You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
795 lines
25 KiB
795 lines
25 KiB
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/uio.h>
|
|
#include <unistd.h>
|
|
|
|
#include <7zCrc.h>
|
|
#include <Xz.h>
|
|
#include <XzCrc64.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <optional>
|
|
|
|
#include <android-base/unique_fd.h>
|
|
|
|
#include <unwindstack/Log.h>
|
|
#include <unwindstack/Memory.h>
|
|
|
|
#include "Check.h"
|
|
#include "MemoryBuffer.h"
|
|
#include "MemoryCache.h"
|
|
#include "MemoryFileAtOffset.h"
|
|
#include "MemoryLocal.h"
|
|
#include "MemoryOffline.h"
|
|
#include "MemoryOfflineBuffer.h"
|
|
#include "MemoryRange.h"
|
|
#include "MemoryRemote.h"
|
|
#include "MemoryXz.h"
|
|
|
|
namespace unwindstack {
|
|
|
|
// Statistics (used only for optional debug log messages).
|
|
static constexpr bool kLogMemoryXzUsage = false;
|
|
std::atomic_size_t MemoryXz::total_used_ = 0;
|
|
std::atomic_size_t MemoryXz::total_size_ = 0;
|
|
std::atomic_size_t MemoryXz::total_open_ = 0;
|
|
|
|
static size_t ProcessVmRead(pid_t pid, uint64_t remote_src, void* dst, size_t len) {
|
|
|
|
// Split up the remote read across page boundaries.
|
|
// From the manpage:
|
|
// A partial read/write may result if one of the remote_iov elements points to an invalid
|
|
// memory region in the remote process.
|
|
//
|
|
// Partial transfers apply at the granularity of iovec elements. These system calls won't
|
|
// perform a partial transfer that splits a single iovec element.
|
|
constexpr size_t kMaxIovecs = 64;
|
|
struct iovec src_iovs[kMaxIovecs];
|
|
|
|
uint64_t cur = remote_src;
|
|
size_t total_read = 0;
|
|
while (len > 0) {
|
|
struct iovec dst_iov = {
|
|
.iov_base = &reinterpret_cast<uint8_t*>(dst)[total_read], .iov_len = len,
|
|
};
|
|
|
|
size_t iovecs_used = 0;
|
|
while (len > 0) {
|
|
if (iovecs_used == kMaxIovecs) {
|
|
break;
|
|
}
|
|
|
|
// struct iovec uses void* for iov_base.
|
|
if (cur >= UINTPTR_MAX) {
|
|
errno = EFAULT;
|
|
return total_read;
|
|
}
|
|
|
|
src_iovs[iovecs_used].iov_base = reinterpret_cast<void*>(cur);
|
|
|
|
uintptr_t misalignment = cur & (getpagesize() - 1);
|
|
size_t iov_len = getpagesize() - misalignment;
|
|
iov_len = std::min(iov_len, len);
|
|
|
|
len -= iov_len;
|
|
if (__builtin_add_overflow(cur, iov_len, &cur)) {
|
|
errno = EFAULT;
|
|
return total_read;
|
|
}
|
|
|
|
src_iovs[iovecs_used].iov_len = iov_len;
|
|
++iovecs_used;
|
|
}
|
|
|
|
ssize_t rc = process_vm_readv(pid, &dst_iov, 1, src_iovs, iovecs_used, 0);
|
|
if (rc == -1) {
|
|
return total_read;
|
|
}
|
|
total_read += rc;
|
|
}
|
|
return total_read;
|
|
}
|
|
|
|
static bool PtraceReadLong(pid_t pid, uint64_t addr, long* value) {
|
|
// ptrace() returns -1 and sets errno when the operation fails.
|
|
// To disambiguate -1 from a valid result, we clear errno beforehand.
|
|
errno = 0;
|
|
*value = ptrace(PTRACE_PEEKTEXT, pid, reinterpret_cast<void*>(addr), nullptr);
|
|
if (*value == -1 && errno) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static size_t PtraceRead(pid_t pid, uint64_t addr, void* dst, size_t bytes) {
|
|
// Make sure that there is no overflow.
|
|
uint64_t max_size;
|
|
if (__builtin_add_overflow(addr, bytes, &max_size)) {
|
|
return 0;
|
|
}
|
|
|
|
size_t bytes_read = 0;
|
|
long data;
|
|
size_t align_bytes = addr & (sizeof(long) - 1);
|
|
if (align_bytes != 0) {
|
|
if (!PtraceReadLong(pid, addr & ~(sizeof(long) - 1), &data)) {
|
|
return 0;
|
|
}
|
|
size_t copy_bytes = std::min(sizeof(long) - align_bytes, bytes);
|
|
memcpy(dst, reinterpret_cast<uint8_t*>(&data) + align_bytes, copy_bytes);
|
|
addr += copy_bytes;
|
|
dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + copy_bytes);
|
|
bytes -= copy_bytes;
|
|
bytes_read += copy_bytes;
|
|
}
|
|
|
|
for (size_t i = 0; i < bytes / sizeof(long); i++) {
|
|
if (!PtraceReadLong(pid, addr, &data)) {
|
|
return bytes_read;
|
|
}
|
|
memcpy(dst, &data, sizeof(long));
|
|
dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + sizeof(long));
|
|
addr += sizeof(long);
|
|
bytes_read += sizeof(long);
|
|
}
|
|
|
|
size_t left_over = bytes & (sizeof(long) - 1);
|
|
if (left_over) {
|
|
if (!PtraceReadLong(pid, addr, &data)) {
|
|
return bytes_read;
|
|
}
|
|
memcpy(dst, &data, left_over);
|
|
bytes_read += left_over;
|
|
}
|
|
return bytes_read;
|
|
}
|
|
|
|
bool Memory::ReadFully(uint64_t addr, void* dst, size_t size) {
|
|
size_t rc = Read(addr, dst, size);
|
|
return rc == size;
|
|
}
|
|
|
|
bool Memory::ReadString(uint64_t addr, std::string* dst, size_t max_read) {
|
|
char buffer[256]; // Large enough for 99% of symbol names.
|
|
size_t size = 0; // Number of bytes which were read into the buffer.
|
|
for (size_t offset = 0; offset < max_read; offset += size) {
|
|
// Look for null-terminator first, so we can allocate string of exact size.
|
|
// If we know the end of valid memory range, do the reads in larger blocks.
|
|
size_t read = std::min(sizeof(buffer), max_read - offset);
|
|
size = Read(addr + offset, buffer, read);
|
|
if (size == 0) {
|
|
return false; // We have not found end of string yet and we can not read more data.
|
|
}
|
|
size_t length = strnlen(buffer, size); // Index of the null-terminator.
|
|
if (length < size) {
|
|
// We found the null-terminator. Allocate the string and set its content.
|
|
if (offset == 0) {
|
|
// We did just single read, so the buffer already contains the whole string.
|
|
dst->assign(buffer, length);
|
|
return true;
|
|
} else {
|
|
// The buffer contains only the last block. Read the whole string again.
|
|
dst->assign(offset + length, '\0');
|
|
return ReadFully(addr, dst->data(), dst->size());
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<Memory> Memory::CreateFileMemory(const std::string& path, uint64_t offset,
|
|
uint64_t size) {
|
|
auto memory = std::make_unique<MemoryFileAtOffset>();
|
|
|
|
if (memory->Init(path, offset, size)) {
|
|
return memory;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) {
|
|
if (pid == getpid()) {
|
|
return std::shared_ptr<Memory>(new MemoryLocal());
|
|
}
|
|
return std::shared_ptr<Memory>(new MemoryRemote(pid));
|
|
}
|
|
|
|
std::shared_ptr<Memory> Memory::CreateProcessMemoryCached(pid_t pid) {
|
|
if (pid == getpid()) {
|
|
return std::shared_ptr<Memory>(new MemoryCache(new MemoryLocal()));
|
|
}
|
|
return std::shared_ptr<Memory>(new MemoryCache(new MemoryRemote(pid)));
|
|
}
|
|
|
|
std::shared_ptr<Memory> Memory::CreateProcessMemoryThreadCached(pid_t pid) {
|
|
if (pid == getpid()) {
|
|
return std::shared_ptr<Memory>(new MemoryThreadCache(new MemoryLocal()));
|
|
}
|
|
return std::shared_ptr<Memory>(new MemoryThreadCache(new MemoryRemote(pid)));
|
|
}
|
|
|
|
std::shared_ptr<Memory> Memory::CreateOfflineMemory(const uint8_t* data, uint64_t start,
|
|
uint64_t end) {
|
|
return std::shared_ptr<Memory>(new MemoryOfflineBuffer(data, start, end));
|
|
}
|
|
|
|
size_t MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) {
|
|
if (addr >= size_) {
|
|
return 0;
|
|
}
|
|
|
|
size_t bytes_left = size_ - static_cast<size_t>(addr);
|
|
const unsigned char* actual_base = static_cast<const unsigned char*>(raw_) + addr;
|
|
size_t actual_len = std::min(bytes_left, size);
|
|
|
|
memcpy(dst, actual_base, actual_len);
|
|
return actual_len;
|
|
}
|
|
|
|
uint8_t* MemoryBuffer::GetPtr(size_t offset) {
|
|
if (offset < size_) {
|
|
return &raw_[offset];
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
MemoryFileAtOffset::~MemoryFileAtOffset() {
|
|
Clear();
|
|
}
|
|
|
|
void MemoryFileAtOffset::Clear() {
|
|
if (data_) {
|
|
munmap(&data_[-offset_], size_ + offset_);
|
|
data_ = nullptr;
|
|
}
|
|
}
|
|
|
|
bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) {
|
|
// Clear out any previous data if it exists.
|
|
Clear();
|
|
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (fd == -1) {
|
|
return false;
|
|
}
|
|
struct stat buf;
|
|
if (fstat(fd, &buf) == -1) {
|
|
return false;
|
|
}
|
|
if (offset >= static_cast<uint64_t>(buf.st_size)) {
|
|
return false;
|
|
}
|
|
|
|
offset_ = offset & (getpagesize() - 1);
|
|
uint64_t aligned_offset = offset & ~(getpagesize() - 1);
|
|
if (aligned_offset > static_cast<uint64_t>(buf.st_size) ||
|
|
offset > static_cast<uint64_t>(buf.st_size)) {
|
|
return false;
|
|
}
|
|
|
|
size_ = buf.st_size - aligned_offset;
|
|
uint64_t max_size;
|
|
if (!__builtin_add_overflow(size, offset_, &max_size) && max_size < size_) {
|
|
// Truncate the mapped size.
|
|
size_ = max_size;
|
|
}
|
|
void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, aligned_offset);
|
|
if (map == MAP_FAILED) {
|
|
return false;
|
|
}
|
|
|
|
data_ = &reinterpret_cast<uint8_t*>(map)[offset_];
|
|
size_ -= offset_;
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) {
|
|
if (addr >= size_) {
|
|
return 0;
|
|
}
|
|
|
|
size_t bytes_left = size_ - static_cast<size_t>(addr);
|
|
const unsigned char* actual_base = static_cast<const unsigned char*>(data_) + addr;
|
|
size_t actual_len = std::min(bytes_left, size);
|
|
|
|
memcpy(dst, actual_base, actual_len);
|
|
return actual_len;
|
|
}
|
|
|
|
size_t MemoryRemote::Read(uint64_t addr, void* dst, size_t size) {
|
|
#if !defined(__LP64__)
|
|
// Cannot read an address greater than 32 bits in a 32 bit context.
|
|
if (addr > UINT32_MAX) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
size_t (*read_func)(pid_t, uint64_t, void*, size_t) =
|
|
reinterpret_cast<size_t (*)(pid_t, uint64_t, void*, size_t)>(read_redirect_func_.load());
|
|
if (read_func != nullptr) {
|
|
return read_func(pid_, addr, dst, size);
|
|
} else {
|
|
// Prefer process_vm_read, try it first. If it doesn't work, use the
|
|
// ptrace function. If at least one of them returns at least some data,
|
|
// set that as the permanent function to use.
|
|
// This assumes that if process_vm_read works once, it will continue
|
|
// to work.
|
|
size_t bytes = ProcessVmRead(pid_, addr, dst, size);
|
|
if (bytes > 0) {
|
|
read_redirect_func_ = reinterpret_cast<uintptr_t>(ProcessVmRead);
|
|
return bytes;
|
|
}
|
|
bytes = PtraceRead(pid_, addr, dst, size);
|
|
if (bytes > 0) {
|
|
read_redirect_func_ = reinterpret_cast<uintptr_t>(PtraceRead);
|
|
}
|
|
return bytes;
|
|
}
|
|
}
|
|
|
|
size_t MemoryLocal::Read(uint64_t addr, void* dst, size_t size) {
|
|
return ProcessVmRead(getpid(), addr, dst, size);
|
|
}
|
|
|
|
MemoryRange::MemoryRange(const std::shared_ptr<Memory>& memory, uint64_t begin, uint64_t length,
|
|
uint64_t offset)
|
|
: memory_(memory), begin_(begin), length_(length), offset_(offset) {}
|
|
|
|
size_t MemoryRange::Read(uint64_t addr, void* dst, size_t size) {
|
|
if (addr < offset_) {
|
|
return 0;
|
|
}
|
|
|
|
uint64_t read_offset = addr - offset_;
|
|
if (read_offset >= length_) {
|
|
return 0;
|
|
}
|
|
|
|
uint64_t read_length = std::min(static_cast<uint64_t>(size), length_ - read_offset);
|
|
uint64_t read_addr;
|
|
if (__builtin_add_overflow(read_offset, begin_, &read_addr)) {
|
|
return 0;
|
|
}
|
|
|
|
return memory_->Read(read_addr, dst, read_length);
|
|
}
|
|
|
|
void MemoryRanges::Insert(MemoryRange* memory) {
|
|
uint64_t last_addr;
|
|
if (__builtin_add_overflow(memory->offset(), memory->length(), &last_addr)) {
|
|
// This should never happen in the real world. However, it is possible
|
|
// that an offset in a mapped in segment could be crafted such that
|
|
// this value overflows. In that case, clamp the value to the max uint64
|
|
// value.
|
|
last_addr = UINT64_MAX;
|
|
}
|
|
maps_.emplace(last_addr, memory);
|
|
}
|
|
|
|
size_t MemoryRanges::Read(uint64_t addr, void* dst, size_t size) {
|
|
auto entry = maps_.upper_bound(addr);
|
|
if (entry != maps_.end()) {
|
|
return entry->second->Read(addr, dst, size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool MemoryOffline::Init(const std::string& file, uint64_t offset) {
|
|
auto memory_file = std::make_shared<MemoryFileAtOffset>();
|
|
if (!memory_file->Init(file, offset)) {
|
|
return false;
|
|
}
|
|
|
|
// The first uint64_t value is the start of memory.
|
|
uint64_t start;
|
|
if (!memory_file->ReadFully(0, &start, sizeof(start))) {
|
|
return false;
|
|
}
|
|
|
|
uint64_t size = memory_file->Size();
|
|
if (__builtin_sub_overflow(size, sizeof(start), &size)) {
|
|
return false;
|
|
}
|
|
|
|
memory_ = std::make_unique<MemoryRange>(memory_file, sizeof(start), size, start);
|
|
return true;
|
|
}
|
|
|
|
size_t MemoryOffline::Read(uint64_t addr, void* dst, size_t size) {
|
|
if (!memory_) {
|
|
return 0;
|
|
}
|
|
|
|
return memory_->Read(addr, dst, size);
|
|
}
|
|
|
|
MemoryOfflineBuffer::MemoryOfflineBuffer(const uint8_t* data, uint64_t start, uint64_t end)
|
|
: data_(data), start_(start), end_(end) {}
|
|
|
|
void MemoryOfflineBuffer::Reset(const uint8_t* data, uint64_t start, uint64_t end) {
|
|
data_ = data;
|
|
start_ = start;
|
|
end_ = end;
|
|
}
|
|
|
|
size_t MemoryOfflineBuffer::Read(uint64_t addr, void* dst, size_t size) {
|
|
if (addr < start_ || addr >= end_) {
|
|
return 0;
|
|
}
|
|
|
|
size_t read_length = std::min(size, static_cast<size_t>(end_ - addr));
|
|
memcpy(dst, &data_[addr - start_], read_length);
|
|
return read_length;
|
|
}
|
|
|
|
MemoryOfflineParts::~MemoryOfflineParts() {
|
|
for (auto memory : memories_) {
|
|
delete memory;
|
|
}
|
|
}
|
|
|
|
size_t MemoryOfflineParts::Read(uint64_t addr, void* dst, size_t size) {
|
|
if (memories_.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
// Do a read on each memory object, no support for reading across the
|
|
// different memory objects.
|
|
for (MemoryOffline* memory : memories_) {
|
|
size_t bytes = memory->Read(addr, dst, size);
|
|
if (bytes != 0) {
|
|
return bytes;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t MemoryCacheBase::InternalCachedRead(uint64_t addr, void* dst, size_t size,
|
|
CacheDataType* cache) {
|
|
uint64_t addr_page = addr >> kCacheBits;
|
|
auto entry = cache->find(addr_page);
|
|
uint8_t* cache_dst;
|
|
if (entry != cache->end()) {
|
|
cache_dst = entry->second;
|
|
} else {
|
|
cache_dst = (*cache)[addr_page];
|
|
if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
|
|
// Erase the entry.
|
|
cache->erase(addr_page);
|
|
return impl_->Read(addr, dst, size);
|
|
}
|
|
}
|
|
size_t max_read = ((addr_page + 1) << kCacheBits) - addr;
|
|
if (size <= max_read) {
|
|
memcpy(dst, &cache_dst[addr & kCacheMask], size);
|
|
return size;
|
|
}
|
|
|
|
// The read crossed into another cached entry, since a read can only cross
|
|
// into one extra cached page, duplicate the code rather than looping.
|
|
memcpy(dst, &cache_dst[addr & kCacheMask], max_read);
|
|
dst = &reinterpret_cast<uint8_t*>(dst)[max_read];
|
|
addr_page++;
|
|
|
|
entry = cache->find(addr_page);
|
|
if (entry != cache->end()) {
|
|
cache_dst = entry->second;
|
|
} else {
|
|
cache_dst = (*cache)[addr_page];
|
|
if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
|
|
// Erase the entry.
|
|
cache->erase(addr_page);
|
|
return impl_->Read(addr_page << kCacheBits, dst, size - max_read) + max_read;
|
|
}
|
|
}
|
|
memcpy(dst, cache_dst, size - max_read);
|
|
return size;
|
|
}
|
|
|
|
void MemoryCache::Clear() {
|
|
std::lock_guard<std::mutex> lock(cache_lock_);
|
|
cache_.clear();
|
|
}
|
|
|
|
size_t MemoryCache::CachedRead(uint64_t addr, void* dst, size_t size) {
|
|
// Use a single lock since this object is not designed to be performant
|
|
// for multiple object reading from multiple threads.
|
|
std::lock_guard<std::mutex> lock(cache_lock_);
|
|
|
|
return InternalCachedRead(addr, dst, size, &cache_);
|
|
}
|
|
|
|
MemoryThreadCache::MemoryThreadCache(Memory* memory) : MemoryCacheBase(memory) {
|
|
thread_cache_ = std::make_optional<pthread_t>();
|
|
if (pthread_key_create(&*thread_cache_, [](void* memory) {
|
|
CacheDataType* cache = reinterpret_cast<CacheDataType*>(memory);
|
|
delete cache;
|
|
}) != 0) {
|
|
log_async_safe("Failed to create pthread key.");
|
|
thread_cache_.reset();
|
|
}
|
|
}
|
|
|
|
MemoryThreadCache::~MemoryThreadCache() {
|
|
if (thread_cache_) {
|
|
CacheDataType* cache = reinterpret_cast<CacheDataType*>(pthread_getspecific(*thread_cache_));
|
|
delete cache;
|
|
pthread_key_delete(*thread_cache_);
|
|
}
|
|
}
|
|
|
|
size_t MemoryThreadCache::CachedRead(uint64_t addr, void* dst, size_t size) {
|
|
if (!thread_cache_) {
|
|
return impl_->Read(addr, dst, size);
|
|
}
|
|
|
|
CacheDataType* cache = reinterpret_cast<CacheDataType*>(pthread_getspecific(*thread_cache_));
|
|
if (cache == nullptr) {
|
|
cache = new CacheDataType;
|
|
pthread_setspecific(*thread_cache_, cache);
|
|
}
|
|
|
|
return InternalCachedRead(addr, dst, size, cache);
|
|
}
|
|
|
|
void MemoryThreadCache::Clear() {
|
|
CacheDataType* cache = reinterpret_cast<CacheDataType*>(pthread_getspecific(*thread_cache_));
|
|
if (cache != nullptr) {
|
|
delete cache;
|
|
pthread_setspecific(*thread_cache_, nullptr);
|
|
}
|
|
}
|
|
|
|
MemoryXz::MemoryXz(Memory* memory, uint64_t addr, uint64_t size, const std::string& name)
|
|
: compressed_memory_(memory), compressed_addr_(addr), compressed_size_(size), name_(name) {
|
|
total_open_ += 1;
|
|
}
|
|
|
|
bool MemoryXz::Init() {
|
|
static std::once_flag crc_initialized;
|
|
std::call_once(crc_initialized, []() {
|
|
CrcGenerateTable();
|
|
Crc64GenerateTable();
|
|
});
|
|
if (compressed_size_ >= kMaxCompressedSize) {
|
|
return false;
|
|
}
|
|
if (!ReadBlocks()) {
|
|
return false;
|
|
}
|
|
|
|
// All blocks (except the last one) must have the same power-of-2 size.
|
|
if (blocks_.size() > 1) {
|
|
size_t block_size_log2 = __builtin_ctz(blocks_.front().decompressed_size);
|
|
auto correct_size = [=](XzBlock& b) { return b.decompressed_size == (1 << block_size_log2); };
|
|
if (std::all_of(blocks_.begin(), std::prev(blocks_.end()), correct_size) &&
|
|
blocks_.back().decompressed_size <= (1 << block_size_log2)) {
|
|
block_size_log2_ = block_size_log2;
|
|
} else {
|
|
// Inconsistent block-sizes. Decompress and merge everything now.
|
|
std::unique_ptr<uint8_t[]> data(new uint8_t[size_]);
|
|
size_t offset = 0;
|
|
for (XzBlock& block : blocks_) {
|
|
if (!Decompress(&block)) {
|
|
return false;
|
|
}
|
|
memcpy(data.get() + offset, block.decompressed_data.get(), block.decompressed_size);
|
|
offset += block.decompressed_size;
|
|
}
|
|
blocks_.clear();
|
|
blocks_.push_back(XzBlock{
|
|
.decompressed_data = std::move(data),
|
|
.decompressed_size = size_,
|
|
});
|
|
block_size_log2_ = 31; // Because 32 bits is too big (shift right by 32 is not allowed).
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MemoryXz::~MemoryXz() {
|
|
total_used_ -= used_;
|
|
total_size_ -= size_;
|
|
total_open_ -= 1;
|
|
}
|
|
|
|
size_t MemoryXz::Read(uint64_t addr, void* buffer, size_t size) {
|
|
if (addr >= size_) {
|
|
return 0; // Read past the end.
|
|
}
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(buffer); // Position in the output buffer.
|
|
for (size_t i = addr >> block_size_log2_; i < blocks_.size(); i++) {
|
|
XzBlock* block = &blocks_[i];
|
|
if (block->decompressed_data == nullptr) {
|
|
if (!Decompress(block)) {
|
|
break;
|
|
}
|
|
}
|
|
size_t offset = (addr - (i << block_size_log2_)); // Start inside the block.
|
|
size_t copy_bytes = std::min<size_t>(size, block->decompressed_size - offset);
|
|
memcpy(dst, block->decompressed_data.get() + offset, copy_bytes);
|
|
dst += copy_bytes;
|
|
addr += copy_bytes;
|
|
size -= copy_bytes;
|
|
if (size == 0) {
|
|
break;
|
|
}
|
|
}
|
|
return dst - reinterpret_cast<uint8_t*>(buffer);
|
|
}
|
|
|
|
bool MemoryXz::ReadBlocks() {
|
|
static ISzAlloc alloc;
|
|
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
|
|
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
|
|
|
|
// Read the compressed data, so we can quickly scan through the headers.
|
|
std::unique_ptr<uint8_t[]> compressed_data(new (std::nothrow) uint8_t[compressed_size_]);
|
|
if (compressed_data.get() == nullptr) {
|
|
return false;
|
|
}
|
|
if (!compressed_memory_->ReadFully(compressed_addr_, compressed_data.get(), compressed_size_)) {
|
|
return false;
|
|
}
|
|
|
|
// Implement the required interface for communication
|
|
// (written in C so we can not use virtual methods or member functions).
|
|
struct XzLookInStream : public ILookInStream, public ICompressProgress {
|
|
static SRes LookImpl(const ILookInStream* p, const void** buf, size_t* size) {
|
|
auto* ctx = reinterpret_cast<const XzLookInStream*>(p);
|
|
*buf = ctx->data + ctx->offset;
|
|
*size = std::min(*size, ctx->size - ctx->offset);
|
|
return SZ_OK;
|
|
}
|
|
static SRes SkipImpl(const ILookInStream* p, size_t len) {
|
|
auto* ctx = reinterpret_cast<XzLookInStream*>(const_cast<ILookInStream*>(p));
|
|
ctx->offset += len;
|
|
return SZ_OK;
|
|
}
|
|
static SRes ReadImpl(const ILookInStream* p, void* buf, size_t* size) {
|
|
auto* ctx = reinterpret_cast<const XzLookInStream*>(p);
|
|
*size = std::min(*size, ctx->size - ctx->offset);
|
|
memcpy(buf, ctx->data + ctx->offset, *size);
|
|
return SZ_OK;
|
|
}
|
|
static SRes SeekImpl(const ILookInStream* p, Int64* pos, ESzSeek origin) {
|
|
auto* ctx = reinterpret_cast<XzLookInStream*>(const_cast<ILookInStream*>(p));
|
|
switch (origin) {
|
|
case SZ_SEEK_SET:
|
|
ctx->offset = *pos;
|
|
break;
|
|
case SZ_SEEK_CUR:
|
|
ctx->offset += *pos;
|
|
break;
|
|
case SZ_SEEK_END:
|
|
ctx->offset = ctx->size + *pos;
|
|
break;
|
|
}
|
|
*pos = ctx->offset;
|
|
return SZ_OK;
|
|
}
|
|
static SRes ProgressImpl(const ICompressProgress*, UInt64, UInt64) { return SZ_OK; }
|
|
size_t offset;
|
|
uint8_t* data;
|
|
size_t size;
|
|
};
|
|
XzLookInStream callbacks;
|
|
callbacks.Look = &XzLookInStream::LookImpl;
|
|
callbacks.Skip = &XzLookInStream::SkipImpl;
|
|
callbacks.Read = &XzLookInStream::ReadImpl;
|
|
callbacks.Seek = &XzLookInStream::SeekImpl;
|
|
callbacks.Progress = &XzLookInStream::ProgressImpl;
|
|
callbacks.offset = 0;
|
|
callbacks.data = compressed_data.get();
|
|
callbacks.size = compressed_size_;
|
|
|
|
// Iterate over the internal XZ blocks without decompressing them.
|
|
CXzs xzs;
|
|
Xzs_Construct(&xzs);
|
|
Int64 end_offset = compressed_size_;
|
|
if (Xzs_ReadBackward(&xzs, &callbacks, &end_offset, &callbacks, &alloc) == SZ_OK) {
|
|
blocks_.reserve(Xzs_GetNumBlocks(&xzs));
|
|
size_t dst_offset = 0;
|
|
for (int s = xzs.num - 1; s >= 0; s--) {
|
|
const CXzStream& stream = xzs.streams[s];
|
|
size_t src_offset = stream.startOffset + XZ_STREAM_HEADER_SIZE;
|
|
for (size_t b = 0; b < stream.numBlocks; b++) {
|
|
const CXzBlockSizes& block = stream.blocks[b];
|
|
blocks_.push_back(XzBlock{
|
|
.decompressed_data = nullptr, // Lazy allocation and decompression.
|
|
.decompressed_size = static_cast<uint32_t>(block.unpackSize),
|
|
.compressed_offset = static_cast<uint32_t>(src_offset),
|
|
.compressed_size = static_cast<uint32_t>((block.totalSize + 3) & ~3u),
|
|
.stream_flags = stream.flags,
|
|
});
|
|
dst_offset += blocks_.back().decompressed_size;
|
|
src_offset += blocks_.back().compressed_size;
|
|
}
|
|
}
|
|
size_ = dst_offset;
|
|
total_size_ += dst_offset;
|
|
}
|
|
Xzs_Free(&xzs, &alloc);
|
|
return !blocks_.empty();
|
|
}
|
|
|
|
bool MemoryXz::Decompress(XzBlock* block) {
|
|
static ISzAlloc alloc;
|
|
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
|
|
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
|
|
|
|
// Read the compressed data for this block.
|
|
std::unique_ptr<uint8_t[]> compressed_data(new (std::nothrow) uint8_t[block->compressed_size]);
|
|
if (compressed_data.get() == nullptr) {
|
|
return false;
|
|
}
|
|
if (!compressed_memory_->ReadFully(compressed_addr_ + block->compressed_offset,
|
|
compressed_data.get(), block->compressed_size)) {
|
|
return false;
|
|
}
|
|
|
|
// Allocate decompressed memory.
|
|
std::unique_ptr<uint8_t[]> decompressed_data(new uint8_t[block->decompressed_size]);
|
|
if (decompressed_data == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// Decompress.
|
|
CXzUnpacker state{};
|
|
XzUnpacker_Construct(&state, &alloc);
|
|
state.streamFlags = block->stream_flags;
|
|
XzUnpacker_PrepareToRandomBlockDecoding(&state);
|
|
size_t decompressed_size = block->decompressed_size;
|
|
size_t compressed_size = block->compressed_size;
|
|
ECoderStatus status;
|
|
XzUnpacker_SetOutBuf(&state, decompressed_data.get(), decompressed_size);
|
|
int return_val =
|
|
XzUnpacker_Code(&state, /*decompressed_data=*/nullptr, &decompressed_size,
|
|
compressed_data.get(), &compressed_size, true, CODER_FINISH_END, &status);
|
|
XzUnpacker_Free(&state);
|
|
if (return_val != SZ_OK || status != CODER_STATUS_FINISHED_WITH_MARK) {
|
|
log(0, "Can not decompress \"%s\"", name_.c_str());
|
|
return false;
|
|
}
|
|
|
|
used_ += block->decompressed_size;
|
|
total_used_ += block->decompressed_size;
|
|
if (kLogMemoryXzUsage) {
|
|
log(0, "decompressed memory: %zi%% of %ziKB (%zi files), %i%% of %iKB (%s)",
|
|
100 * total_used_ / total_size_, total_size_ / 1024, total_open_.load(),
|
|
100 * used_ / size_, size_ / 1024, name_.c_str());
|
|
}
|
|
|
|
block->decompressed_data = std::move(decompressed_data);
|
|
return true;
|
|
}
|
|
|
|
} // namespace unwindstack
|