203 lines
6.6 KiB
203 lines
6.6 KiB
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <fp16.h>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
|
|
class HardSwishOperatorTester {
|
|
public:
|
|
inline HardSwishOperatorTester& channels(size_t channels) {
|
|
assert(channels != 0);
|
|
this->channels_ = channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t channels() const {
|
|
return this->channels_;
|
|
}
|
|
|
|
inline HardSwishOperatorTester& input_stride(size_t input_stride) {
|
|
assert(input_stride != 0);
|
|
this->input_stride_ = input_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t input_stride() const {
|
|
if (this->input_stride_ == 0) {
|
|
return this->channels_;
|
|
} else {
|
|
assert(this->input_stride_ >= this->channels_);
|
|
return this->input_stride_;
|
|
}
|
|
}
|
|
|
|
inline HardSwishOperatorTester& output_stride(size_t output_stride) {
|
|
assert(output_stride != 0);
|
|
this->output_stride_ = output_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t output_stride() const {
|
|
if (this->output_stride_ == 0) {
|
|
return this->channels_;
|
|
} else {
|
|
assert(this->output_stride_ >= this->channels_);
|
|
return this->output_stride_;
|
|
}
|
|
}
|
|
|
|
inline HardSwishOperatorTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
inline HardSwishOperatorTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void TestF16() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), rng);
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
|
|
(batch_size() - 1) * input_stride() + channels());
|
|
std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
|
|
std::vector<float> output_ref(batch_size() * channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f16rng));
|
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
const float x = fp16_ieee_to_fp32_value(input[i * input_stride() + c]);
|
|
const float y = x * std::min(std::max(x + 3.0f, 0.0f), 6.0f) / 6.0f;
|
|
output_ref[i * channels() + c] = y;
|
|
}
|
|
}
|
|
|
|
// Create, setup, run, and destroy HardSwish operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t hardswish_op = nullptr;
|
|
xnn_status status = xnn_create_hardswish_nc_f16(
|
|
channels(), input_stride(), output_stride(),
|
|
0, &hardswish_op);
|
|
if (status == xnn_status_unsupported_hardware) {
|
|
GTEST_SKIP();
|
|
}
|
|
ASSERT_NE(nullptr, hardswish_op);
|
|
|
|
// Smart pointer to automatically delete hardswish_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_hardswish_op(hardswish_op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_hardswish_nc_f16(
|
|
hardswish_op,
|
|
batch_size(),
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(hardswish_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-3f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f))
|
|
<< "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestF32() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), rng);
|
|
|
|
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
|
|
(batch_size() - 1) * input_stride() + channels());
|
|
std::vector<float> output((batch_size() - 1) * output_stride() + channels());
|
|
std::vector<float> output_ref(batch_size() * channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), std::nanf(""));
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
const float x = input[i * input_stride() + c];
|
|
const float y = x * std::min(std::max(x + 3.0f, 0.0f), 6.0f) / 6.0f;
|
|
output_ref[i * channels() + c] = y;
|
|
}
|
|
}
|
|
|
|
// Create, setup, run, and destroy HardSwish operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t hardswish_op = nullptr;
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_hardswish_nc_f32(
|
|
channels(), input_stride(), output_stride(),
|
|
0, &hardswish_op));
|
|
ASSERT_NE(nullptr, hardswish_op);
|
|
|
|
// Smart pointer to automatically delete hardswish_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_hardswish_op(hardswish_op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_hardswish_nc_f32(
|
|
hardswish_op,
|
|
batch_size(),
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(hardswish_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_NEAR(output_ref[i * channels() + c], output[i * output_stride() + c], std::max(1.0e-7f, std::abs(output[i * output_stride() + c]) * 1.0e-6f))
|
|
<< "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_size_{1};
|
|
size_t channels_{1};
|
|
size_t input_stride_{0};
|
|
size_t output_stride_{0};
|
|
size_t iterations_{15};
|
|
};
|