You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

548 lines
16 KiB

// Copyright 2015-2016 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "android/base/TypeTraits.h"
#include <log/log.h>
#include <cassert>
#include <initializer_list>
#include <type_traits>
#include <utility>
#include <cstddef>
// Optional<T> - a template class to store an optional value of type T.
//
// Usage examples:
//
// Initialization and construction:
// Optional<Foo> foo; // |foo| doesn't contain a value.
// Optional<Foo> foo(Foo(10)); // |foo| contains a copy-constructed value.
// Optional<Foo> foo2(foo); // |foo2| contains a copy of |foo|'s value.
// Optional<Foo> foo3(std::move(foo2)); // Guess what?
//
// Assignment:
// Foo foo_value(0);
// Optional<Foo> foo; // |foo| is empty.
// Optional<Foo> foo2; // |foo2| is empty.
// foo2 = foo; // |foo2| is still empty.
// foo = foo_value; // set value of |foo| to a copy of |foo_value|
// foo = std::move(foo_value); // move |foo_value| into |foo|.
// foo2 = foo; // now |foo2| has a copy of |foo|'s value.
// foo = kNullopt; // unset |foo|, it has no value.
//
// Checking and accessing value:
// if (foo) {
// // |foo| has a value.
// doStuff(*foo); // |*foo| is the value inside |foo|.
// foo->callMethod(); // Same as (*foo).callMethod().
// } else {
// // |foo| is empty.
// }
//
// foo.value() // Same as *foo
// foo.valueOr(<default>) // Return <default> is |foo| has no value.
//
// In-place construction:
//
// Optional<Foo> foo; // |foo| is empty.
// foo.emplace(20); // |foo| now contains a value constructed as Foo(20)
//
// Optional<Foo> foo(kInplace, 20); // |foo| is initialized with a value
// // that is constructed in-place as
// // Foo(20).
//
// return makeOptional<Foo>(20); // Takes Foo constructor arguments
// // directly.
//
// Returning values:
//
// Optional<Foo> myFunc(...) {
// if (someCondition) {
// return Foo(10); // call Optional<Foo>(Foo&) constructor.
// } else {
// return {}; // call Optional<Foo>() constructor, which
// // builds an empty value.
// }
// }
//
// Memory layout:
// Optional<Foo> is equivalent to:
//
// struct {
// bool flag;
// Foo value;
// };
//
// in terms of memory layout. This means it *doubles* the size of integral
// types. Also:
//
// - Optional<Foo> can be constructed from anything that constructs a Foo.
//
// - Same with Optional<Foo>(kInplace, Args...) where Args... matches any
// arguments that can be passed to a Foo constructor.
//
// - Comparison operators are provided. Beware: an empty Optional<Foo>
// is always smaller than any Foo value.
namespace android {
namespace base {
namespace details {
// Base classes to reduce the number of instantiations of the Optional's
// internal members.
class OptionalFlagBase {
public:
void setConstructed(bool constructed) { mConstructed = constructed; }
constexpr bool constructed() const { return mConstructed; }
constexpr operator bool() const { return constructed(); }
bool hasValue() const { return constructed(); }
constexpr OptionalFlagBase(bool constructed = false)
: mConstructed(constructed) {}
private:
bool mConstructed = false;
};
template <size_t Size, size_t Align>
class OptionalStorageBase {
protected:
using StoreT = typename std::aligned_storage<Size, Align>::type;
StoreT mStorage = {};
};
} // namespace details
// A tag type for empty optional construction
struct NulloptT {
constexpr explicit NulloptT(int) {}
};
// A tag type for inplace value construction
struct InplaceT {
constexpr explicit InplaceT(int) {}
};
// Tag values for null optional and inplace construction
constexpr NulloptT kNullopt{1};
constexpr InplaceT kInplace{1};
// Forward declaration for an early use
template <class T>
class Optional;
// A type trait for checking if a type is an optional instantiation
// Note: if you want to refer to the template name inside the template,
// you need to declare this alias outside of it - because the
// class name inside of the template stands for an instantiated template
// E.g, for template <T> class Foo if you say 'Foo' inside the class, it
// actually means Foo<T>;
template <class U>
using is_any_optional =
is_template_instantiation_of<typename std::decay<U>::type, Optional>;
template <class T>
class Optional
: private details::OptionalFlagBase,
private details::OptionalStorageBase<sizeof(T),
std::alignment_of<T>::value> {
// make sure all optionals are buddies - this is needed to implement
// conversion from optionals of other types
template <class U>
friend class Optional;
template <class U>
using self = Optional<U>;
using base_flag = details::OptionalFlagBase;
using base_storage =
details::OptionalStorageBase<sizeof(T),
std::alignment_of<T>::value>;
public:
// std::optional will have this, so let's provide it
using value_type = T;
// make sure we forbid some Optional instantiations where things may get
// really messy
static_assert(!std::is_same<typename std::decay<T>::type, NulloptT>::value,
"Optional of NulloptT is not allowed");
static_assert(!std::is_same<typename std::decay<T>::type, InplaceT>::value,
"Optional of InplaceT is not allowed");
static_assert(!std::is_reference<T>::value,
"Optional references are not allowed: use a pointer instead");
// constructors
constexpr Optional() {}
constexpr Optional(NulloptT) {}
Optional(const Optional& other) : base_flag(other.constructed()) {
if (this->constructed()) {
new (&get()) T(other.get());
}
}
Optional(Optional&& other) : base_flag(other.constructed()) {
if (this->constructed()) {
new (&get()) T(std::move(other.get()));
}
}
// Conversion constructor from optional of similar type
template <class U,
class = enable_if_c<!is_any_optional<U>::value &&
std::is_constructible<T, U>::value>>
Optional(const Optional<U>& other) : base_flag(other.constructed()) {
if (this->constructed()) {
new (&get()) T(other.get());
}
}
// Move-conversion constructor
template <class U,
class = enable_if_c<!is_any_optional<U>::value &&
std::is_constructible<T, U>::value>>
Optional(Optional<U>&& other) : base_flag(other.constructed()) {
if (this->constructed()) {
new (&get()) T(std::move(other.get()));
}
}
// Construction from a raw value
Optional(const T& value) : base_flag(true) { new (&get()) T(value); }
// Move construction from a raw value
Optional(T&& value) : base_flag(true) { new (&get()) T(std::move(value)); }
// Inplace construction from a list of |T|'s ctor arguments
template <class... Args>
Optional(InplaceT, Args&&... args) : base_flag(true) {
new (&get()) T(std::forward<Args>(args)...);
}
// Inplace construction from an initializer list passed into |T|'s ctor
template <class U,
class = enable_if<
std::is_constructible<T, std::initializer_list<U>>>>
Optional(InplaceT, std::initializer_list<U> il) : base_flag(true) {
new (&get()) T(il);
}
// direct assignment
Optional& operator=(const Optional& other) {
if (&other == this) {
return *this;
}
if (this->constructed()) {
if (other.constructed()) {
get() = other.get();
} else {
destruct();
this->setConstructed(false);
}
} else {
if (other.constructed()) {
new (&get()) T(other.get());
this->setConstructed(true);
} else {
; // we're good
}
}
return *this;
}
// move assignment
Optional& operator=(Optional&& other) {
if (this->constructed()) {
if (other.constructed()) {
get() = std::move(other.get());
} else {
destruct();
this->setConstructed(false);
}
} else {
if (other.constructed()) {
new (&get()) T(std::move(other.get()));
this->setConstructed(true);
} else {
; // we're good
}
}
return *this;
}
// conversion assignment
template <class U,
class = enable_if_convertible<typename std::decay<U>::type, T>>
Optional& operator=(const Optional<U>& other) {
if (this->constructed()) {
if (other.constructed()) {
get() = other.get();
} else {
destruct();
this->setConstructed(false);
}
} else {
if (other.constructed()) {
new (&get()) T(other.get());
this->setConstructed(true);
} else {
; // we're good
}
}
return *this;
}
// conversion move assignment
template <class U,
class = enable_if_convertible<typename std::decay<U>::type, T>>
Optional& operator=(Optional<U>&& other) {
if (this->constructed()) {
if (other.constructed()) {
get() = std::move(other.get());
} else {
destruct();
this->setConstructed(false);
}
} else {
if (other.constructed()) {
new (&get()) T(std::move(other.get()));
this->setConstructed(true);
} else {
; // we're good
}
}
return *this;
}
// the most complicated one: forwarding constructor for anything convertible
// to |T|, excluding the stuff implemented above explicitly
template <class U,
class = enable_if_c<
!is_any_optional<typename std::decay<U>::type>::value &&
std::is_convertible<typename std::decay<U>::type,
T>::value>>
Optional& operator=(U&& other) {
if (this->constructed()) {
get() = std::forward<U>(other);
} else {
new (&get()) T(std::forward<U>(other));
this->setConstructed(true);
}
return *this;
}
// Adopt value checkers from the parent
using base_flag::operator bool;
using base_flag::hasValue;
T& value() {
if (!constructed()) {
ALOGE("Optional not constructed");
abort();
}
return get();
}
constexpr const T& value() const {
if (!constructed()) {
ALOGE("Optional not constructed");
abort();
}
return get();
}
T* ptr() {
return this->constructed() ? &get() : nullptr;
}
constexpr const T* ptr() const {
return this->constructed() ? &get() : nullptr;
}
// Value getter with fallback
template <class U = T,
class = enable_if_convertible<typename std::decay<U>::type, T>>
constexpr T valueOr(U&& defaultValue) const {
return this->constructed() ? get() : std::move(defaultValue);
}
// Pointer-like operators
T& operator*() {
if (!constructed()) {
ALOGE("Optional not constructed");
abort();
}
return get();
}
constexpr const T& operator*() const {
if (!constructed()) {
ALOGE("Optional not constructed");
abort();
}
return get();
}
T* operator->() {
if (!constructed()) {
ALOGE("Optional not constructed");
abort();
}
return &get();
}
constexpr const T* operator->() const {
if (!constructed()) {
ALOGE("Optional not constructed");
abort();
}
return &get();
}
~Optional() {
if (this->constructed()) {
destruct();
}
}
void clear() {
if (this->constructed()) {
destruct();
this->setConstructed(false);
}
}
template <class U,
class = enable_if_convertible<typename std::decay<U>::type, T>>
void reset(U&& u) {
*this = std::forward<U>(u);
}
// In-place construction with possible destruction of the old value
template <class... Args>
void emplace(Args&&... args) {
if (this->constructed()) {
destruct();
}
new (&get()) T(std::forward<Args>(args)...);
this->setConstructed(true);
}
// In-place construction with possible destruction of the old value
// initializer-list version
template <class U,
class = enable_if<
std::is_constructible<T, std::initializer_list<U>>>>
void emplace(std::initializer_list<U> il) {
if (this->constructed()) {
destruct();
}
new (&get()) T(il);
this->setConstructed(true);
}
private:
// A helper function to convert the internal raw storage to T&
constexpr const T& get() const {
return *reinterpret_cast<const T*>(
reinterpret_cast<const char*>(&this->mStorage));
}
// Same thing, mutable
T& get() {
return const_cast<T&>(const_cast<const Optional*>(this)->get());
}
// Shortcut for a destructor call for the stored object
void destruct() { get().T::~T(); }
};
template <class T>
Optional<typename std::decay<T>::type> makeOptional(T&& t) {
return Optional<typename std::decay<T>::type>(std::forward<T>(t));
}
template <class T, class... Args>
Optional<typename std::decay<T>::type> makeOptional(Args&&... args) {
return Optional<typename std::decay<T>::type>(kInplace,
std::forward<Args>(args)...);
}
template <class T>
bool operator==(const Optional<T>& l, const Optional<T>& r) {
return l.hasValue() ? r.hasValue() && *l == *r : !r.hasValue();
}
template <class T>
bool operator==(const Optional<T>& l, NulloptT) {
return !l;
}
template <class T>
bool operator==(NulloptT, const Optional<T>& r) {
return !r;
}
template <class T>
bool operator==(const Optional<T>& l, const T& r) {
return bool(l) && *l == r;
}
template <class T>
bool operator==(const T& l, const Optional<T>& r) {
return bool(r) && l == *r;
}
template <class T>
bool operator!=(const Optional<T>& l, const Optional<T>& r) {
return !(l == r);
}
template <class T>
bool operator!=(const Optional<T>& l, NulloptT) {
return bool(l);
}
template <class T>
bool operator!=(NulloptT, const Optional<T>& r) {
return bool(r);
}
template <class T>
bool operator!=(const Optional<T>& l, const T& r) {
return !l || !(*l == r);
}
template <class T>
bool operator!=(const T& l, const Optional<T>& r) {
return !r || !(l == *r);
}
template <class T>
bool operator<(const Optional<T>& l, const Optional<T>& r) {
return !r ? false : (!l ? true : *l < *r);
}
template <class T>
bool operator<(const Optional<T>&, NulloptT) {
return false;
}
template <class T>
bool operator<(NulloptT, const Optional<T>& r) {
return bool(r);
}
template <class T>
bool operator<(const Optional<T>& l, const T& r) {
return !l || *l < r;
}
template <class T>
bool operator<(const T& l, const Optional<T>& r) {
return bool(r) && l < *r;
}
} // namespace base
} // namespace android