROR_OOM: {
CHPP_LOGD("App layer enqueueing CHPP_TRANSPORT_ERROR_OOM");
break;
}
case CHPP_TRANSPORT_ERROR_APPLAYER: {
CHPP_LOGD("App layer enqueueing CHPP_TRANSPORT_ERROR_APPLAYER");
break;
}
default: {
// App layer should not invoke any other errors
CHPP_LOGE("App enqueueing invalid err=%" PRIu8, errorCode);
CHPP_DEBUG_ASSERT(false);
}
}
chppEnqueueTxPacket(context, CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(
CHPP_TRANSPORT_ATTR_NONE, errorCode));
}
}
uint64_t chppTransportGetTimeUntilNextDoWorkNs(
struct ChppTransportState *context) {
uint64_t currentTime = chppGetCurrentTimeNs();
uint64_t nextDoWorkTime = context->appContext->nextRequestTimeoutNs;
if (context->txStatus.hasPacketsToSend ||
context->resetState == CHPP_RESET_STATE_RESETTING) {
nextDoWorkTime =
MIN(nextDoWorkTime, CHPP_TRANSPORT_TX_TIMEOUT_NS +
((context->txStatus.lastTxTimeNs == 0)
? currentTime
: context->txStatus.lastTxTimeNs));
}
CHPP_LOGD("NextDoWork=%" PRIu64 " currentTime=%" PRIu64 " delta=%" PRId64,
nextDoWorkTime / CHPP_NSEC_PER_MSEC,
currentTime / CHPP_NSEC_PER_MSEC,
(nextDoWorkTime - currentTime) / (int64_t)CHPP_NSEC_PER_MSEC);
if (nextDoWorkTime == CHPP_TIME_MAX) {
return CHPP_TRANSPORT_TIMEOUT_INFINITE;
} else if (nextDoWorkTime <= currentTime) {
return CHPP_TRANSPORT_TIMEOUT_IMMEDIATE;
} else {
return nextDoWorkTime - currentTime;
}
}
void chppWorkThreadStart(struct ChppTransportState *context) {
chppTransportSendReset(context, CHPP_TRANSPORT_ATTR_RESET,
CHPP_TRANSPORT_ERROR_NONE);
CHPP_LOGD("CHPP Work Thread started");
uint32_t signals;
do {
uint64_t timeout = chppTransportGetTimeUntilNextDoWorkNs(context);
if (timeout == CHPP_TRANSPORT_TIMEOUT_IMMEDIATE) {
signals = chppNotifierGetSignal(&context->notifier);
} else if (timeout == CHPP_TRANSPORT_TIMEOUT_INFINITE) {
signals = chppNotifierWait(&context->notifier);
} else {
signals = chppNotifierTimedWait(&context->notifier, timeout);
}
} while (chppWorkThreadHandleSignal(context, signals));
}
bool chppWorkThreadHandleSignal(struct ChppTransportState *context,
uint32_t signals) {
if (signals & CHPP_TRANSPORT_SIGNAL_EXIT) {
CHPP_LOGD("CHPP Work Thread terminated");
return false;
}
if (signals & CHPP_TRANSPORT_SIGNAL_EVENT) {
chppTransportDoWork(context);
}
if (signals == 0) {
// Triggered by timeout
if (chppGetCurrentTimeNs() - context->txStatus.lastTxTimeNs >=
CHPP_TRANSPORT_TX_TIMEOUT_NS) {
CHPP_LOGE("ACK timeout. Tx t=%" PRIu64,
context->txStatus.lastTxTimeNs / CHPP_NSEC_PER_MSEC);
chppTransportDoWork(context);
}
if ((context->resetState == CHPP_RESET_STATE_RESETTING) &&
(chppGetCurrentTimeNs() - context->resetTimeNs >=
CHPP_TRANSPORT_RESET_TIMEOUT_NS)) {
if (context->resetCount + 1 < CHPP_TRANSPORT_MAX_RESET) {
CHPP_LOGE("RESET-ACK timeout; retrying");
context->resetCount++;
chppReset(context, CHPP_TRANSPORT_ATTR_RESET,
CHPP_TRANSPORT_ERROR_TIMEOUT);
} else {
CHPP_LOGE("RESET-ACK timeout; giving up");
context->resetState = CHPP_RESET_STATE_PERMANENT_FAILURE;
chppClearTxDatagramQueue(context);
}
}
}
if (signals & CHPP_TRANSPORT_SIGNAL_PLATFORM_MASK) {
chppPlatformLinkDoWork(&context->linkParams,
signals & CHPP_TRANSPORT_SIGNAL_PLATFORM_MASK);
}
return true;
}
void chppWorkThreadStop(struct ChppTransportState *context) {
chppNotifierSignal(&context->notifier, CHPP_TRANSPORT_SIGNAL_EXIT);
}
void chppLinkSendDoneCb(struct ChppPlatformLinkParameters *params,
enum ChppLinkErrorCode error) {
if (error != CHPP_LINK_ERROR_NONE_SENT) {
CHPP_LOGE("Async send failure: %" PRIu8, error);
}
struct ChppTransportState *context =
container_of(params, struct ChppTransportState, linkParams);
chppMutexLock(&context->mutex);
context->txStatus.linkBusy = false;
// No need to free anything as pendingTxPacket.payload is static. Likewise, we
// keep pendingTxPacket.length to assist testing.
chppMutexUnlock(&context->mutex);
}
void chppDatagramProcessDoneCb(struct ChppTransportState *context,
uint8_t *buf) {
UNUSED_VAR(context);
CHPP_FREE_AND_NULLIFY(buf);
}
uint8_t chppRunTransportLoopback(struct ChppTransportState *context,
uint8_t *buf, size_t len) {
UNUSED_VAR(buf);
UNUSED_VAR(len);
uint8_t result = CHPP_APP_ERROR_UNSUPPORTED;
context->loopbackResult = result;
#ifdef CHPP_CLIENT_ENABLED_TRANSPORT_LOOPBACK
result = CHPP_APP_ERROR_NONE;
context->loopbackResult = CHPP_APP_ERROR_UNSPECIFIED;
if (len == 0 || len > CHPP_TRANSPORT_TX_MTU_BYTES) {
result = CHPP_APP_ERROR_INVALID_LENGTH;
context->loopbackResult = result;
} else if (context->txStatus.linkBusy) {
result = CHPP_APP_ERROR_BLOCKED;
context->loopbackResult = result;
} else if (context->transportLoopbackData.payload != NULL) {
result = CHPP_APP_ERROR_BUSY;
context->loopbackResult = result;
} else if ((context->transportLoopbackData.payload = chppMalloc(len)) ==
NULL) {
result = CHPP_APP_ERROR_OOM;
context->loopbackResult = result;
} else {
context->transportLoopbackData.length = len;
memcpy(context->transportLoopbackData.payload, buf, len);
context->txStatus.linkBusy = true;
context->pendingTxPacket.length = 0;
memset(&context->pendingTxPacket.payload, 0, CHPP_LINK_TX_MTU_BYTES);
context->pendingTxPacket.length +=
chppAddPreamble(&context->pendingTxPacket.payload[0]);
struct ChppTransportHeader *txHeader =
(struct ChppTransportHeader *)&context->pendingTxPacket
.payload[context->pendingTxPacket.length];
context->pendingTxPacket.length += sizeof(*txHeader);
txHeader->packetCode = CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(
CHPP_TRANSPORT_ATTR_LOOPBACK_REQUEST, txHeader->packetCode);
size_t payloadLen = MIN(len, CHPP_TRANSPORT_TX_MTU_BYTES);
txHeader->length = (uint16_t)payloadLen;
chppAppendToPendingTxPacket(&context->pendingTxPacket, buf, payloadLen);
chppAddFooter(&context->pendingTxPacket);
CHPP_LOGD("Sending transport-loopback request (packet len=%" PRIuSIZE
", payload len=%" PRIu16 ", asked len was %" PRIuSIZE ")",
context->pendingTxPacket.length, txHeader->length, len);
enum ChppLinkErrorCode error = chppSendPendingPacket(context);
if (error != CHPP_LINK_ERROR_NONE_QUEUED) {
// Either sent synchronously or an error has occurred
chppLinkSendDoneCb(&context->linkParams, error);
if (error != CHPP_LINK_ERROR_NONE_SENT) {
// An error has occurred
CHPP_FREE_AND_NULLIFY(context->transportLoopbackData.payload);
context->transportLoopbackData.length = 0;
result = CHPP_APP_ERROR_UNSPECIFIED;
}
}
}
if (result != CHPP_APP_ERROR_NONE) {
CHPP_LOGE("Transport-loopback failure: %" PRIu8, result);
}
#endif
return result;
}
void chppTransportSendReset(struct ChppTransportState *context,
enum ChppTransportPacketAttributes resetType,
enum ChppTransportErrorCode error) {
// Make sure CHPP is in an initialized state
CHPP_ASSERT_LOG((context->txDatagramQueue.pending == 0 &&
context->txDatagramQueue.front == 0),
"Not init to send reset");
struct ChppTransportConfiguration *config =
chppMalloc(sizeof(struct ChppTransportConfiguration));
// CHPP transport version
config->version.major = 1;
config->version.minor = 0;
config->version.patch = 0;
// Rx MTU size
config->rxMtu = CHPP_PLATFORM_LINK_RX_MTU_BYTES;
// Max Rx window size
// Note: current implementation does not support a window size >1
config->windowSize = 1;
// Advertised transport layer (ACK) timeout
config->timeoutInMs = CHPP_PLATFORM_TRANSPORT_TIMEOUT_MS;
if (resetType == CHPP_TRANSPORT_ATTR_RESET_ACK) {
CHPP_LOGD("Sending RESET-ACK");
} else {
CHPP_LOGD("Sending RESET");
}
if (resetType == CHPP_TRANSPORT_ATTR_RESET_ACK) {
chppSetResetComplete(context);
}
context->resetTimeNs = chppGetCurrentTimeNs();
chppEnqueueTxDatagram(context,
CHPP_ATTR_AND_ERROR_TO_PACKET_CODE(resetType, error),
config, sizeof(*config));
}