You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.5 KiB
116 lines
4.5 KiB
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_INTERFACE_H_
|
|
#define NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_INTERFACE_H_
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "lang_id/common/embedding-feature-extractor.h"
|
|
#include "lang_id/common/fel/feature-extractor.h"
|
|
#include "lang_id/common/fel/task-context.h"
|
|
#include "lang_id/common/fel/workspace.h"
|
|
#include "lang_id/common/lite_base/attributes.h"
|
|
|
|
namespace libtextclassifier3 {
|
|
namespace mobile {
|
|
|
|
template <class EXTRACTOR, class OBJ, class... ARGS>
|
|
class EmbeddingFeatureInterface {
|
|
public:
|
|
// Constructs this EmbeddingFeatureInterface.
|
|
//
|
|
// |arg_prefix| is a string prefix for the TaskContext parameters, passed to
|
|
// |the underlying EmbeddingFeatureExtractor.
|
|
explicit EmbeddingFeatureInterface(const std::string &arg_prefix)
|
|
: feature_extractor_(arg_prefix) {}
|
|
|
|
// Sets up feature extractors and flags for processing (inference).
|
|
SAFTM_MUST_USE_RESULT bool SetupForProcessing(TaskContext *context) {
|
|
return feature_extractor_.Setup(context);
|
|
}
|
|
|
|
// Initializes feature extractor resources for processing (inference)
|
|
// including requesting a workspace for caching extracted features.
|
|
SAFTM_MUST_USE_RESULT bool InitForProcessing(TaskContext *context) {
|
|
if (!feature_extractor_.Init(context)) return false;
|
|
feature_extractor_.RequestWorkspaces(&workspace_registry_);
|
|
return true;
|
|
}
|
|
|
|
// Preprocesses *obj using the internal workspace registry.
|
|
void Preprocess(WorkspaceSet *workspace, OBJ *obj) const {
|
|
workspace->Reset(workspace_registry_);
|
|
feature_extractor_.Preprocess(workspace, obj);
|
|
}
|
|
|
|
// Extract features from |obj|. On return, FeatureVector features[i]
|
|
// contains the features for the embedding space #i.
|
|
//
|
|
// This function uses the precomputed info from |workspace|. Usage pattern:
|
|
//
|
|
// EmbeddingFeatureInterface<...> feature_interface;
|
|
// ...
|
|
// OBJ obj;
|
|
// WorkspaceSet workspace;
|
|
// feature_interface.Preprocess(&workspace, &obj);
|
|
//
|
|
// // For the same obj, but with different args:
|
|
// std::vector<FeatureVector> features;
|
|
// feature_interface.GetFeatures(obj, args, workspace, &features);
|
|
//
|
|
// This pattern is useful (more efficient) if you can pre-compute some info
|
|
// for the entire |obj|, which is reused by the feature extraction performed
|
|
// for different args. If that is not the case, you can use the simpler
|
|
// version GetFeaturesNoCaching below.
|
|
void GetFeatures(const OBJ &obj, ARGS... args, const WorkspaceSet &workspace,
|
|
std::vector<FeatureVector> *features) const {
|
|
feature_extractor_.ExtractFeatures(workspace, obj, args..., features);
|
|
}
|
|
|
|
// Simpler version of GetFeatures(), for cases when there is no opportunity to
|
|
// reuse computation between feature extractions for the same |obj|, but with
|
|
// different |args|. Returns the extracted features. For more info, see the
|
|
// doc for GetFeatures().
|
|
std::vector<FeatureVector> GetFeaturesNoCaching(OBJ *obj,
|
|
ARGS... args) const {
|
|
// Technically, we still use a workspace, because
|
|
// feature_extractor_.ExtractFeatures requires one. But there is no real
|
|
// caching here, as we start from scratch for each call to ExtractFeatures.
|
|
WorkspaceSet workspace;
|
|
Preprocess(&workspace, obj);
|
|
std::vector<FeatureVector> features(NumEmbeddings());
|
|
GetFeatures(*obj, args..., workspace, &features);
|
|
return features;
|
|
}
|
|
|
|
// Returns number of embedding spaces.
|
|
int NumEmbeddings() const { return feature_extractor_.NumEmbeddings(); }
|
|
|
|
private:
|
|
// Typed feature extractor for embeddings.
|
|
EmbeddingFeatureExtractor<EXTRACTOR, OBJ, ARGS...> feature_extractor_;
|
|
|
|
// The registry of shared workspaces in the feature extractor.
|
|
WorkspaceRegistry workspace_registry_;
|
|
};
|
|
|
|
} // namespace mobile
|
|
} // namespace nlp_saft
|
|
|
|
#endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_FEATURE_INTERFACE_H_
|