You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

834 lines
26 KiB

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "net/netlink_manager.h"
#include <string>
#include <vector>
#include <linux/netlink.h>
#include <poll.h>
#include <sys/socket.h>
#include <android-base/logging.h>
#include <utils/Timers.h>
#include "net/kernel-header-latest/nl80211.h"
#include "net/mlme_event.h"
#include "net/mlme_event_handler.h"
#include "net/nl80211_attribute.h"
#include "net/nl80211_packet.h"
using android::base::unique_fd;
using std::array;
using std::placeholders::_1;
using std::string;
using std::unique_ptr;
using std::vector;
namespace android {
namespace wificond {
namespace {
// netlink.h suggests NLMSG_GOODSIZE to be at most 8192 bytes.
constexpr int kReceiveBufferSize = 8 * 1024;
constexpr uint32_t kBroadcastSequenceNumber = 0;
constexpr int kMaximumNetlinkMessageWaitMilliSeconds = 300;
uint8_t ReceiveBuffer[kReceiveBufferSize];
void AppendPacket(vector<unique_ptr<const NL80211Packet>>* vec,
unique_ptr<const NL80211Packet> packet) {
vec->push_back(std::move(packet));
}
// Convert enum nl80211_chan_width to enum ChannelBandwidth
ChannelBandwidth getBandwidthType(uint32_t bandwidth) {
switch (bandwidth) {
case NL80211_CHAN_WIDTH_20_NOHT:
return BW_20_NOHT;
case NL80211_CHAN_WIDTH_20:
return BW_20;
case NL80211_CHAN_WIDTH_40:
return BW_40;
case NL80211_CHAN_WIDTH_80:
return BW_80;
case NL80211_CHAN_WIDTH_80P80:
return BW_80P80;
case NL80211_CHAN_WIDTH_160:
return BW_160;
}
LOG(ERROR) << "Unknown bandwidth type: " << bandwidth;
return BW_INVALID;
}
} // namespace
NetlinkManager::NetlinkManager(EventLoop* event_loop)
: started_(false),
event_loop_(event_loop),
sequence_number_(0) {
}
NetlinkManager::~NetlinkManager() {
}
uint32_t NetlinkManager::GetSequenceNumber() {
if (++sequence_number_ == kBroadcastSequenceNumber) {
++sequence_number_;
}
return sequence_number_;
}
void NetlinkManager::ReceivePacketAndRunHandler(int fd) {
ssize_t len = read(fd, ReceiveBuffer, kReceiveBufferSize);
if (len == -1) {
LOG(ERROR) << "Failed to read packet from buffer";
return;
}
if (len == 0) {
return;
}
// There might be multiple message in one datagram payload.
uint8_t* ptr = ReceiveBuffer;
while (ptr < ReceiveBuffer + len) {
// peek at the header.
if (ptr + sizeof(nlmsghdr) > ReceiveBuffer + len) {
LOG(ERROR) << "payload is broken.";
return;
}
const nlmsghdr* nl_header = reinterpret_cast<const nlmsghdr*>(ptr);
unique_ptr<NL80211Packet> packet(
new NL80211Packet(vector<uint8_t>(ptr, ptr + nl_header->nlmsg_len)));
ptr += nl_header->nlmsg_len;
if (!packet->IsValid()) {
LOG(ERROR) << "Receive invalid packet";
return;
}
// Some document says message from kernel should have port id equal 0.
// However in practice this is not always true so we don't check that.
uint32_t sequence_number = packet->GetMessageSequence();
// Handle multicasts.
if (sequence_number == kBroadcastSequenceNumber) {
BroadcastHandler(std::move(packet));
continue;
}
auto itr = message_handlers_.find(sequence_number);
// There is no handler for this sequence number.
if (itr == message_handlers_.end()) {
LOG(WARNING) << "No handler for message: " << sequence_number;
return;
}
// A multipart message is terminated by NLMSG_DONE.
// In this case we don't need to run the handler.
// NLMSG_NOOP means no operation, message must be discarded.
uint32_t message_type = packet->GetMessageType();
if (message_type == NLMSG_DONE || message_type == NLMSG_NOOP) {
message_handlers_.erase(itr);
return;
}
if (message_type == NLMSG_OVERRUN) {
LOG(ERROR) << "Get message overrun notification";
message_handlers_.erase(itr);
return;
}
// In case we receive a NLMSG_ERROR message:
// NLMSG_ERROR could be either an error or an ACK.
// It is an ACK message only when error code field is set to 0.
// An ACK could be return when we explicitly request that with NLM_F_ACK.
// An ERROR could be received on NLM_F_ACK or other failure cases.
// We should still run handler in this case, leaving it for the caller
// to decide what to do with the packet.
bool is_multi = packet->IsMulti();
// Run the handler.
itr->second(std::move(packet));
// Remove handler after processing.
if (!is_multi) {
message_handlers_.erase(itr);
}
}
}
void NetlinkManager::OnNewFamily(unique_ptr<const NL80211Packet> packet) {
if (packet->GetMessageType() != GENL_ID_CTRL) {
LOG(ERROR) << "Wrong message type for new family message";
return;
}
if (packet->GetCommand() != CTRL_CMD_NEWFAMILY) {
LOG(ERROR) << "Wrong command for new family message";
return;
}
uint16_t family_id;
if (!packet->GetAttributeValue(CTRL_ATTR_FAMILY_ID, &family_id)) {
LOG(ERROR) << "Failed to get family id";
return;
}
string family_name;
if (!packet->GetAttributeValue(CTRL_ATTR_FAMILY_NAME, &family_name)) {
LOG(ERROR) << "Failed to get family name";
return;
}
if (family_name != NL80211_GENL_NAME) {
LOG(WARNING) << "Ignoring none nl80211 netlink families";
}
MessageType nl80211_type(family_id);
message_types_[family_name] = nl80211_type;
// Exract multicast groups.
NL80211NestedAttr multicast_groups(0);
if (packet->GetAttribute(CTRL_ATTR_MCAST_GROUPS, &multicast_groups)) {
vector<NL80211NestedAttr> groups;
if (!multicast_groups.GetListOfNestedAttributes(&groups)) {
return;
}
for (auto& group : groups) {
string group_name;
uint32_t group_id = 0;
if (!group.GetAttributeValue(CTRL_ATTR_MCAST_GRP_NAME, &group_name)) {
LOG(ERROR) << "Failed to get group name";
continue;
}
if (!group.GetAttributeValue(CTRL_ATTR_MCAST_GRP_ID, &group_id)) {
LOG(ERROR) << "Failed to get group id";
continue;
}
message_types_[family_name].groups[group_name] = group_id;
}
}
}
bool NetlinkManager::Start() {
if (started_) {
LOG(DEBUG) << "NetlinkManager is already started";
return true;
}
bool setup_rt = SetupSocket(&sync_netlink_fd_);
if (!setup_rt) {
LOG(ERROR) << "Failed to setup synchronous netlink socket";
return false;
}
setup_rt = SetupSocket(&async_netlink_fd_);
if (!setup_rt) {
LOG(ERROR) << "Failed to setup asynchronous netlink socket";
return false;
}
// Request family id for nl80211 messages.
if (!DiscoverFamilyId()) {
return false;
}
// Watch socket.
if (!WatchSocket(&async_netlink_fd_)) {
return false;
}
// Subscribe kernel NL80211 broadcast of regulatory changes.
if (!SubscribeToEvents(NL80211_MULTICAST_GROUP_REG)) {
return false;
}
// Subscribe kernel NL80211 broadcast of scanning events.
if (!SubscribeToEvents(NL80211_MULTICAST_GROUP_SCAN)) {
return false;
}
// Subscribe kernel NL80211 broadcast of MLME events.
if (!SubscribeToEvents(NL80211_MULTICAST_GROUP_MLME)) {
return false;
}
started_ = true;
return true;
}
bool NetlinkManager::IsStarted() const {
return started_;
}
bool NetlinkManager::RegisterHandlerAndSendMessage(
const NL80211Packet& packet,
std::function<void(unique_ptr<const NL80211Packet>)> handler) {
if (packet.IsDump()) {
LOG(ERROR) << "Do not use asynchronous interface for dump request !";
return false;
}
if (!SendMessageInternal(packet, async_netlink_fd_.get())) {
return false;
}
message_handlers_[packet.GetMessageSequence()] = handler;
return true;
}
bool NetlinkManager::SendMessageAndGetResponses(
const NL80211Packet& packet,
vector<unique_ptr<const NL80211Packet>>* response) {
if (!SendMessageInternal(packet, sync_netlink_fd_.get())) {
return false;
}
// Polling netlink socket, waiting for GetFamily reply.
struct pollfd netlink_output;
memset(&netlink_output, 0, sizeof(netlink_output));
netlink_output.fd = sync_netlink_fd_.get();
netlink_output.events = POLLIN;
uint32_t sequence = packet.GetMessageSequence();
int time_remaining = kMaximumNetlinkMessageWaitMilliSeconds;
// Multipart messages may come with seperated datagrams, ending with a
// NLMSG_DONE message.
// ReceivePacketAndRunHandler() will remove the handler after receiving a
// NLMSG_DONE message.
message_handlers_[sequence] = std::bind(AppendPacket, response, _1);
while (time_remaining > 0 &&
message_handlers_.find(sequence) != message_handlers_.end()) {
nsecs_t interval = systemTime(SYSTEM_TIME_MONOTONIC);
int poll_return = poll(&netlink_output,
1,
time_remaining);
if (poll_return == 0) {
LOG(ERROR) << "Failed to poll netlink fd: time out ";
message_handlers_.erase(sequence);
return false;
} else if (poll_return == -1) {
PLOG(ERROR) << "Failed to poll netlink fd";
message_handlers_.erase(sequence);
return false;
}
ReceivePacketAndRunHandler(sync_netlink_fd_.get());
interval = systemTime(SYSTEM_TIME_MONOTONIC) - interval;
time_remaining -= static_cast<int>(ns2ms(interval));
}
if (time_remaining <= 0) {
LOG(ERROR) << "Timeout waiting for netlink reply messages";
message_handlers_.erase(sequence);
return false;
}
return true;
}
bool NetlinkManager::SendMessageAndGetSingleResponse(
const NL80211Packet& packet,
unique_ptr<const NL80211Packet>* response) {
unique_ptr<const NL80211Packet> response_or_error;
if (!SendMessageAndGetSingleResponseOrError(packet, &response_or_error)) {
return false;
}
if (response_or_error->GetMessageType() == NLMSG_ERROR) {
// We use ERROR because we are not expecting to receive a ACK here.
// In that case the caller should use |SendMessageAndGetAckOrError|.
LOG(ERROR) << "Received error message: "
<< strerror(response_or_error->GetErrorCode());
return false;
}
*response = std::move(response_or_error);
return true;
}
bool NetlinkManager::SendMessageAndGetSingleResponseOrError(
const NL80211Packet& packet,
unique_ptr<const NL80211Packet>* response) {
vector<unique_ptr<const NL80211Packet>> response_vec;
if (!SendMessageAndGetResponses(packet, &response_vec)) {
return false;
}
if (response_vec.size() != 1) {
LOG(ERROR) << "Unexpected response size: " << response_vec.size();
return false;
}
*response = std::move(response_vec[0]);
return true;
}
bool NetlinkManager::SendMessageAndGetAckOrError(const NL80211Packet& packet,
int* error_code) {
unique_ptr<const NL80211Packet> response;
if (!SendMessageAndGetSingleResponseOrError(packet, &response)) {
return false;
}
uint16_t type = response->GetMessageType();
if (type != NLMSG_ERROR) {
LOG(ERROR) << "Receive unexpected message type :" << type;
return false;
}
*error_code = response->GetErrorCode();
return true;
}
bool NetlinkManager::SendMessageAndGetAck(const NL80211Packet& packet) {
int error_code;
if (!SendMessageAndGetAckOrError(packet, &error_code)) {
return false;
}
if (error_code != 0) {
LOG(ERROR) << "Received error messsage: " << strerror(error_code);
return false;
}
return true;
}
bool NetlinkManager::SendMessageInternal(const NL80211Packet& packet, int fd) {
const vector<uint8_t>& data = packet.GetConstData();
ssize_t bytes_sent =
TEMP_FAILURE_RETRY(send(fd, data.data(), data.size(), 0));
if (bytes_sent == -1) {
PLOG(ERROR) << "Failed to send netlink message";
return false;
}
return true;
}
bool NetlinkManager::SetupSocket(unique_fd* netlink_fd) {
struct sockaddr_nl nladdr;
memset(&nladdr, 0, sizeof(nladdr));
nladdr.nl_family = AF_NETLINK;
netlink_fd->reset(
socket(PF_NETLINK, SOCK_DGRAM | SOCK_CLOEXEC, NETLINK_GENERIC));
if (netlink_fd->get() < 0) {
PLOG(ERROR) << "Failed to create netlink socket";
return false;
}
// Set maximum receive buffer size.
// Datagram which is larger than this size will be discarded.
if (setsockopt(netlink_fd->get(),
SOL_SOCKET,
SO_RCVBUFFORCE,
&kReceiveBufferSize,
sizeof(kReceiveBufferSize)) < 0) {
PLOG(ERROR) << "Failed to set uevent socket SO_RCVBUFFORCE option";
return false;
}
if (bind(netlink_fd->get(),
reinterpret_cast<struct sockaddr*>(&nladdr),
sizeof(nladdr)) < 0) {
PLOG(ERROR) << "Failed to bind netlink socket";
return false;
}
return true;
}
bool NetlinkManager::WatchSocket(unique_fd* netlink_fd) {
// Watch socket
bool watch_fd_rt = event_loop_->WatchFileDescriptor(
netlink_fd->get(),
EventLoop::kModeInput,
std::bind(&NetlinkManager::ReceivePacketAndRunHandler, this, _1));
if (!watch_fd_rt) {
LOG(ERROR) << "Failed to watch fd: " << netlink_fd->get();
return false;
}
return true;
}
uint16_t NetlinkManager::GetFamilyId() {
return message_types_[NL80211_GENL_NAME].family_id;
}
bool NetlinkManager::DiscoverFamilyId() {
NL80211Packet get_family_request(GENL_ID_CTRL,
CTRL_CMD_GETFAMILY,
GetSequenceNumber(),
getpid());
NL80211Attr<string> family_name(CTRL_ATTR_FAMILY_NAME, NL80211_GENL_NAME);
get_family_request.AddAttribute(family_name);
unique_ptr<const NL80211Packet> response;
if (!SendMessageAndGetSingleResponse(get_family_request, &response)) {
LOG(ERROR) << "Failed to get NL80211 family info";
return false;
}
OnNewFamily(std::move(response));
if (message_types_.find(NL80211_GENL_NAME) == message_types_.end()) {
LOG(ERROR) << "Failed to get NL80211 family id";
return false;
}
return true;
}
bool NetlinkManager::SubscribeToEvents(const string& group) {
auto groups = message_types_[NL80211_GENL_NAME].groups;
if (groups.find(group) == groups.end()) {
LOG(ERROR) << "Failed to subscribe: group " << group << " doesn't exist";
return false;
}
uint32_t group_id = groups[group];
int err = setsockopt(async_netlink_fd_.get(),
SOL_NETLINK,
NETLINK_ADD_MEMBERSHIP,
&group_id,
sizeof(group_id));
if (err < 0) {
PLOG(ERROR) << "Failed to setsockopt";
return false;
}
return true;
}
void NetlinkManager::BroadcastHandler(unique_ptr<const NL80211Packet> packet) {
if (packet->GetMessageType() != GetFamilyId()) {
LOG(ERROR) << "Wrong family id for multicast message";
return;
}
uint32_t command = packet->GetCommand();
if (command == NL80211_CMD_NEW_SCAN_RESULTS ||
// Scan was aborted, for unspecified reasons.partial scan results may be
// available.
command == NL80211_CMD_SCAN_ABORTED) {
OnScanResultsReady(std::move(packet));
return;
}
if (command == NL80211_CMD_SCHED_SCAN_RESULTS ||
command == NL80211_CMD_SCHED_SCAN_STOPPED) {
OnSchedScanResultsReady(std::move(packet));
return;
}
// Driver which supports SME uses both NL80211_CMD_AUTHENTICATE and
// NL80211_CMD_ASSOCIATE, otherwise it uses NL80211_CMD_CONNECT
// to notify a combination of authentication and association processses.
// Currently we monitor CONNECT/ASSOCIATE/ROAM event for up-to-date
// frequency and bssid.
// TODO(nywang): Handle other MLME events, which help us track the
// connection state better.
if (command == NL80211_CMD_CONNECT ||
command == NL80211_CMD_ASSOCIATE ||
command == NL80211_CMD_ROAM ||
command == NL80211_CMD_DISCONNECT ||
command == NL80211_CMD_DISASSOCIATE) {
OnMlmeEvent(std::move(packet));
return;
}
if (command == NL80211_CMD_REG_CHANGE ||
command == NL80211_CMD_WIPHY_REG_CHANGE) {
OnRegChangeEvent(std::move(packet));
return;
}
// Station eventsFor AP mode.
if (command == NL80211_CMD_NEW_STATION ||
command == NL80211_CMD_DEL_STATION) {
uint32_t if_index;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(WARNING) << "Failed to get interface index from station event";
return;
}
const auto handler = on_station_event_handler_.find(if_index);
if (handler != on_station_event_handler_.end()) {
array<uint8_t, ETH_ALEN> mac_address;
if (!packet->GetAttributeValue(NL80211_ATTR_MAC, &mac_address)) {
LOG(WARNING) << "Failed to get mac address from station event";
return;
}
if (command == NL80211_CMD_NEW_STATION) {
handler->second(NEW_STATION, mac_address);
} else {
handler->second(DEL_STATION, mac_address);
}
}
return;
}
if (command == NL80211_CMD_CH_SWITCH_NOTIFY) {
OnChannelSwitchEvent(std::move(packet));
return;
}
if (command == NL80211_CMD_FRAME_TX_STATUS) {
OnFrameTxStatusEvent(std::move(packet));
return;
}
}
void NetlinkManager::OnRegChangeEvent(unique_ptr<const NL80211Packet> packet) {
uint8_t reg_type;
if (!packet->GetAttributeValue(NL80211_ATTR_REG_TYPE, &reg_type)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_REG_TYPE";
}
string country_code;
// NL80211_REGDOM_TYPE_COUNTRY means the regulatory domain set is one that
// pertains to a specific country
if (reg_type == NL80211_REGDOM_TYPE_COUNTRY) {
if (!packet->GetAttributeValue(NL80211_ATTR_REG_ALPHA2, &country_code)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_REG_ALPHA2";
return;
}
} else if (reg_type == NL80211_REGDOM_TYPE_WORLD ||
reg_type == NL80211_REGDOM_TYPE_CUSTOM_WORLD ||
reg_type == NL80211_REGDOM_TYPE_INTERSECTION) {
// NL80211_REGDOM_TYPE_WORLD refers to the world regulartory domain.
// NL80211_REGDOM_TYPE_CUSTOM_WORLD refers to the driver specific world
// regulartory domain.
// NL80211_REGDOM_TYPE_INTERSECTION refers to an intersection between two
// regulatory domains:
// The previously set regulatory domain on the system and the last accepted
// regulatory domain request to be processed.
country_code = "";
} else {
LOG(ERROR) << "Unknown type of regulatory domain change: " << (int)reg_type;
return;
}
for (const auto& handler : on_reg_domain_changed_handler_) {
handler.second(handler.first, country_code);
}
}
void NetlinkManager::OnMlmeEvent(unique_ptr<const NL80211Packet> packet) {
uint32_t if_index;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(ERROR) << "Failed to get interface index from a MLME event message";
return;
}
const auto handler = on_mlme_event_handler_.find(if_index);
if (handler == on_mlme_event_handler_.end()) {
LOG(DEBUG) << "No handler for mlme event from interface"
<< " with index: " << if_index;
return;
}
uint32_t command = packet->GetCommand();
if (command == NL80211_CMD_CONNECT) {
auto event = MlmeConnectEvent::InitFromPacket(packet.get());
if (event != nullptr) {
handler->second->OnConnect(std::move(event));
}
return;
}
if (command == NL80211_CMD_ASSOCIATE) {
auto event = MlmeAssociateEvent::InitFromPacket(packet.get());
if (event != nullptr) {
handler->second->OnAssociate(std::move(event));
}
return;
}
if (command == NL80211_CMD_ROAM) {
auto event = MlmeRoamEvent::InitFromPacket(packet.get());
if (event != nullptr) {
handler->second->OnRoam(std::move(event));
}
return;
}
if (command == NL80211_CMD_DISCONNECT) {
auto event = MlmeDisconnectEvent::InitFromPacket(packet.get());
if (event != nullptr) {
handler->second->OnDisconnect(std::move(event));
}
return;
}
if (command == NL80211_CMD_DISASSOCIATE) {
auto event = MlmeDisassociateEvent::InitFromPacket(packet.get());
if (event != nullptr) {
handler->second->OnDisassociate(std::move(event));
}
return;
}
}
void NetlinkManager::OnSchedScanResultsReady(unique_ptr<const NL80211Packet> packet) {
uint32_t if_index;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(ERROR) << "Failed to get interface index from scan result notification";
return;
}
const auto handler = on_sched_scan_result_ready_handler_.find(if_index);
if (handler == on_sched_scan_result_ready_handler_.end()) {
LOG(DEBUG) << "No handler for scheduled scan result notification from"
<< " interface with index: " << if_index;
return;
}
// Run scan result notification handler.
handler->second(if_index, packet->GetCommand() == NL80211_CMD_SCHED_SCAN_STOPPED);
}
void NetlinkManager::OnScanResultsReady(unique_ptr<const NL80211Packet> packet) {
uint32_t if_index;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(ERROR) << "Failed to get interface index from scan result notification";
return;
}
bool aborted = false;
if (packet->GetCommand() == NL80211_CMD_SCAN_ABORTED) {
aborted = true;
}
const auto handler = on_scan_result_ready_handler_.find(if_index);
if (handler == on_scan_result_ready_handler_.end()) {
LOG(WARNING) << "No handler for scan result notification from interface"
<< " with index: " << if_index;
return;
}
vector<vector<uint8_t>> ssids;
NL80211NestedAttr ssids_attr(0);
if (!packet->GetAttribute(NL80211_ATTR_SCAN_SSIDS, &ssids_attr)) {
if (!aborted) {
LOG(WARNING) << "Failed to get scan ssids from scan result notification";
}
} else {
if (!ssids_attr.GetListOfAttributeValues(&ssids)) {
return;
}
}
vector<uint32_t> freqs;
NL80211NestedAttr freqs_attr(0);
if (!packet->GetAttribute(NL80211_ATTR_SCAN_FREQUENCIES, &freqs_attr)) {
if (!aborted) {
LOG(WARNING) << "Failed to get scan freqs from scan result notification";
}
} else {
if (!freqs_attr.GetListOfAttributeValues(&freqs)) {
return;
}
}
// Run scan result notification handler.
handler->second(if_index, aborted, ssids, freqs);
}
void NetlinkManager::OnChannelSwitchEvent(unique_ptr<const NL80211Packet> packet) {
uint32_t if_index = 0;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(WARNING) << "Failed to get NL80211_ATTR_IFINDEX"
<< "from channel switch event";
return;
}
uint32_t frequency = 0;
if (!packet->GetAttributeValue(NL80211_ATTR_WIPHY_FREQ, &frequency)) {
LOG(WARNING) << "Failed to get NL80211_ATTR_WIPHY_FREQ"
<< "from channel switch event";
return;
}
uint32_t bandwidth = 0;
if (!packet->GetAttributeValue(NL80211_ATTR_CHANNEL_WIDTH, &bandwidth)) {
LOG(WARNING) << "Failed to get NL80211_ATTR_CHANNEL_WIDTH"
<< "from channel switch event";
return;
}
const auto handler = on_channel_switch_event_handler_.find(if_index);
if (handler != on_channel_switch_event_handler_.end()) {
handler->second(frequency, getBandwidthType(bandwidth));
}
}
void NetlinkManager::OnFrameTxStatusEvent(
unique_ptr<const NL80211Packet> packet) {
uint32_t if_index;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(WARNING) << "Failed to get NL80211_ATTR_IFINDEX"
<< "from NL80211_CMD_FRAME_TX_STATUS event";
return;
}
uint64_t cookie;
if (!packet->GetAttributeValue(NL80211_ATTR_COOKIE, &cookie)) {
LOG(WARNING) << "Failed to get NL80211_ATTR_COOKIE"
<< "from NL80211_CMD_FRAME_TX_STATUS event";
return;
}
bool was_acked = packet->HasAttribute(NL80211_ATTR_ACK);
const auto handler = on_frame_tx_status_event_handler_.find(if_index);
if (handler != on_frame_tx_status_event_handler_.end()) {
handler->second(cookie, was_acked);
}
}
void NetlinkManager::SubscribeStationEvent(
uint32_t interface_index,
OnStationEventHandler handler) {
on_station_event_handler_[interface_index] = handler;
}
void NetlinkManager::UnsubscribeStationEvent(uint32_t interface_index) {
on_station_event_handler_.erase(interface_index);
}
void NetlinkManager::SubscribeChannelSwitchEvent(
uint32_t interface_index,
OnChannelSwitchEventHandler handler) {
on_channel_switch_event_handler_[interface_index] = handler;
}
void NetlinkManager::UnsubscribeChannelSwitchEvent(uint32_t interface_index) {
on_channel_switch_event_handler_.erase(interface_index);
}
void NetlinkManager::SubscribeRegDomainChange(
uint32_t wiphy_index,
OnRegDomainChangedHandler handler) {
on_reg_domain_changed_handler_[wiphy_index] = handler;
}
void NetlinkManager::UnsubscribeRegDomainChange(uint32_t wiphy_index) {
on_reg_domain_changed_handler_.erase(wiphy_index);
}
void NetlinkManager::SubscribeScanResultNotification(
uint32_t interface_index,
OnScanResultsReadyHandler handler) {
on_scan_result_ready_handler_[interface_index] = handler;
}
void NetlinkManager::UnsubscribeScanResultNotification(
uint32_t interface_index) {
on_scan_result_ready_handler_.erase(interface_index);
}
void NetlinkManager::SubscribeMlmeEvent(uint32_t interface_index,
MlmeEventHandler* handler) {
on_mlme_event_handler_[interface_index] = handler;
}
void NetlinkManager::UnsubscribeMlmeEvent(uint32_t interface_index) {
on_mlme_event_handler_.erase(interface_index);
}
void NetlinkManager::SubscribeSchedScanResultNotification(
uint32_t interface_index,
OnSchedScanResultsReadyHandler handler) {
on_sched_scan_result_ready_handler_[interface_index] = handler;
}
void NetlinkManager::UnsubscribeSchedScanResultNotification(
uint32_t interface_index) {
on_sched_scan_result_ready_handler_.erase(interface_index);
}
void NetlinkManager::SubscribeFrameTxStatusEvent(
uint32_t interface_index, OnFrameTxStatusEventHandler handler) {
on_frame_tx_status_event_handler_[interface_index] = handler;
}
void NetlinkManager::UnsubscribeFrameTxStatusEvent(uint32_t interface_index) {
on_frame_tx_status_event_handler_.erase(interface_index);
}
} // namespace wificond
} // namespace android