You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2758 lines
71 KiB

/**
* ntfsclone - Part of the Linux-NTFS project.
*
* Copyright (c) 2003-2006 Szabolcs Szakacsits
* Copyright (c) 2004-2006 Anton Altaparmakov
* Copyright (c) 2010-2018 Jean-Pierre Andre
* Special image format support copyright (c) 2004 Per Olofsson
*
* Clone NTFS data and/or metadata to a sparse file, image, device or stdout.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#ifdef HAVE_SYS_VFS_H
#include <sys/vfs.h>
#endif
#ifdef HAVE_SYS_STATVFS_H
#include <sys/statvfs.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_STDARG_H
#include <stdarg.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_GETOPT_H
#include <getopt.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#endif
/*
* FIXME: ntfsclone do bad things about endians handling. Fix it and remove
* this note and define.
*/
#define NTFS_DO_NOT_CHECK_ENDIANS
#include "param.h"
#include "debug.h"
#include "types.h"
#include "support.h"
#include "endians.h"
#include "bootsect.h"
#include "device.h"
#include "attrib.h"
#include "mst.h"
#include "volume.h"
#include "mft.h"
#include "bitmap.h"
#include "inode.h"
#include "index.h"
#include "dir.h"
#include "runlist.h"
#include "ntfstime.h"
#include "utils.h"
/* #include "version.h" */
#include "misc.h"
#if defined(linux) && defined(_IO) && !defined(BLKGETSIZE)
#define BLKGETSIZE _IO(0x12,96) /* Get device size in 512-byte blocks. */
#endif
#if defined(linux) && defined(_IOR) && !defined(BLKGETSIZE64)
#define BLKGETSIZE64 _IOR(0x12,114,size_t) /* Get device size in bytes. */
#endif
#if defined(linux) || defined(__uClinux__) || defined(__sun) \
|| defined(__APPLE__) || defined(__DARWIN__)
/* Make sure the presence of <windows.h> means compiling for Windows */
#undef HAVE_WINDOWS_H
#endif
#if defined(__sun) | defined(HAVE_WINDOWS_H)
#define NO_STATFS 1 /* statfs(2) and f_type are not universal */
#endif
#ifdef HAVE_WINDOWS_H
/*
* Replacements for functions which do not exist on Windows
*/
int setmode(int, int); /* from msvcrt.dll */
#define getpid() (0)
#define srandom(seed) srand(seed)
#define random() rand()
#define fsync(fd) (0)
#define ioctl(fd,code,buf) (-1)
#define ftruncate(fd, size) ntfs_device_win32_ftruncate(dev_out, size)
#define BINWMODE "wb"
#else
#define BINWMODE "w"
#endif
#ifndef O_BINARY
#define O_BINARY 0
#endif
static const char *EXEC_NAME = "ntfsclone";
static const char *bad_sectors_warning_msg =
"*************************************************************************\n"
"* WARNING: The disk has one or more bad sectors. This means that damage *\n"
"* has occurred on the disk surface, possibly caused by deterioration of *\n"
"* the physical media, manufacturing faults or other reasons. The *\n"
"* reliability of the disk may stay stable or degrade fast. *\n"
"* Use the --rescue option to efficiently save as much data as possible! *\n"
"*************************************************************************\n";
static const char *dirty_volume_msg =
"Volume '%s' is scheduled for a check or it was shutdown \n"
"uncleanly. Please boot Windows or use the --force option to progress.\n";
static struct {
int verbose;
int quiet;
int debug;
int force;
int overwrite;
int std_out;
int blkdev_out; /* output file is block device */
int metadata; /* metadata only cloning */
int no_action; /* do not really restore */
int ignore_fs_check;
int rescue;
int save_image;
int new_serial;
int metadata_image;
int preserve_timestamps;
int full_logfile;
int restore_image;
char *output;
char *volume;
#ifndef NO_STATFS
struct statfs stfs;
#endif
} opt;
struct bitmap {
s64 size;
u8 *bm;
};
struct progress_bar {
u64 start;
u64 stop;
int resolution;
float unit;
};
typedef struct {
ntfs_inode *ni; /* inode being processed */
ntfs_attr_search_ctx *ctx; /* inode attribute being processed */
s64 inuse; /* number of clusters in use */
int more_use; /* possibly allocated clusters */
LCN current_lcn;
} ntfs_walk_clusters_ctx;
typedef int (ntfs_walk_op)(ntfs_inode *ni, void *data);
struct ntfs_walk_cluster {
ntfs_walk_op *inode_op; /* not implemented yet */
ntfs_walk_clusters_ctx *image;
};
static ntfs_volume *vol = NULL;
static struct bitmap lcn_bitmap;
static int fd_in;
static int fd_out;
static FILE *stream_out = (FILE*)NULL;
struct ntfs_device *dev_out = (struct ntfs_device*)NULL;
static FILE *msg_out = NULL;
static int wipe = 0;
static unsigned int nr_used_mft_records = 0;
static unsigned int wiped_unused_mft_data = 0;
static unsigned int wiped_unused_mft = 0;
static unsigned int wiped_resident_data = 0;
static unsigned int wiped_timestamp_data = 0;
static le64 volume_serial_number; /* new random serial number */
static u64 full_device_size; /* full size, including the backup boot sector */
static BOOL image_is_host_endian = FALSE;
#define IMAGE_MAGIC "\0ntfsclone-image"
#define IMAGE_MAGIC_SIZE 16
#define IMAGE_OFFSET_OFFSET 46 /* must be the same for all versions ! */
#define IMAGE_HDR_ALIGN 8 /* alignment wanted after header */
/* This is the first endianness safe format version. */
#define NTFSCLONE_IMG_VER_MAJOR_ENDIANNESS_SAFE 10
#define NTFSCLONE_IMG_VER_MINOR_ENDIANNESS_SAFE 0
/*
* Set the version to 10.0 to avoid colisions with old ntfsclone which
* stupidly used the volume version as the image version... )-: I hope NTFS
* never reaches version 10.0 and if it does one day I hope no-one is using
* such an old ntfsclone by then...
*
* NOTE: Only bump the minor version if the image format and header are still
* backwards compatible. Otherwise always bump the major version. If in
* doubt, bump the major version.
*
* Moved to 10.1 : Alternate boot sector now saved. Still compatible.
*/
#define NTFSCLONE_IMG_VER_MAJOR 10
#define NTFSCLONE_IMG_VER_MINOR 1
enum { CMD_GAP, CMD_NEXT } ;
/* All values are in little endian. */
static struct image_hdr {
char magic[IMAGE_MAGIC_SIZE];
u8 major_ver;
u8 minor_ver;
/* the following is aligned dangerously (too late...) */
le32 cluster_size;
le64 device_size;
sle64 nr_clusters;
le64 inuse;
le32 offset_to_image_data; /* From start of image_hdr. */
} __attribute__((__packed__)) image_hdr;
static int compare_bitmaps(struct bitmap *a, BOOL copy);
#define NTFSCLONE_IMG_HEADER_SIZE_OLD \
(offsetof(struct image_hdr, offset_to_image_data))
#define NTFS_MBYTE (1000 * 1000)
#define ERR_PREFIX "ERROR"
#define PERR_PREFIX ERR_PREFIX "(%d): "
#define NERR_PREFIX ERR_PREFIX ": "
#define LAST_METADATA_INODE 11
#define NTFS_SECTOR_SIZE 512
#define rounded_up_division(a, b) (((a) + (b - 1)) / (b))
#define read_all(f, p, n) io_all((f), (p), (n), 0)
#define write_all(f, p, n) io_all((f), (p), (n), 1)
__attribute__((format(printf, 1, 2)))
static void Printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(msg_out, fmt, ap);
va_end(ap);
fflush(msg_out);
}
__attribute__((format(printf, 1, 2)))
static void perr_printf(const char *fmt, ...)
{
va_list ap;
int eo = errno;
Printf(PERR_PREFIX, eo);
va_start(ap, fmt);
vfprintf(msg_out, fmt, ap);
va_end(ap);
Printf(": %s\n", strerror(eo));
fflush(msg_out);
}
__attribute__((format(printf, 1, 2)))
static void err_printf(const char *fmt, ...)
{
va_list ap;
Printf(NERR_PREFIX);
va_start(ap, fmt);
vfprintf(msg_out, fmt, ap);
va_end(ap);
fflush(msg_out);
}
__attribute__((noreturn))
__attribute__((format(printf, 1, 2)))
static void err_exit(const char *fmt, ...)
{
va_list ap;
Printf(NERR_PREFIX);
va_start(ap, fmt);
vfprintf(msg_out, fmt, ap);
va_end(ap);
fflush(msg_out);
if (vol)
ntfs_umount(vol,FALSE);
exit(1);
}
__attribute__((noreturn))
__attribute__((format(printf, 1, 2)))
static void perr_exit(const char *fmt, ...)
{
va_list ap;
int eo = errno;
Printf(PERR_PREFIX, eo);
va_start(ap, fmt);
vfprintf(msg_out, fmt, ap);
va_end(ap);
Printf(": %s\n", strerror(eo));
fflush(msg_out);
if (vol)
ntfs_umount(vol,FALSE);
exit(1);
}
__attribute__((noreturn))
static void usage(int ret)
{
fprintf(stderr, "\nUsage: %s [OPTIONS] SOURCE\n"
" Efficiently clone NTFS to a sparse file, image, device or standard output.\n"
"\n"
" -o, --output FILE Clone NTFS to the non-existent FILE\n"
" -O, --overwrite FILE Clone NTFS to FILE, overwriting if exists\n"
" -s, --save-image Save to the special image format\n"
" -r, --restore-image Restore from the special image format\n"
" --rescue Continue after disk read errors\n"
" -m, --metadata Clone *only* metadata (for NTFS experts)\n"
" -n, --no-action Test restoring, without outputting anything\n"
" --ignore-fs-check Ignore the filesystem check result\n"
" --new-serial Set a new serial number\n"
" --new-half-serial Set a partial new serial number\n"
" -t, --preserve-timestamps Do not clear the timestamps\n"
" -q, --quiet Do not display any progress bars\n"
" -f, --force Force to progress (DANGEROUS)\n"
" --full-logfile Include the full logfile in metadata output\n"
" -h, --help Display this help\n"
#ifdef DEBUG
" -d, --debug Show debug information\n"
#endif
" -V, --version Display version information\n"
"\n"
" If FILE is '-' then send the image to the standard output. If SOURCE is '-'\n"
" and --restore-image is used then read the image from the standard input.\n"
"\n", EXEC_NAME);
fprintf(stderr, "%s%s", ntfs_bugs, ntfs_home);
exit(ret);
}
/**
* version
*/
__attribute__((noreturn))
static void version(void)
{
fprintf(stderr,
"Efficiently clone, image, restore or rescue an NTFS Volume.\n\n"
"Copyright (c) 2003-2006 Szabolcs Szakacsits\n"
"Copyright (c) 2004-2006 Anton Altaparmakov\n"
"Copyright (c) 2010-2018 Jean-Pierre Andre\n\n");
fprintf(stderr, "%s\n%s%s", ntfs_gpl, ntfs_bugs, ntfs_home);
exit(0);
}
static void parse_options(int argc, char **argv)
{
static const char *sopt = "-dfhmno:O:qrstV";
static const struct option lopt[] = {
#ifdef DEBUG
{ "debug", no_argument, NULL, 'd' },
#endif
{ "quiet", no_argument, NULL, 'q' },
{ "force", no_argument, NULL, 'f' },
{ "help", no_argument, NULL, 'h' },
{ "metadata", no_argument, NULL, 'm' },
{ "no-action", no_argument, NULL, 'n' },
{ "output", required_argument, NULL, 'o' },
{ "overwrite", required_argument, NULL, 'O' },
{ "restore-image", no_argument, NULL, 'r' },
{ "ignore-fs-check", no_argument, NULL, 'C' },
{ "rescue", no_argument, NULL, 'R' },
{ "new-serial", no_argument, NULL, 'I' },
{ "new-half-serial", no_argument, NULL, 'i' },
{ "full-logfile", no_argument, NULL, 'l' },
{ "save-image", no_argument, NULL, 's' },
{ "preserve-timestamps", no_argument, NULL, 't' },
{ "version", no_argument, NULL, 'V' },
{ NULL, 0, NULL, 0 }
};
int c;
memset(&opt, 0, sizeof(opt));
while ((c = getopt_long(argc, argv, sopt, lopt, NULL)) != -1) {
switch (c) {
case 1: /* A non-option argument */
if (opt.volume)
usage(1);
opt.volume = argv[optind-1];
break;
case 'd':
opt.debug++;
break;
case 'q':
opt.quiet++;
break;
case 'f':
opt.force++;
break;
case 'h':
usage(0);
case '?':
usage(1);
case 'i': /* not proposed as a short option */
opt.new_serial |= 1;
break;
case 'I': /* not proposed as a short option */
opt.new_serial |= 2;
break;
case 'l':
opt.full_logfile++;
break;
case 'm':
opt.metadata++;
break;
case 'n':
opt.no_action++;
break;
case 'O':
opt.overwrite++;
/* FALLTHRU */
case 'o':
if (opt.output)
usage(1);
opt.output = optarg;
break;
case 'r':
opt.restore_image++;
break;
case 'C':
opt.ignore_fs_check++;
break;
case 'R':
opt.rescue++;
break;
case 's':
opt.save_image++;
break;
case 't':
opt.preserve_timestamps++;
break;
case 'V':
version();
break;
default:
err_printf("Unknown option '%s'.\n", argv[optind-1]);
usage(1);
}
}
if (!opt.no_action && (opt.output == NULL)) {
err_printf("You must specify an output file.\n");
usage(1);
}
if (!opt.no_action && (strcmp(opt.output, "-") == 0))
opt.std_out++;
if (opt.volume == NULL) {
err_printf("You must specify a device file.\n");
usage(1);
}
if (!opt.restore_image && !strcmp(opt.volume, "-")) {
err_printf("Only special images can be read from standard input\n");
usage(1);
}
if (opt.metadata && opt.save_image) {
opt.metadata_image++;
opt.save_image = 0;
}
if (opt.metadata && opt.restore_image)
err_exit("Restoring only metadata from an image is not "
"supported!\n");
if (opt.metadata && !opt.metadata_image && opt.std_out)
err_exit("Cloning only metadata to stdout isn't supported!\n");
if (opt.ignore_fs_check && !opt.metadata && !opt.rescue)
err_exit("Filesystem check can be ignored only for metadata "
"cloning or rescue situations!\n");
if (opt.save_image && opt.restore_image)
err_exit("Saving and restoring an image at the same time "
"is not supported!\n");
if (opt.no_action && !opt.restore_image)
err_exit("A restoring test requires the restore option!\n");
if (opt.no_action && opt.output)
err_exit("A restoring test requires not defining any output!\n");
if (!opt.no_action && !opt.std_out) {
struct stat st;
#ifdef HAVE_WINDOWS_H
BOOL blkdev = opt.output[0] && (opt.output[1] == ':')
&& !opt.output[2];
if (!blkdev && (stat(opt.output, &st) == -1)) {
#else
if (stat(opt.output, &st) == -1) {
#endif
if (errno != ENOENT)
perr_exit("Couldn't access '%s'", opt.output);
} else {
if (!opt.overwrite)
err_exit("Output file '%s' already exists.\n"
"Use option --overwrite if you want to"
" replace its content.\n", opt.output);
#ifdef HAVE_WINDOWS_H
if (blkdev) {
#else
if (S_ISBLK(st.st_mode)) {
#endif
opt.blkdev_out = 1;
if (opt.metadata && !opt.force)
err_exit("Cloning only metadata to a "
"block device does not usually "
"make sense, aborting...\n"
"If you were instructed to do "
"this by a developer and/or are "
"sure that this is what you want "
"to do, run this utility again "
"but this time add the force "
"option, i.e. add '--force' to "
"the command line arguments.");
}
}
}
/*
* Send messages, debug information and library messages to stdout,
* but, if outputing to stdout send them to stderr
*/
if (opt.std_out) {
msg_out = stderr;
ntfs_log_set_handler(ntfs_log_handler_stderr);
} else {
msg_out = stdout;
ntfs_log_set_handler(ntfs_log_handler_outerr);
}
}
/*
* Initialize the random number generator with the current
* time, and generate a 64-bit random number for the serial
* number
*/
static void generate_serial_number(void) {
u64 sn;
/* different values for parallel processes */
srandom(time((time_t*)NULL) ^ (getpid() << 16));
sn = ((u64)random() << 32) | ((u64)random() & 0xffffffff);
volume_serial_number = cpu_to_le64(sn);
}
static void progress_init(struct progress_bar *p, u64 start, u64 stop, int res)
{
p->start = start;
p->stop = stop;
p->unit = 100.0 / (stop - start);
p->resolution = res;
}
static void progress_update(struct progress_bar *p, u64 current)
{
float percent = p->unit * current;
if (opt.quiet)
return;
if (current != p->stop) {
if ((current - p->start) % p->resolution)
return;
Printf("%6.2f percent completed\r", percent);
} else
Printf("100.00 percent completed\n");
fflush(msg_out);
}
static s64 is_critical_metadata(ntfs_walk_clusters_ctx *image, runlist *rl)
{
s64 inode = image->ni->mft_no;
if (inode <= LAST_METADATA_INODE) {
/* Don't save bad sectors (both $Bad and unnamed are ignored */
if (inode == FILE_BadClus && image->ctx->attr->type == AT_DATA)
return 0;
if ((inode != FILE_LogFile) || opt.full_logfile)
return rl->length;
if (image->ctx->attr->type == AT_DATA) {
/* Save at least the first 16 KiB of FILE_LogFile */
s64 s = (s64)16384 - rl->vcn * vol->cluster_size;
if (s > 0) {
s = rounded_up_division(s, vol->cluster_size);
if (rl->length < s)
s = rl->length;
return s;
}
return 0;
}
}
if (image->ctx->attr->type != AT_DATA)
return rl->length;
return 0;
}
static off_t tellin(int in)
{
return (lseek(in, 0, SEEK_CUR));
}
static int io_all(void *fd, void *buf, int count, int do_write)
{
int i;
struct ntfs_device *dev = fd;
while (count > 0) {
if (do_write) {
if (opt.no_action) {
i = count;
} else {
if (opt.save_image || opt.metadata_image)
i = fwrite(buf, 1, count, stream_out);
#ifdef HAVE_WINDOWS_H
else if (dev_out)
i = dev_out->d_ops->write(dev_out,
buf, count);
#endif
else
i = write(*(int *)fd, buf, count);
}
} else if (opt.restore_image)
i = read(*(int *)fd, buf, count);
else
i = dev->d_ops->read(dev, buf, count);
if (i < 0) {
if (errno != EAGAIN && errno != EINTR)
return -1;
} else if (i == 0 && !do_write && opt.restore_image) {
return -1;
} else {
count -= i;
buf = i + (char *) buf;
}
}
return 0;
}
static void rescue_sector(void *fd, u32 bytes_per_sector, off_t pos, void *buff)
{
const char badsector_magic[] = "BadSectoR";
struct ntfs_device *dev = fd;
if (opt.restore_image) {
if (!opt.no_action
&& (lseek(*(int *)fd, pos, SEEK_SET) == (off_t)-1))
perr_exit("lseek");
} else {
if (vol->dev->d_ops->seek(dev, pos, SEEK_SET) == (off_t)-1)
perr_exit("seek input");
}
if (read_all(fd, buff, bytes_per_sector) == -1) {
Printf("WARNING: Can't read sector at %llu, lost data.\n",
(unsigned long long)pos);
memset(buff, '?', bytes_per_sector);
memmove(buff, badsector_magic, sizeof(badsector_magic));
}
}
/*
* Read a cluster, try to rescue if cannot read
*/
static void read_rescue(void *fd, char *buff, u32 csize, u32 bytes_per_sector,
u64 rescue_lcn)
{
off_t rescue_pos;
if (read_all(fd, buff, csize) == -1) {
if (errno != EIO)
perr_exit("read_all");
else if (opt.rescue){
u32 i;
rescue_pos = (off_t)(rescue_lcn * csize);
for (i = 0; i < csize; i += bytes_per_sector)
rescue_sector(fd, bytes_per_sector,
rescue_pos + i, buff + i);
} else {
Printf("%s", bad_sectors_warning_msg);
err_exit("Disk is faulty, can't make full backup!");
}
}
}
static void copy_cluster(int rescue, u64 rescue_lcn, u64 lcn)
{
char *buff;
/* vol is NULL if opt.restore_image is set */
s32 csize = le32_to_cpu(image_hdr.cluster_size);
BOOL backup_bootsector;
void *fd = (void *)&fd_in;
off_t rescue_pos;
NTFS_BOOT_SECTOR *bs;
le64 mask;
static u16 bytes_per_sector = NTFS_SECTOR_SIZE;
if (!opt.restore_image) {
csize = vol->cluster_size;
bytes_per_sector = vol->sector_size;
fd = vol->dev;
}
rescue_pos = (off_t)(rescue_lcn * csize);
buff = (char*)ntfs_malloc(csize);
if (!buff)
err_exit("Not enough memory");
/* possible partial cluster holding the backup boot sector */
backup_bootsector = (lcn + 1)*csize >= full_device_size;
if (backup_bootsector) {
csize = full_device_size - lcn*csize;
if (csize < 0) {
err_exit("Corrupted input, copy aborted");
}
}
// need reading when not about to write ?
if (read_all(fd, buff, csize) == -1) {
if (errno != EIO) {
if (!errno && opt.restore_image)
err_exit("Short image file...\n");
else
perr_exit("read_all");
}
else if (rescue){
s32 i;
for (i = 0; i < csize; i += bytes_per_sector)
rescue_sector(fd, bytes_per_sector,
rescue_pos + i, buff + i);
} else {
Printf("%s", bad_sectors_warning_msg);
err_exit("Disk is faulty, can't make full backup!");
}
}
/* Set the new serial number if requested */
if (opt.new_serial
&& !opt.save_image
&& (!lcn || backup_bootsector)) {
/*
* For updating the backup boot sector, we need to
* know the sector size, but this is not recorded
* in the image header, so we collect it on the fly
* while reading the first boot sector.
*/
if (!lcn) {
bs = (NTFS_BOOT_SECTOR*)buff;
bytes_per_sector = le16_to_cpu(bs->bpb.bytes_per_sector);
if ((bytes_per_sector > csize)
|| (bytes_per_sector < NTFS_SECTOR_SIZE))
bytes_per_sector = NTFS_SECTOR_SIZE;
} else
bs = (NTFS_BOOT_SECTOR*)(buff
+ csize - bytes_per_sector);
if (opt.new_serial & 2)
bs->volume_serial_number = volume_serial_number;
else {
mask = const_cpu_to_le64(~0x0ffffffffULL);
bs->volume_serial_number
= (volume_serial_number & mask)
| (bs->volume_serial_number & ~mask);
}
/* Show the new full serial after merging */
if (!lcn)
Printf("New serial number : 0x%llx\n",
(long long)le64_to_cpu(
bs->volume_serial_number));
}
if (opt.save_image || (opt.metadata_image && wipe)) {
char cmd = CMD_NEXT;
if (write_all(&fd_out, &cmd, sizeof(cmd)) == -1)
perr_exit("write_all");
}
if ((!opt.metadata_image || wipe)
&& (write_all(&fd_out, buff, csize) == -1)) {
#ifndef NO_STATFS
int err = errno;
perr_printf("Write failed");
if (err == EIO && opt.stfs.f_type == 0x517b)
Printf("Apparently you tried to clone to a remote "
"Windows computer but they don't\nhave "
"efficient sparse file handling by default. "
"Please try a different method.\n");
exit(1);
#else
perr_printf("Write failed");
#endif
}
free(buff);
}
static s64 lseek_out(int fd, s64 pos, int mode)
{
s64 ret;
if (dev_out)
ret = (dev_out->d_ops->seek)(dev_out, pos, mode);
else
ret = lseek(fd, pos, mode);
return (ret);
}
static void lseek_to_cluster(s64 lcn)
{
off_t pos;
pos = (off_t)(lcn * vol->cluster_size);
if (vol->dev->d_ops->seek(vol->dev, pos, SEEK_SET) == (off_t)-1)
perr_exit("lseek input");
if (opt.std_out || opt.save_image || opt.metadata_image)
return;
if (lseek_out(fd_out, pos, SEEK_SET) == (off_t)-1)
perr_exit("lseek output");
}
static void gap_to_cluster(s64 gap)
{
sle64 count;
char buf[1 + sizeof(count)];
if (gap) {
count = cpu_to_sle64(gap);
buf[0] = CMD_GAP;
memcpy(&buf[1], &count, sizeof(count));
if (write_all(&fd_out, buf, sizeof(buf)) == -1)
perr_exit("write_all");
}
}
static void image_skip_clusters(s64 count)
{
if (opt.save_image && count > 0) {
sle64 count_buf;
char buff[1 + sizeof(count)];
buff[0] = CMD_GAP;
count_buf = cpu_to_sle64(count);
memcpy(buff + 1, &count_buf, sizeof(count_buf));
if (write_all(&fd_out, buff, sizeof(buff)) == -1)
perr_exit("write_all");
}
}
static void write_image_hdr(void)
{
char alignment[IMAGE_HDR_ALIGN];
if (opt.save_image || opt.metadata_image) {
int alignsize = le32_to_cpu(image_hdr.offset_to_image_data)
- sizeof(image_hdr);
memset(alignment,0,IMAGE_HDR_ALIGN);
if ((alignsize < 0)
|| write_all(&fd_out, &image_hdr, sizeof(image_hdr))
|| write_all(&fd_out, alignment, alignsize))
perr_exit("write_all");
}
}
static void clone_ntfs(u64 nr_clusters, int more_use)
{
u64 cl, last_cl; /* current and last used cluster */
void *buf;
u32 csize = vol->cluster_size;
u64 p_counter = 0;
char alignment[IMAGE_HDR_ALIGN];
struct progress_bar progress;
if (opt.save_image)
Printf("Saving NTFS to image ...\n");
else
Printf("Cloning NTFS ...\n");
if (opt.new_serial)
generate_serial_number();
buf = ntfs_calloc(csize);
if (!buf)
perr_exit("clone_ntfs");
progress_init(&progress, p_counter, nr_clusters, 100);
if (opt.save_image) {
int alignsize = le32_to_cpu(image_hdr.offset_to_image_data)
- sizeof(image_hdr);
memset(alignment,0,IMAGE_HDR_ALIGN);
if ((alignsize < 0)
|| write_all(&fd_out, &image_hdr, sizeof(image_hdr))
|| write_all(&fd_out, alignment, alignsize))
perr_exit("write_all");
}
/* save suspicious clusters if required */
if (more_use && opt.ignore_fs_check) {
compare_bitmaps(&lcn_bitmap, TRUE);
}
/* Examine up to the alternate boot sector */
for (last_cl = cl = 0; cl <= (u64)vol->nr_clusters; cl++) {
if (ntfs_bit_get(lcn_bitmap.bm, cl)) {
progress_update(&progress, ++p_counter);
lseek_to_cluster(cl);
image_skip_clusters(cl - last_cl - 1);
copy_cluster(opt.rescue, cl, cl);
last_cl = cl;
continue;
}
if (opt.std_out && !opt.save_image) {
progress_update(&progress, ++p_counter);
if (write_all(&fd_out, buf, csize) == -1)
perr_exit("write_all");
}
}
image_skip_clusters(cl - last_cl - 1);
free(buf);
}
static void write_empty_clusters(s32 csize, s64 count,
struct progress_bar *progress, u64 *p_counter)
{
s64 i;
char *buff;
buff = (char*)ntfs_malloc(csize);
if (!buff)
err_exit("Not enough memory");
memset(buff, 0, csize);
for (i = 0; i < count; i++) {
if (write_all(&fd_out, buff, csize) == -1)
perr_exit("write_all");
progress_update(progress, ++(*p_counter));
}
free(buff);
}
static void restore_image(void)
{
s64 pos = 0, count;
s32 csize = le32_to_cpu(image_hdr.cluster_size);
char cmd;
u64 p_counter = 0;
struct progress_bar progress;
Printf("Restoring NTFS from image ...\n");
progress_init(&progress, p_counter, opt.std_out ?
(u64)sle64_to_cpu(image_hdr.nr_clusters) + 1 :
le64_to_cpu(image_hdr.inuse) + 1,
100);
if (opt.new_serial)
generate_serial_number();
/* Restore up to the alternate boot sector */
while (pos <= sle64_to_cpu(image_hdr.nr_clusters)) {
if (read_all(&fd_in, &cmd, sizeof(cmd)) == -1) {
if (pos == sle64_to_cpu(image_hdr.nr_clusters)) {
/* alternate boot sector no present in old images */
Printf("Warning : no alternate boot"
" sector in image\n");
break;
} else
perr_exit("read_all");
}
if (cmd == CMD_GAP) {
if (!image_is_host_endian) {
sle64 lecount;
/* little endian image, on any computer */
if (read_all(&fd_in, &lecount,
sizeof(lecount)) == -1)
perr_exit("read_all");
count = sle64_to_cpu(lecount);
} else {
/* big endian image on big endian computer */
if (read_all(&fd_in, &count,
sizeof(count)) == -1)
perr_exit("read_all");
}
if (!count)
err_exit("Bad offset at input location 0x%llx\n",
(long long)tellin(fd_in) - 9);
if (opt.std_out) {
if ((!p_counter && count) || (count < 0))
err_exit("Cannot restore a metadata"
" image to stdout\n");
else
write_empty_clusters(csize, count,
&progress, &p_counter);
} else {
if (((pos + count) < 0)
|| ((pos + count)
> sle64_to_cpu(image_hdr.nr_clusters)))
err_exit("restore_image: corrupt image "
"at input offset %lld\n",
(long long)tellin(fd_in) - 9);
else {
if (!opt.no_action
&& (lseek_out(fd_out, count * csize,
SEEK_CUR) == (off_t)-1))
perr_exit("restore_image: lseek");
}
}
pos += count;
} else if (cmd == CMD_NEXT) {
copy_cluster(0, 0, pos);
pos++;
progress_update(&progress, ++p_counter);
} else
err_exit("Invalid command code %d at input offset 0x%llx\n",
cmd, (long long)tellin(fd_in) - 1);
}
}
static void wipe_index_entry_timestams(INDEX_ENTRY *e)
{
static const struct timespec zero_time = { .tv_sec = 0, .tv_nsec = 0 };
sle64 timestamp = timespec2ntfs(zero_time);
/* FIXME: can fall into infinite loop if corrupted */
while (!(e->ie_flags & INDEX_ENTRY_END)) {
e->key.file_name.creation_time = timestamp;
e->key.file_name.last_data_change_time = timestamp;
e->key.file_name.last_mft_change_time = timestamp;
e->key.file_name.last_access_time = timestamp;
wiped_timestamp_data += 32;
e = (INDEX_ENTRY *)((u8 *)e + le16_to_cpu(e->length));
}
}
static void wipe_index_allocation_timestamps(ntfs_inode *ni, ATTR_RECORD *attr)
{
INDEX_ALLOCATION *indexa, *tmp_indexa;
INDEX_ENTRY *entry;
INDEX_ROOT *indexr;
u8 *bitmap, *byte;
int bit;
ntfs_attr *na;
ntfschar *name;
u32 name_len;
indexr = ntfs_index_root_get(ni, attr);
if (!indexr) {
perr_printf("Failed to read $INDEX_ROOT attribute of inode "
"%lld", (long long)ni->mft_no);
return;
}
if (indexr->type != AT_FILE_NAME)
goto out_indexr;
name = (ntfschar *)((u8 *)attr + le16_to_cpu(attr->name_offset));
name_len = attr->name_length;
byte = bitmap = ntfs_attr_readall(ni, AT_BITMAP, name, name_len,
NULL);
if (!byte) {
perr_printf("Failed to read $BITMAP attribute");
goto out_indexr;
}
na = ntfs_attr_open(ni, AT_INDEX_ALLOCATION, name, name_len);
if (!na) {
perr_printf("Failed to open $INDEX_ALLOCATION attribute");
goto out_bitmap;
}
if (!na->data_size)
goto out_na;
tmp_indexa = indexa = ntfs_malloc(na->data_size);
if (!tmp_indexa)
goto out_na;
if (ntfs_attr_pread(na, 0, na->data_size, indexa) != na->data_size) {
perr_printf("Failed to read $INDEX_ALLOCATION attribute");
goto out_indexa;
}
bit = 0;
while ((u8 *)tmp_indexa < (u8 *)indexa + na->data_size) {
if (*byte & (1 << bit)) {
if (ntfs_mst_post_read_fixup((NTFS_RECORD *)tmp_indexa,
le32_to_cpu(
indexr->index_block_size))) {
perr_printf("Damaged INDX record");
goto out_indexa;
}
entry = (INDEX_ENTRY *)((u8 *)tmp_indexa + le32_to_cpu(
tmp_indexa->index.entries_offset) + 0x18);
wipe_index_entry_timestams(entry);
if (ntfs_mft_usn_dec((MFT_RECORD *)tmp_indexa))
perr_exit("ntfs_mft_usn_dec");
if (ntfs_mst_pre_write_fixup((NTFS_RECORD *)tmp_indexa,
le32_to_cpu(
indexr->index_block_size))) {
perr_printf("INDX write fixup failed");
goto out_indexa;
}
}
tmp_indexa = (INDEX_ALLOCATION *)((u8 *)tmp_indexa +
le32_to_cpu(indexr->index_block_size));
bit++;
if (bit > 7) {
bit = 0;
byte++;
}
}
if (ntfs_rl_pwrite(vol, na->rl, 0, 0, na->data_size, indexa) != na->data_size)
perr_printf("ntfs_rl_pwrite failed for inode %lld",
(long long)ni->mft_no);
out_indexa:
free(indexa);
out_na:
ntfs_attr_close(na);
out_bitmap:
free(bitmap);
out_indexr:
free(indexr);
}
static void wipe_index_root_timestamps(ATTR_RECORD *attr, sle64 timestamp)
{
INDEX_ENTRY *entry;
INDEX_ROOT *iroot;
iroot = (INDEX_ROOT *)((u8 *)attr + le16_to_cpu(attr->value_offset));
entry = (INDEX_ENTRY *)((u8 *)iroot +
le32_to_cpu(iroot->index.entries_offset) + 0x10);
while (!(entry->ie_flags & INDEX_ENTRY_END)) {
if (iroot->type == AT_FILE_NAME) {
entry->key.file_name.creation_time = timestamp;
entry->key.file_name.last_access_time = timestamp;
entry->key.file_name.last_data_change_time = timestamp;
entry->key.file_name.last_mft_change_time = timestamp;
wiped_timestamp_data += 32;
} else if (ntfs_names_are_equal(NTFS_INDEX_Q,
sizeof(NTFS_INDEX_Q) / 2 - 1,
(ntfschar *)((char *)attr +
le16_to_cpu(attr->name_offset)),
attr->name_length, CASE_SENSITIVE, NULL, 0)) {
QUOTA_CONTROL_ENTRY *quota_q;
quota_q = (QUOTA_CONTROL_ENTRY *)((u8 *)entry +
le16_to_cpu(entry->data_offset));
/*
* FIXME: no guarantee it's indeed /$Extend/$Quota:$Q.
* For now, as a minimal safeguard, we check only for
* quota version 2 ...
*/
if (le32_to_cpu(quota_q->version) == 2) {
quota_q->change_time = timestamp;
wiped_timestamp_data += 4;
}
}
entry = (INDEX_ENTRY*)((u8*)entry + le16_to_cpu(entry->length));
}
}
#define WIPE_TIMESTAMPS(atype, attr, timestamp) \
do { \
atype *ats; \
ats = (atype *)((char *)(attr) + le16_to_cpu((attr)->value_offset)); \
\
ats->creation_time = (timestamp); \
ats->last_data_change_time = (timestamp); \
ats->last_mft_change_time= (timestamp); \
ats->last_access_time = (timestamp); \
\
wiped_timestamp_data += 32; \
\
} while (0)
static void wipe_timestamps(ntfs_walk_clusters_ctx *image)
{
static const struct timespec zero_time = { .tv_sec = 0, .tv_nsec = 0 };
ATTR_RECORD *a = image->ctx->attr;
sle64 timestamp = timespec2ntfs(zero_time);
if (a->type == AT_FILE_NAME)
WIPE_TIMESTAMPS(FILE_NAME_ATTR, a, timestamp);
else if (a->type == AT_STANDARD_INFORMATION)
WIPE_TIMESTAMPS(STANDARD_INFORMATION, a, timestamp);
else if (a->type == AT_INDEX_ROOT)
wipe_index_root_timestamps(a, timestamp);
}
static void wipe_resident_data(ntfs_walk_clusters_ctx *image)
{
ATTR_RECORD *a;
u32 i;
int n = 0;
u8 *p;
a = image->ctx->attr;
p = (u8*)a + le16_to_cpu(a->value_offset);
if (image->ni->mft_no <= LAST_METADATA_INODE)
return;
if (a->type != AT_DATA)
return;
for (i = 0; i < le32_to_cpu(a->value_length); i++) {
if (p[i]) {
p[i] = 0;
n++;
}
}
wiped_resident_data += n;
}
static int wipe_data(char *p, int pos, int len)
{
int wiped = 0;
for (p += pos; --len >= 0;) {
if (p[len]) {
p[len] = 0;
wiped++;
}
}
return wiped;
}
static void wipe_unused_mft_data(ntfs_inode *ni)
{
int unused;
MFT_RECORD *m = ni->mrec;
/* FIXME: broken MFTMirr update was fixed in libntfs, check if OK now */
if (ni->mft_no <= LAST_METADATA_INODE)
return;
unused = le32_to_cpu(m->bytes_allocated) - le32_to_cpu(m->bytes_in_use);
wiped_unused_mft_data += wipe_data((char *)m,
le32_to_cpu(m->bytes_in_use), unused);
}
static void wipe_unused_mft(ntfs_inode *ni)
{
int unused;
MFT_RECORD *m = ni->mrec;
/* FIXME: broken MFTMirr update was fixed in libntfs, check if OK now */
if (ni->mft_no <= LAST_METADATA_INODE)
return;
unused = le32_to_cpu(m->bytes_in_use) - sizeof(MFT_RECORD);
wiped_unused_mft += wipe_data((char *)m, sizeof(MFT_RECORD), unused);
}
static void clone_logfile_parts(ntfs_walk_clusters_ctx *image, runlist *rl)
{
s64 offset = 0, lcn, vcn;
while (1) {
vcn = offset / image->ni->vol->cluster_size;
lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
if (lcn < 0)
break;
lseek_to_cluster(lcn);
if ((lcn + 1) != image->current_lcn) {
/* do not duplicate a cluster */
if (opt.metadata_image && wipe)
gap_to_cluster(lcn - image->current_lcn);
copy_cluster(opt.rescue, lcn, lcn);
}
image->current_lcn = lcn + 1;
if (opt.metadata_image && !wipe)
image->inuse++;
if (offset == 0)
offset = NTFS_BLOCK_SIZE >> 1;
else
offset <<= 1;
}
}
/*
* In-memory wiping of MFT record or MFTMirr record
* (only for metadata images)
*
* The resident data and (optionally) the timestamps are wiped.
*/
static void wipe_mft(char *mrec, u32 mrecsz, u64 mft_no)
{
ntfs_walk_clusters_ctx image;
ntfs_attr_search_ctx *ctx;
ntfs_inode ni;
ni.mft_no = mft_no;
ni.mrec = (MFT_RECORD*)mrec;
ni.vol = vol; /* Hmm */
image.ni = &ni;
ntfs_mst_post_read_fixup_warn((NTFS_RECORD*)mrec,mrecsz,FALSE);
wipe_unused_mft_data(&ni);
if (!(((MFT_RECORD*)mrec)->flags & MFT_RECORD_IN_USE)) {
wipe_unused_mft(&ni);
} else {
/* ctx with no ntfs_inode prevents from searching external attrs */
if (!(ctx = ntfs_attr_get_search_ctx((ntfs_inode*)NULL, (MFT_RECORD*)mrec)))
perr_exit("ntfs_get_attr_search_ctx");
while (!ntfs_attr_lookup(AT_UNUSED, NULL, 0, CASE_SENSITIVE, 0,
NULL, 0, ctx)) {
if (ctx->attr->type == AT_END)
break;
image.ctx = ctx;
if (!ctx->attr->non_resident
&& (mft_no > LAST_METADATA_INODE))
wipe_resident_data(&image);
if (!opt.preserve_timestamps)
wipe_timestamps(&image);
}
ntfs_attr_put_search_ctx(ctx);
}
ntfs_mft_usn_dec((MFT_RECORD*)mrec);
ntfs_mst_pre_write_fixup((NTFS_RECORD*)mrec,mrecsz);
}
/*
* In-memory wiping of a directory record (I30)
* (only for metadata images)
*
* The timestamps are (optionally) wiped
*/
static void wipe_indx(char *mrec, u32 mrecsz)
{
INDEX_ENTRY *entry;
INDEX_ALLOCATION *indexa;
if (ntfs_mst_post_read_fixup((NTFS_RECORD *)mrec, mrecsz)) {
perr_printf("Damaged INDX record");
goto out_indexa;
}
indexa = (INDEX_ALLOCATION*)mrec;
/*
* The index bitmap is not checked, obsoleted records are
* wiped if they pass the safety checks
*/
if ((indexa->magic == magic_INDX)
&& (le32_to_cpu(indexa->index.entries_offset) >= sizeof(INDEX_HEADER))
&& (le32_to_cpu(indexa->index.allocated_size) <= mrecsz)) {
entry = (INDEX_ENTRY *)((u8 *)mrec + le32_to_cpu(
indexa->index.entries_offset) + 0x18);
wipe_index_entry_timestams(entry);
}
if (ntfs_mft_usn_dec((MFT_RECORD *)mrec))
perr_exit("ntfs_mft_usn_dec");
if (ntfs_mst_pre_write_fixup((NTFS_RECORD *)mrec, mrecsz)) {
perr_printf("INDX write fixup failed");
goto out_indexa;
}
out_indexa : ;
}
/*
* Output a set of related clusters (MFT record or index block)
*/
static void write_set(char *buff, u32 csize, s64 *current_lcn,
runlist_element *rl, u32 wi, u32 wj, u32 cnt)
{
u32 k;
s64 target_lcn;
char cmd = CMD_NEXT;
for (k=0; k<cnt; k++) {
target_lcn = rl[wi].lcn + wj;
if (target_lcn != *current_lcn)
gap_to_cluster(target_lcn - *current_lcn);
if ((write_all(&fd_out, &cmd, sizeof(cmd)) == -1)
|| (write_all(&fd_out, &buff[k*csize], csize) == -1))
perr_exit("Failed to write_all");
*current_lcn = target_lcn + 1;
if (++wj >= rl[wi].length) {
wj = 0;
wi++;
}
}
}
/*
* Copy and wipe the full MFT or MFTMirr data.
* (only for metadata images)
*
* Data are read and written by full clusters, but the wiping is done
* per MFT record.
*/
static void copy_wipe_mft(ntfs_walk_clusters_ctx *image, runlist *rl)
{
char *buff;
void *fd;
s64 mft_no;
u32 mft_record_size;
u32 csize;
u32 buff_size;
u32 bytes_per_sector;
u32 records_per_set;
u32 clusters_per_set;
u32 wi,wj; /* indexes for reading */
u32 ri,rj; /* indexes for writing */
u32 k; /* lcn within run */
u32 r; /* mft_record within set */
s64 current_lcn;
current_lcn = image->current_lcn;
mft_record_size = image->ni->vol->mft_record_size;
csize = image->ni->vol->cluster_size;
bytes_per_sector = image->ni->vol->sector_size;
fd = image->ni->vol->dev;
/*
* Depending on the sizes, there may be several records
* per cluster, or several clusters per record.
* Anyway, records are read and rescued by full clusters.
*/
if (csize >= mft_record_size) {
records_per_set = csize/mft_record_size;
clusters_per_set = 1;
buff_size = csize;
} else {
clusters_per_set = mft_record_size/csize;
records_per_set = 1;
buff_size = mft_record_size;
}
buff = (char*)ntfs_malloc(buff_size);
if (!buff)
err_exit("Not enough memory");
mft_no = 0;
ri = rj = 0;
wi = wj = 0;
if (rl[ri].length)
lseek_to_cluster(rl[ri].lcn);
while (rl[ri].length) {
for (k=0; (k<clusters_per_set) && rl[ri].length; k++) {
read_rescue(fd, &buff[k*csize], csize, bytes_per_sector,
rl[ri].lcn + rj);
if (++rj >= rl[ri].length) {
rj = 0;
if (rl[++ri].length)
lseek_to_cluster(rl[ri].lcn);
}
}
if (k == clusters_per_set) {
for (r=0; r<records_per_set; r++) {
if (!strncmp(&buff[r*mft_record_size],"FILE",4))
wipe_mft(&buff[r*mft_record_size],
mft_record_size, mft_no);
mft_no++;
}
write_set(buff, csize, &current_lcn,
rl, wi, wj, clusters_per_set);
wj += clusters_per_set;
while (rl[wi].length && (wj >= rl[wi].length))
wj -= rl[wi++].length;
} else {
err_exit("Short last MFT record\n");
}
}
image->current_lcn = current_lcn;
free(buff);
}
/*
* Copy and wipe the non-resident part of a directory index
* (only for metadata images)
*
* Data are read and written by full clusters, but the wiping is done
* per index record.
*/
static void copy_wipe_i30(ntfs_walk_clusters_ctx *image, runlist *rl)
{
char *buff;
void *fd;
u32 indx_record_size;
u32 csize;
u32 buff_size;
u32 bytes_per_sector;
u32 records_per_set;
u32 clusters_per_set;
u32 wi,wj; /* indexes for reading */
u32 ri,rj; /* indexes for writing */
u32 k; /* lcn within run */
u32 r; /* mft_record within set */
s64 current_lcn;
current_lcn = image->current_lcn;
csize = image->ni->vol->cluster_size;
bytes_per_sector = image->ni->vol->sector_size;
fd = image->ni->vol->dev;
/*
* Depending on the sizes, there may be several records
* per cluster, or several clusters per record.
* Anyway, records are read and rescued by full clusters.
*/
indx_record_size = image->ni->vol->indx_record_size;
if (csize >= indx_record_size) {
records_per_set = csize/indx_record_size;
clusters_per_set = 1;
buff_size = csize;
} else {
clusters_per_set = indx_record_size/csize;
records_per_set = 1;
buff_size = indx_record_size;
}
buff = (char*)ntfs_malloc(buff_size);
if (!buff)
err_exit("Not enough memory");
ri = rj = 0;
wi = wj = 0;
if (rl[ri].length)
lseek_to_cluster(rl[ri].lcn);
while (rl[ri].length) {
for (k=0; (k<clusters_per_set) && rl[ri].length; k++) {
read_rescue(fd, &buff[k*csize], csize, bytes_per_sector,
rl[ri].lcn + rj);
if (++rj >= rl[ri].length) {
rj = 0;
if (rl[++ri].length)
lseek_to_cluster(rl[ri].lcn);
}
}
if (k == clusters_per_set) {
/* wipe records_per_set records */
if (!opt.preserve_timestamps)
for (r=0; r<records_per_set; r++) {
if (!strncmp(&buff[r*indx_record_size],"INDX",4))
wipe_indx(&buff[r*indx_record_size],
indx_record_size);
}
write_set(buff, csize, &current_lcn,
rl, wi, wj, clusters_per_set);
wj += clusters_per_set;
while (rl[wi].length && (wj >= rl[wi].length))
wj -= rl[wi++].length;
} else {
err_exit("Short last directory index record\n");
}
}
image->current_lcn = current_lcn;
free(buff);
}
static void dump_clusters(ntfs_walk_clusters_ctx *image, runlist *rl)
{
s64 i, len; /* number of clusters to copy */
if (opt.restore_image)
err_exit("Bug : invalid dump_clusters()\n");
if ((opt.std_out && !opt.metadata_image) || !opt.metadata)
return;
if (!(len = is_critical_metadata(image, rl)))
return;
lseek_to_cluster(rl->lcn);
if (opt.metadata_image ? wipe : !wipe) {
if (opt.metadata_image)
gap_to_cluster(rl->lcn - image->current_lcn);
/* FIXME: this could give pretty suboptimal performance */
for (i = 0; i < len; i++)
copy_cluster(opt.rescue, rl->lcn + i, rl->lcn + i);
if (opt.metadata_image)
image->current_lcn = rl->lcn + len;
}
}
static void walk_runs(struct ntfs_walk_cluster *walk)
{
int i, j;
runlist *rl;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx;
BOOL mft_data;
BOOL index_i30;
ctx = walk->image->ctx;
a = ctx->attr;
if (!a->non_resident) {
if (wipe) {
wipe_resident_data(walk->image);
if (!opt.preserve_timestamps)
wipe_timestamps(walk->image);
}
return;
}
if (wipe
&& !opt.preserve_timestamps
&& walk->image->ctx->attr->type == AT_INDEX_ALLOCATION)
wipe_index_allocation_timestamps(walk->image->ni, a);
if (!(rl = ntfs_mapping_pairs_decompress(vol, a, NULL)))
perr_exit("ntfs_decompress_mapping_pairs");
/* special wipings for MFT records and directory indexes */
mft_data = ((walk->image->ni->mft_no == FILE_MFT)
|| (walk->image->ni->mft_no == FILE_MFTMirr))
&& (a->type == AT_DATA);
index_i30 = (walk->image->ctx->attr->type == AT_INDEX_ALLOCATION)
&& (a->name_length == 4)
&& !memcmp((char*)a + le16_to_cpu(a->name_offset),
NTFS_INDEX_I30,8);
for (i = 0; rl[i].length; i++) {
s64 lcn = rl[i].lcn;
s64 lcn_length = rl[i].length;
if (lcn == LCN_HOLE || lcn == LCN_RL_NOT_MAPPED)
continue;
/* FIXME: ntfs_mapping_pairs_decompress should return error */
if (lcn < 0 || lcn_length < 0)
err_exit("Corrupt runlist in inode %lld attr %x LCN "
"%llx length %llx\n",
(long long)ctx->ntfs_ino->mft_no,
(unsigned int)le32_to_cpu(a->type),
(long long)lcn, (long long)lcn_length);
if (opt.metadata_image ? wipe && !mft_data && !index_i30 : !wipe)
dump_clusters(walk->image, rl + i);
for (j = 0; j < lcn_length; j++) {
u64 k = (u64)lcn + j;
if (ntfs_bit_get_and_set(lcn_bitmap.bm, k, 1)) {
if (opt.ignore_fs_check)
Printf("Cluster %llu is referenced"
" twice!\n",
(unsigned long long)k);
else
err_exit("Cluster %llu referenced"
" twice!\nYou didn't shutdown"
" your Windows properly?\n",
(unsigned long long)k);
}
}
if (!opt.metadata_image)
walk->image->inuse += lcn_length;
/*
* For a metadata image, we have to compute the
* number of metadata clusters for the percentages
* to be displayed correctly while restoring.
*/
if (!wipe && opt.metadata_image) {
if ((walk->image->ni->mft_no == FILE_LogFile)
&& (walk->image->ctx->attr->type == AT_DATA)) {
/* 16 KiB of FILE_LogFile */
walk->image->inuse
+= is_critical_metadata(walk->image,rl);
} else {
if ((walk->image->ni->mft_no
<= LAST_METADATA_INODE)
|| (walk->image->ctx->attr->type != AT_DATA))
walk->image->inuse += lcn_length;
}
}
}
if (wipe && opt.metadata_image) {
ntfs_attr *na;
/*
* Non-resident metadata has to be wiped globally,
* because its logical blocks may be larger than
* a cluster and split over two extents.
*/
if (mft_data && !a->lowest_vcn) {
na = ntfs_attr_open(walk->image->ni,
AT_DATA, NULL, 0);
if (na) {
na->rl = rl;
rl = (runlist_element*)NULL;
if (!ntfs_attr_map_whole_runlist(na)) {
copy_wipe_mft(walk->image,na->rl);
} else
perr_exit("Failed to map data of inode %lld",
(long long)walk->image->ni->mft_no);
ntfs_attr_close(na);
} else
perr_exit("Failed to open data of inode %lld",
(long long)walk->image->ni->mft_no);
}
if (index_i30 && !a->lowest_vcn) {
na = ntfs_attr_open(walk->image->ni,
AT_INDEX_ALLOCATION, NTFS_INDEX_I30, 4);
if (na) {
na->rl = rl;
rl = (runlist_element*)NULL;
if (!ntfs_attr_map_whole_runlist(na)) {
copy_wipe_i30(walk->image,na->rl);
} else
perr_exit("Failed to map index of inode %lld",
(long long)walk->image->ni->mft_no);
ntfs_attr_close(na);
} else
perr_exit("Failed to open index of inode %lld",
(long long)walk->image->ni->mft_no);
}
}
if (opt.metadata
&& (opt.metadata_image || !wipe)
&& (walk->image->ni->mft_no == FILE_LogFile)
&& (walk->image->ctx->attr->type == AT_DATA))
clone_logfile_parts(walk->image, rl);
free(rl);
}
static void walk_attributes(struct ntfs_walk_cluster *walk)
{
ntfs_attr_search_ctx *ctx;
if (!(ctx = ntfs_attr_get_search_ctx(walk->image->ni, NULL)))
perr_exit("ntfs_get_attr_search_ctx");
while (!ntfs_attrs_walk(ctx)) {
if (ctx->attr->type == AT_END)
break;
walk->image->ctx = ctx;
walk_runs(walk);
}
ntfs_attr_put_search_ctx(ctx);
}
/*
* Compare the actual bitmap to the list of clusters
* allocated to identified files.
*
* Clusters found in use, though not marked in the bitmap are copied
* if the option --ignore-fs-checks is set.
*/
static int compare_bitmaps(struct bitmap *a, BOOL copy)
{
s64 i, pos, count;
int mismatch = 0;
int more_use = 0;
s64 new_cl;
u8 bm[NTFS_BUF_SIZE];
Printf("Accounting clusters ...\n");
pos = 0;
new_cl = 0;
while (1) {
count = ntfs_attr_pread(vol->lcnbmp_na, pos, NTFS_BUF_SIZE, bm);
if (count == -1)
perr_exit("Couldn't get $Bitmap $DATA");
if (count == 0) {
/* the backup bootsector need not be accounted for */
if (((vol->nr_clusters + 7) >> 3) > pos)
err_exit("$Bitmap size is smaller than expected"
" (%lld < %lld)\n",
(long long)pos, (long long)a->size);
break;
}
for (i = 0; i < count; i++, pos++) {
s64 cl; /* current cluster */
if (a->size <= pos)
goto done;
if (a->bm[pos] == bm[i])
continue;
for (cl = pos * 8; cl < (pos + 1) * 8; cl++) {
char bit;
bit = ntfs_bit_get(a->bm, cl);
if (bit == ntfs_bit_get(bm, i * 8 + cl % 8))
continue;
if (!bit)
more_use++;
if (opt.ignore_fs_check && !bit && copy) {
lseek_to_cluster(cl);
if (opt.save_image
|| (opt.metadata
&& opt.metadata_image)) {
gap_to_cluster(cl - new_cl);
new_cl = cl + 1;
}
copy_cluster(opt.rescue, cl, cl);
}
if (++mismatch > 10)
continue;
Printf("Cluster accounting failed at %lld "
"(0x%llx): %s cluster in $Bitmap\n",
(long long)cl, (unsigned long long)cl,
bit ? "missing" : "extra");
}
}
}
done:
if (mismatch) {
Printf("Totally %d cluster accounting mismatches.\n", mismatch);
if (opt.ignore_fs_check) {
Printf("WARNING: The NTFS inconsistency was overruled "
"by the --ignore-fs-check option.\n");
if (new_cl) {
gap_to_cluster(-new_cl);
}
return (more_use);
}
err_exit("Filesystem check failed! Windows wasn't shutdown "
"properly or inconsistent\nfilesystem. Please run "
"chkdsk /f on Windows then reboot it TWICE.\n");
}
return (more_use);
}
static void mft_record_write_with_same_usn(ntfs_volume *volume, ntfs_inode *ni)
{
if (ntfs_mft_usn_dec(ni->mrec))
perr_exit("ntfs_mft_usn_dec");
if (ntfs_mft_record_write(volume, ni->mft_no, ni->mrec))
perr_exit("ntfs_mft_record_write");
}
static void mft_inode_write_with_same_usn(ntfs_volume *volume, ntfs_inode *ni)
{
s32 i;
mft_record_write_with_same_usn(volume, ni);
if (ni->nr_extents <= 0)
return;
for (i = 0; i < ni->nr_extents; ++i) {
ntfs_inode *eni = ni->extent_nis[i];
mft_record_write_with_same_usn(volume, eni);
}
}
static int walk_clusters(ntfs_volume *volume, struct ntfs_walk_cluster *walk)
{
s64 inode = 0;
s64 last_mft_rec;
u64 nr_clusters;
ntfs_inode *ni;
struct progress_bar progress;
if (opt.restore_image || (!opt.metadata && wipe))
err_exit("Bug : invalid walk_clusters()\n");
Printf("Scanning volume ...\n");
last_mft_rec = (volume->mft_na->initialized_size >>
volume->mft_record_size_bits) - 1;
walk->image->current_lcn = 0;
progress_init(&progress, inode, last_mft_rec, 100);
NVolSetNoFixupWarn(volume);
for (; inode <= last_mft_rec; inode++) {
int err, deleted_inode;
MFT_REF mref = (MFT_REF)inode;
progress_update(&progress, inode);
/* FIXME: Terrible kludge for libntfs not being able to return
a deleted MFT record as inode */
ni = ntfs_calloc(sizeof(ntfs_inode));
if (!ni)
perr_exit("walk_clusters");
ni->vol = volume;
err = ntfs_file_record_read(volume, mref, &ni->mrec, NULL);
if (err == -1) {
free(ni);
continue;
}
deleted_inode = !(ni->mrec->flags & MFT_RECORD_IN_USE);
if (deleted_inode && !opt.metadata_image) {
ni->mft_no = MREF(mref);
if (wipe) {
wipe_unused_mft(ni);
wipe_unused_mft_data(ni);
mft_record_write_with_same_usn(volume, ni);
}
}
free(ni->mrec);
free(ni);
if (deleted_inode)
continue;
if ((ni = ntfs_inode_open(volume, mref)) == NULL) {
/* FIXME: continue only if it make sense, e.g.
MFT record not in use based on $MFT bitmap */
if (errno == EIO || errno == ENOENT)
continue;
perr_exit("Reading inode %lld failed",
(long long)inode);
}
if (wipe)
nr_used_mft_records++;
if (ni->mrec->base_mft_record)
goto out;
walk->image->ni = ni;
walk_attributes(walk);
out:
if (wipe && !opt.metadata_image) {
int i;
wipe_unused_mft_data(ni);
for (i = 0; i < ni->nr_extents; ++i) {
wipe_unused_mft_data(ni->extent_nis[i]);
}
mft_inode_write_with_same_usn(volume, ni);
}
if (ntfs_inode_close(ni))
perr_exit("ntfs_inode_close for inode %lld",
(long long)inode);
}
if (opt.metadata) {
if (opt.metadata_image && wipe && opt.ignore_fs_check) {
gap_to_cluster(-walk->image->current_lcn);
compare_bitmaps(&lcn_bitmap, TRUE);
walk->image->current_lcn = 0;
}
if (opt.metadata_image ? wipe : !wipe) {
/* also get the backup bootsector */
nr_clusters = vol->nr_clusters;
lseek_to_cluster(nr_clusters);
if (opt.metadata_image && wipe)
gap_to_cluster(nr_clusters
- walk->image->current_lcn);
copy_cluster(opt.rescue, nr_clusters, nr_clusters);
walk->image->current_lcn = nr_clusters;
}
/* Not counted, for compatibility with older versions */
if (!opt.metadata_image)
walk->image->inuse++;
}
return 0;
}
/*
* $Bitmap can overlap the end of the volume. Any bits in this region
* must be set. This region also encompasses the backup boot sector.
*/
static void bitmap_file_data_fixup(s64 cluster, struct bitmap *bm)
{
for (; cluster < bm->size << 3; cluster++)
ntfs_bit_set(bm->bm, (u64)cluster, 1);
}
/*
* Allocate a block of memory with one bit for each cluster of the disk.
* All the bits are set to 0, except those representing the region beyond the
* end of the disk.
*/
static void setup_lcn_bitmap(void)
{
/* Determine lcn bitmap byte size and allocate it. */
/* include the alternate boot sector in the bitmap count */
lcn_bitmap.size = rounded_up_division(vol->nr_clusters + 1, 8);
lcn_bitmap.bm = ntfs_calloc(lcn_bitmap.size);
if (!lcn_bitmap.bm)
perr_exit("Failed to allocate internal buffer");
bitmap_file_data_fixup(vol->nr_clusters, &lcn_bitmap);
}
static s64 volume_size(ntfs_volume *volume, s64 nr_clusters)
{
return nr_clusters * volume->cluster_size;
}
static void print_volume_size(const char *str, s64 bytes)
{
Printf("%s: %lld bytes (%lld MB)\n", str, (long long)bytes,
(long long)rounded_up_division(bytes, NTFS_MBYTE));
}
static void print_disk_usage(const char *spacer, u32 cluster_size,
s64 nr_clusters, s64 inuse)
{
s64 total, used;
total = nr_clusters * cluster_size;
used = inuse * cluster_size;
Printf("Space in use %s: %lld MB (%.1f%%) ", spacer,
(long long)rounded_up_division(used, NTFS_MBYTE),
100.0 * ((float)used / total));
Printf("\n");
}
static void print_image_info(void)
{
Printf("Ntfsclone image version: %d.%d\n",
image_hdr.major_ver, image_hdr.minor_ver);
Printf("Cluster size : %u bytes\n",
(unsigned)le32_to_cpu(image_hdr.cluster_size));
print_volume_size("Image volume size ",
sle64_to_cpu(image_hdr.nr_clusters) *
le32_to_cpu(image_hdr.cluster_size));
Printf("Image device size : %lld bytes\n",
(long long)le64_to_cpu(image_hdr.device_size));
print_disk_usage(" ", le32_to_cpu(image_hdr.cluster_size),
sle64_to_cpu(image_hdr.nr_clusters),
le64_to_cpu(image_hdr.inuse));
Printf("Offset to image data : %u (0x%x) bytes\n",
(unsigned)le32_to_cpu(image_hdr.offset_to_image_data),
(unsigned)le32_to_cpu(image_hdr.offset_to_image_data));
}
static void check_if_mounted(const char *device, unsigned long new_mntflag)
{
unsigned long mntflag;
if (ntfs_check_if_mounted(device, &mntflag))
perr_exit("Failed to check '%s' mount state", device);
if (mntflag & NTFS_MF_MOUNTED) {
if (!(mntflag & NTFS_MF_READONLY))
err_exit("Device '%s' is mounted read-write. "
"You must 'umount' it first.\n", device);
if (!new_mntflag)
err_exit("Device '%s' is mounted. "
"You must 'umount' it first.\n", device);
}
}
/**
* mount_volume -
*
* First perform some checks to determine if the volume is already mounted, or
* is dirty (Windows wasn't shutdown properly). If everything is OK, then mount
* the volume (load the metadata into memory).
*/
static void mount_volume(unsigned long new_mntflag)
{
check_if_mounted(opt.volume, new_mntflag);
if (!(vol = ntfs_mount(opt.volume, new_mntflag))) {
int err = errno;
perr_printf("Opening '%s' as NTFS failed", opt.volume);
if (err == EINVAL) {
Printf("Apparently device '%s' doesn't have a "
"valid NTFS. Maybe you selected\nthe whole "
"disk instead of a partition (e.g. /dev/hda, "
"not /dev/hda1)?\n", opt.volume);
}
/*
* Retry with recovering the log file enabled.
* Normally avoided in order to get the original log file
* data, but needed when remounting the metadata of a
* volume improperly unmounted from Windows.
* If the full log file was requested, it must be kept
* as is, so we just remount read-only.
*/
if (!(new_mntflag & (NTFS_MNT_RDONLY | NTFS_MNT_RECOVER))) {
if (opt.full_logfile) {
Printf("Retrying read-only to ignore"
" the log file...\n");
vol = ntfs_mount(opt.volume,
new_mntflag | NTFS_MNT_RDONLY);
} else {
Printf("Trying to recover...\n");
vol = ntfs_mount(opt.volume,
new_mntflag | NTFS_MNT_RECOVER);
}
Printf("... %s\n",(vol ? "Successful" : "Failed"));
}
if (!vol)
exit(1);
}
if (vol->flags & VOLUME_IS_DIRTY)
if (opt.force-- <= 0)
err_exit(dirty_volume_msg, opt.volume);
if (NTFS_MAX_CLUSTER_SIZE < vol->cluster_size)
err_exit("Cluster size %u is too large!\n",
(unsigned int)vol->cluster_size);
Printf("NTFS volume version: %d.%d\n", vol->major_ver, vol->minor_ver);
if (ntfs_version_is_supported(vol))
perr_exit("Unknown NTFS version");
Printf("Cluster size : %u bytes\n",
(unsigned int)vol->cluster_size);
print_volume_size("Current volume size",
volume_size(vol, vol->nr_clusters));
}
static struct ntfs_walk_cluster backup_clusters = { NULL, NULL };
static int device_offset_valid(int fd, s64 ofs)
{
char ch;
if (lseek(fd, ofs, SEEK_SET) >= 0 && read(fd, &ch, 1) == 1)
return 0;
return -1;
}
static s64 device_size_get(int fd)
{
s64 high, low;
#ifdef BLKGETSIZE64
{ u64 size;
if (ioctl(fd, BLKGETSIZE64, &size) >= 0) {
ntfs_log_debug("BLKGETSIZE64 nr bytes = %llu "
"(0x%llx).\n", (unsigned long long)size,
(unsigned long long)size);
return (s64)size;
}
}
#endif
#ifdef BLKGETSIZE
{ unsigned long size;
if (ioctl(fd, BLKGETSIZE, &size) >= 0) {
ntfs_log_debug("BLKGETSIZE nr 512 byte blocks = %lu "
"(0x%lx).\n", size, size);
return (s64)size * 512;
}
}
#endif
#ifdef FDGETPRM
{ struct floppy_struct this_floppy;
if (ioctl(fd, FDGETPRM, &this_floppy) >= 0) {
ntfs_log_debug("FDGETPRM nr 512 byte blocks = %lu "
"(0x%lx).\n", this_floppy.size,
this_floppy.size);
return (s64)this_floppy.size * 512;
}
}
#endif
/*
* We couldn't figure it out by using a specialized ioctl,
* so do binary search to find the size of the device.
*/
low = 0LL;
for (high = 1024LL; !device_offset_valid(fd, high); high <<= 1)
low = high;
while (low < high - 1LL) {
const s64 mid = (low + high) / 2;
if (!device_offset_valid(fd, mid))
low = mid;
else
high = mid;
}
lseek(fd, 0LL, SEEK_SET);
return (low + 1LL);
}
static void fsync_clone(int fd)
{
Printf("Syncing ...\n");
if (opt.save_image && stream_out && fflush(stream_out))
perr_exit("fflush");
if (fsync(fd) && errno != EINVAL)
perr_exit("fsync");
}
static void set_filesize(s64 filesize)
{
#ifndef NO_STATFS
long fs_type = 0; /* Unknown filesystem type */
if (fstatfs(fd_out, &opt.stfs) == -1)
Printf("WARNING: Couldn't get filesystem type: "
"%s\n", strerror(errno));
else
fs_type = opt.stfs.f_type;
if (fs_type == 0x52654973)
Printf("WARNING: You're using ReiserFS, it has very poor "
"performance creating\nlarge sparse files. The next "
"operation might take a very long time!\n"
"Creating sparse output file ...\n");
else if (fs_type == 0x517b)
Printf("WARNING: You're using SMBFS and if the remote share "
"isn't Samba but a Windows\ncomputer then the clone "
"operation will be very inefficient and may fail!\n");
#endif
if (!opt.no_action && (ftruncate(fd_out, filesize) == -1)) {
int err = errno;
perr_printf("ftruncate failed for file '%s'", opt.output);
#ifndef NO_STATFS
if (fs_type)
Printf("Destination filesystem type is 0x%lx.\n",
(unsigned long)fs_type);
#endif
if (err == E2BIG) {
Printf("Your system or the destination filesystem "
"doesn't support large files.\n");
#ifndef NO_STATFS
if (fs_type == 0x517b) {
Printf("SMBFS needs minimum Linux kernel "
"version 2.4.25 and\n the 'lfs' option"
"\nfor smbmount to have large "
"file support.\n");
}
#endif
} else if (err == EPERM) {
Printf("Apparently the destination filesystem doesn't "
"support sparse files.\nYou can overcome this "
"by using the more efficient --save-image "
"option\nof ntfsclone. Use the --restore-image "
"option to restore the image.\n");
}
exit(1);
}
/*
* If truncate just created a sparse file, the ability
* to generically store big files has been checked, but no
* space has been reserved and available space has probably
* not been checked. Better reset the file so that we write
* sequentially to the end.
*/
if (!opt.no_action) {
#ifdef HAVE_WINDOWS_H
if (ftruncate(fd_out, 0))
Printf("Failed to reset the output file.\n");
#else
struct stat st;
int s;
s = fstat(fd_out, &st);
if (s || (!st.st_blocks && ftruncate(fd_out, 0)))
Printf("Failed to reset the output file.\n");
#endif
/* Proceed even if ftruncate failed */
}
}
static s64 open_image(void)
{
if (strcmp(opt.volume, "-") == 0) {
if ((fd_in = fileno(stdin)) == -1)
perr_exit("fileno for stdin failed");
#ifdef HAVE_WINDOWS_H
if (setmode(fd_in,O_BINARY) == -1)
perr_exit("setting binary stdin failed");
#endif
} else {
if ((fd_in = open(opt.volume, O_RDONLY | O_BINARY)) == -1)
perr_exit("failed to open image");
}
if (read_all(&fd_in, &image_hdr, NTFSCLONE_IMG_HEADER_SIZE_OLD) == -1)
perr_exit("read_all");
if (memcmp(image_hdr.magic, IMAGE_MAGIC, IMAGE_MAGIC_SIZE) != 0)
err_exit("Input file is not an image! (invalid magic)\n");
if (image_hdr.major_ver < NTFSCLONE_IMG_VER_MAJOR_ENDIANNESS_SAFE) {
image_hdr.major_ver = NTFSCLONE_IMG_VER_MAJOR;
image_hdr.minor_ver = NTFSCLONE_IMG_VER_MINOR;
#if (__BYTE_ORDER == __BIG_ENDIAN)
/*
* old image read on a big endian computer,
* assuming it was created big endian and read cpu-wise,
* so we should translate to little endian
*/
Printf("Old image format detected. If the image was created "
"on a little endian architecture it will not "
"work. Use a more recent version of "
"ntfsclone to recreate the image.\n");
image_hdr.cluster_size = cpu_to_le32(image_hdr.cluster_size);
image_hdr.device_size = cpu_to_sle64(image_hdr.device_size);
image_hdr.nr_clusters = cpu_to_sle64(image_hdr.nr_clusters);
image_hdr.inuse = cpu_to_sle64(image_hdr.inuse);
#endif
image_hdr.offset_to_image_data =
const_cpu_to_le32((sizeof(image_hdr)
+ IMAGE_HDR_ALIGN - 1) & -IMAGE_HDR_ALIGN);
image_is_host_endian = TRUE;
} else {
/* safe image : little endian data */
le32 offset_to_image_data;
int delta;
if (image_hdr.major_ver > NTFSCLONE_IMG_VER_MAJOR)
err_exit("Do not know how to handle image format "
"version %d.%d. Please obtain a "
"newer version of ntfsclone.\n",
image_hdr.major_ver,
image_hdr.minor_ver);
/* Read the image header data offset. */
if (read_all(&fd_in, &offset_to_image_data,
sizeof(offset_to_image_data)) == -1)
perr_exit("read_all");
/* do not translate little endian data */
image_hdr.offset_to_image_data = offset_to_image_data;
/*
* Read any fields from the header that we have not read yet so
* that the input stream is positioned correctly. This means
* we can support future minor versions that just extend the
* header in a backwards compatible way.
*/
delta = le32_to_cpu(offset_to_image_data)
- (NTFSCLONE_IMG_HEADER_SIZE_OLD +
sizeof(image_hdr.offset_to_image_data));
if (delta > 0) {
char *dummy_buf;
dummy_buf = malloc(delta);
if (!dummy_buf)
perr_exit("malloc dummy_buffer");
if (read_all(&fd_in, dummy_buf, delta) == -1)
perr_exit("read_all");
free(dummy_buf);
}
}
return le64_to_cpu(image_hdr.device_size);
}
static s64 open_volume(void)
{
s64 device_size;
mount_volume(NTFS_MNT_RDONLY);
device_size = ntfs_device_size_get(vol->dev, 1);
if (device_size <= 0)
err_exit("Couldn't get device size (%lld)!\n",
(long long)device_size);
print_volume_size("Current device size", device_size);
if (device_size < vol->nr_clusters * vol->cluster_size)
err_exit("Current NTFS volume size is bigger than the device "
"size (%lld)!\nCorrupt partition table or incorrect "
"device partitioning?\n", (long long)device_size);
return device_size;
}
static void initialise_image_hdr(s64 device_size, s64 inuse)
{
memcpy(image_hdr.magic, IMAGE_MAGIC, IMAGE_MAGIC_SIZE);
image_hdr.major_ver = NTFSCLONE_IMG_VER_MAJOR;
image_hdr.minor_ver = NTFSCLONE_IMG_VER_MINOR;
image_hdr.cluster_size = cpu_to_le32(vol->cluster_size);
image_hdr.device_size = cpu_to_le64(device_size);
image_hdr.nr_clusters = cpu_to_sle64(vol->nr_clusters);
image_hdr.inuse = cpu_to_le64(inuse);
image_hdr.offset_to_image_data = cpu_to_le32((sizeof(image_hdr)
+ IMAGE_HDR_ALIGN - 1) & -IMAGE_HDR_ALIGN);
}
static void check_output_device(s64 input_size)
{
if (opt.blkdev_out) {
s64 dest_size;
if (dev_out)
dest_size = ntfs_device_size_get(dev_out, 1);
else
dest_size = device_size_get(fd_out);
if (dest_size < input_size)
err_exit("Output device is too small (%lld) to fit the "
"NTFS image (%lld).\n",
(long long)dest_size, (long long)input_size);
check_if_mounted(opt.output, 0);
} else
set_filesize(input_size);
}
static void ignore_bad_clusters(ntfs_walk_clusters_ctx *image)
{
ntfs_inode *ni;
ntfs_attr *na;
runlist *rl;
s64 nr_bad_clusters = 0;
static le16 Bad[4] = {
const_cpu_to_le16('$'), const_cpu_to_le16('B'),
const_cpu_to_le16('a'), const_cpu_to_le16('d')
} ;
if (!(ni = ntfs_inode_open(vol, FILE_BadClus)))
perr_exit("ntfs_open_inode");
na = ntfs_attr_open(ni, AT_DATA, Bad, 4);
if (!na)
perr_exit("ntfs_attr_open");
if (ntfs_attr_map_whole_runlist(na))
perr_exit("ntfs_attr_map_whole_runlist");
for (rl = na->rl; rl->length; rl++) {
s64 lcn = rl->lcn;
if (lcn == LCN_HOLE || lcn < 0)
continue;
for (; lcn < rl->lcn + rl->length; lcn++, nr_bad_clusters++) {
if (ntfs_bit_get_and_set(lcn_bitmap.bm, lcn, 0))
image->inuse--;
}
}
if (nr_bad_clusters)
Printf("WARNING: The disk has %lld or more bad sectors"
" (hardware faults).\n", (long long)nr_bad_clusters);
ntfs_attr_close(na);
if (ntfs_inode_close(ni))
perr_exit("ntfs_inode_close failed for $BadClus");
}
static void check_dest_free_space(u64 src_bytes)
{
#ifndef HAVE_WINDOWS_H
u64 dest_bytes;
struct statvfs stvfs;
struct stat st;
if (opt.metadata || opt.blkdev_out || opt.std_out)
return;
/*
* TODO: save_image needs a bit more space than src_bytes
* due to the free space encoding overhead.
*/
if (fstatvfs(fd_out, &stvfs) == -1) {
Printf("WARNING: Unknown free space on the destination: %s\n",
strerror(errno));
return;
}
/* If file is a FIFO then there is no point in checking the size. */
if (!fstat(fd_out, &st)) {
if (S_ISFIFO(st.st_mode))
return;
} else
Printf("WARNING: fstat failed: %s\n", strerror(errno));
dest_bytes = (u64)stvfs.f_frsize * stvfs.f_bfree;
if (!dest_bytes)
dest_bytes = (u64)stvfs.f_bsize * stvfs.f_bfree;
if (dest_bytes < src_bytes)
err_exit("Destination doesn't have enough free space: "
"%llu MB < %llu MB\n",
(unsigned long long)rounded_up_division(dest_bytes, NTFS_MBYTE),
(unsigned long long)rounded_up_division(src_bytes, NTFS_MBYTE));
#endif
}
int main(int argc, char **argv)
{
ntfs_walk_clusters_ctx image;
s64 device_size; /* input device size in bytes */
s64 ntfs_size;
unsigned int wiped_total = 0;
/* make sure the layout of header is not affected by alignments */
if (offsetof(struct image_hdr, offset_to_image_data)
!= IMAGE_OFFSET_OFFSET) {
fprintf(stderr,"ntfsclone is not compiled properly. "
"Please fix\n");
exit(1);
}
/* print to stderr, stdout can be an NTFS image ... */
fprintf(stderr, "%s v%s (libntfs-3g)\n", EXEC_NAME, VERSION);
msg_out = stderr;
parse_options(argc, argv);
utils_set_locale();
if (opt.restore_image) {
device_size = open_image();
ntfs_size = sle64_to_cpu(image_hdr.nr_clusters) *
le32_to_cpu(image_hdr.cluster_size);
} else {
device_size = open_volume();
ntfs_size = vol->nr_clusters * vol->cluster_size;
}
// FIXME: This needs to be the cluster size...
ntfs_size += 512; /* add backup boot sector */
full_device_size = device_size;
if (opt.std_out) {
if ((fd_out = fileno(stdout)) == -1)
perr_exit("fileno for stdout failed");
stream_out = stdout;
#ifdef HAVE_WINDOWS_H
if (setmode(fileno(stdout),O_BINARY) == -1)
perr_exit("setting binary stdout failed");
#endif
} else {
/* device_size_get() might need to read() */
int flags = O_RDWR | O_BINARY;
fd_out = 0;
if (!opt.blkdev_out) {
flags |= O_CREAT | O_TRUNC;
if (!opt.overwrite)
flags |= O_EXCL;
}
if (opt.save_image || opt.metadata_image) {
stream_out = fopen(opt.output,BINWMODE);
if (!stream_out)
perr_exit("Opening file '%s' failed",
opt.output);
fd_out = fileno(stream_out);
} else {
#ifdef HAVE_WINDOWS_H
if (!opt.no_action) {
dev_out = ntfs_device_alloc(opt.output, 0,
&ntfs_device_default_io_ops, NULL);
if (!dev_out
|| (dev_out->d_ops->open)(dev_out, flags))
perr_exit("Opening volume '%s' failed",
opt.output);
}
#else
if (!opt.no_action
&& ((fd_out = open(opt.output, flags,
S_IRUSR | S_IWUSR)) == -1))
perr_exit("Opening file '%s' failed",
opt.output);
#endif
}
if (!opt.save_image && !opt.metadata_image && !opt.no_action)
check_output_device(ntfs_size);
}
if (opt.restore_image) {
print_image_info();
restore_image();
if (!opt.no_action)
fsync_clone(fd_out);
exit(0);
}
setup_lcn_bitmap();
memset(&image, 0, sizeof(image));
backup_clusters.image = &image;
walk_clusters(vol, &backup_clusters);
image.more_use = compare_bitmaps(&lcn_bitmap,
opt.metadata && !opt.metadata_image);
print_disk_usage("", vol->cluster_size, vol->nr_clusters, image.inuse);
check_dest_free_space(vol->cluster_size * image.inuse);
ignore_bad_clusters(&image);
if (opt.save_image)
initialise_image_hdr(device_size, image.inuse);
if ((opt.std_out && !opt.metadata_image) || !opt.metadata) {
s64 nr_clusters_to_save = image.inuse;
if (opt.std_out && !opt.save_image)
nr_clusters_to_save = vol->nr_clusters;
nr_clusters_to_save++; /* account for the backup boot sector */
clone_ntfs(nr_clusters_to_save, image.more_use);
fsync_clone(fd_out);
if (opt.save_image)
fclose(stream_out);
ntfs_umount(vol,FALSE);
free(lcn_bitmap.bm);
exit(0);
}
wipe = 1;
if (opt.metadata_image) {
initialise_image_hdr(device_size, image.inuse);
write_image_hdr();
} else {
if (dev_out) {
(dev_out->d_ops->close)(dev_out);
dev_out = NULL;
} else
fsync_clone(fd_out); /* sync copy before mounting */
opt.volume = opt.output;
/* 'force' again mount for dirty volumes (e.g. after resize).
FIXME: use mount flags to avoid potential side-effects in future */
opt.force++;
ntfs_umount(vol,FALSE);
mount_volume(0 /*NTFS_MNT_NOATIME*/);
}
free(lcn_bitmap.bm);
setup_lcn_bitmap();
memset(&image, 0, sizeof(image));
backup_clusters.image = &image;
walk_clusters(vol, &backup_clusters);
Printf("Num of MFT records = %10lld\n",
(long long)vol->mft_na->initialized_size >>
vol->mft_record_size_bits);
Printf("Num of used MFT records = %10u\n", nr_used_mft_records);
Printf("Wiped unused MFT data = %10u\n", wiped_unused_mft_data);
Printf("Wiped deleted MFT data = %10u\n", wiped_unused_mft);
Printf("Wiped resident user data = %10u\n", wiped_resident_data);
Printf("Wiped timestamp data = %10u\n", wiped_timestamp_data);
wiped_total += wiped_unused_mft_data;
wiped_total += wiped_unused_mft;
wiped_total += wiped_resident_data;
wiped_total += wiped_timestamp_data;
Printf("Wiped totally = %10u\n", wiped_total);
if (opt.metadata_image)
fclose(stream_out);
else
fsync_clone(fd_out);
ntfs_umount(vol,FALSE);
free(lcn_bitmap.bm);
return (0);
}