You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
426 lines
13 KiB
426 lines
13 KiB
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack/AlignedAllocator.h>
|
|
#include <xnnpack/pack.h>
|
|
#include <xnnpack/params-init.h>
|
|
#include <xnnpack/params.h>
|
|
#include <xnnpack.h>
|
|
|
|
|
|
class ConvHWC2CHWMicrokernelTester {
|
|
public:
|
|
enum class Variant {
|
|
Native,
|
|
Scalar,
|
|
};
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) {
|
|
this->output_channels_tile_ = output_channels_tile;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t output_channels_tile() const {
|
|
return this->output_channels_tile_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding(uint32_t padding) {
|
|
this->padding_top_ = padding;
|
|
this->padding_right_ = padding;
|
|
this->padding_bottom_ = padding;
|
|
this->padding_left_ = padding;
|
|
return *this;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_height(uint32_t padding_height) {
|
|
this->padding_top_ = padding_height;
|
|
this->padding_bottom_ = padding_height;
|
|
return *this;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_width(uint32_t padding_width) {
|
|
this->padding_right_ = padding_width;
|
|
this->padding_left_ = padding_width;
|
|
return *this;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_top(uint32_t padding_top) {
|
|
this->padding_top_ = padding_top;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t padding_top() const {
|
|
return this->padding_top_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_right(uint32_t padding_right) {
|
|
this->padding_right_ = padding_right;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t padding_right() const {
|
|
return this->padding_right_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_bottom(uint32_t padding_bottom) {
|
|
this->padding_bottom_ = padding_bottom;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t padding_bottom() const {
|
|
return this->padding_bottom_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_left(uint32_t padding_left) {
|
|
this->padding_left_ = padding_left;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t padding_left() const {
|
|
return this->padding_left_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) {
|
|
assert(input_height >= 1);
|
|
assert(input_width >= 1);
|
|
this->input_height_ = input_height;
|
|
this->input_width_ = input_width;
|
|
return *this;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_height(uint32_t input_height) {
|
|
assert(input_height >= 1);
|
|
this->input_height_ = input_height;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t input_height() const {
|
|
return this->input_height_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_width(uint32_t input_width) {
|
|
assert(input_width >= 1);
|
|
this->input_width_ = input_width;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t input_width() const {
|
|
return this->input_width_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_channels(size_t input_channels) {
|
|
assert(input_channels >= 1);
|
|
this->input_channels_ = input_channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t input_channels() const {
|
|
return this->input_channels_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_channels(size_t output_channels) {
|
|
assert(output_channels >= 1);
|
|
this->output_channels_ = output_channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t output_channels() const {
|
|
return this->output_channels_;
|
|
}
|
|
|
|
inline size_t packed_output_channels() const {
|
|
return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile();
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& batch_size(size_t batch_size) {
|
|
assert(batch_size >= 1);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& kernel_size(uint32_t kernel_size) {
|
|
assert(kernel_size >= 1);
|
|
this->kernel_height_ = kernel_size;
|
|
this->kernel_width_ = kernel_size;
|
|
return *this;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& kernel_height(uint32_t kernel_height) {
|
|
assert(kernel_height >= 1);
|
|
this->kernel_height_ = kernel_height;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t kernel_height() const {
|
|
return this->kernel_height_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& kernel_width(uint32_t kernel_width) {
|
|
assert(kernel_width >= 1);
|
|
this->kernel_width_ = kernel_width;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t kernel_width() const {
|
|
return this->kernel_width_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& subsampling(uint32_t subsampling) {
|
|
assert(subsampling >= 1);
|
|
this->subsampling_height_ = subsampling;
|
|
this->subsampling_width_ = subsampling;
|
|
return *this;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& subsampling_height(uint32_t subsampling_height) {
|
|
assert(subsampling_height >= 1);
|
|
this->subsampling_height_ = subsampling_height;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t subsampling_height() const {
|
|
return this->subsampling_height_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& subsampling_width(uint32_t subsampling_width) {
|
|
assert(subsampling_width >= 1);
|
|
this->subsampling_width_ = subsampling_width;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t subsampling_width() const {
|
|
return this->subsampling_width_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_y_start(uint32_t output_y_start) {
|
|
this->output_y_start_ = output_y_start;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t output_y_start() const {
|
|
return this->output_y_start_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_y_end(uint32_t output_y_end) {
|
|
this->output_y_end_ = output_y_end;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t output_y_end() const {
|
|
if (this->output_y_end_ == std::numeric_limits<uint32_t>::max()) {
|
|
return output_height();
|
|
} else {
|
|
return this->output_y_end_;
|
|
}
|
|
}
|
|
|
|
inline size_t input_pixel_stride() const {
|
|
return input_channels();
|
|
}
|
|
|
|
inline size_t output_pixel_stride() const {
|
|
return output_channels();
|
|
}
|
|
|
|
inline size_t output_height() const {
|
|
const size_t padded_input_height = padding_top() + input_height() + padding_bottom();
|
|
if (padded_input_height < kernel_height()) {
|
|
return 0;
|
|
} else {
|
|
return (padded_input_height - kernel_height()) / subsampling_height() + 1;
|
|
}
|
|
}
|
|
|
|
inline size_t output_width() const {
|
|
const size_t padded_input_width = padding_left() + input_width() + padding_right();
|
|
if (padded_input_width < kernel_width()) {
|
|
return 0;
|
|
} else {
|
|
return (padded_input_width - kernel_width()) / subsampling_width() + 1;
|
|
}
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& qmin(uint8_t qmin) {
|
|
this->qmin_ = qmin;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& qmax(uint8_t qmax) {
|
|
this->qmax_ = qmax;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
inline ConvHWC2CHWMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_f32_conv_hwc2chw_ukernel_function conv, Variant variant = Variant::Native) const {
|
|
ASSERT_LT(output_y_start(), output_height());
|
|
ASSERT_LE(output_y_end(), output_height());
|
|
ASSERT_GT(output_y_end(), output_y_start());
|
|
ASSERT_GE(output_width(), 1);
|
|
ASSERT_GE(output_height(), 1);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
|
|
|
|
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
|
|
batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels()));
|
|
std::vector<float> zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels());
|
|
std::vector<float> kernel(output_channels() * kernel_height() * kernel_width() * input_channels());
|
|
std::vector<float> bias(output_channels());
|
|
std::vector<float> output(batch_size() * output_channels() * output_height() * output_width());
|
|
std::vector<float> output_ref(batch_size() * output_channels() * output_height() * output_width());
|
|
std::vector<float, AlignedAllocator<float, 64>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels());
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
|
|
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), nanf(""));
|
|
std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
|
|
|
|
xnn_pack_f32_dconv_oki_w(
|
|
output_channels(),
|
|
input_channels(),
|
|
output_channels_tile(),
|
|
kernel_height(), kernel_width(),
|
|
kernel.data(), bias.data(), packed_weights.data(), nullptr);
|
|
|
|
// Compute reference results, without clamping.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oy = 0; oy < output_height(); oy++) {
|
|
for (size_t ox = 0; ox < output_width(); ox++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
float acc = bias[oc];
|
|
for (size_t ky = 0; ky < kernel_height(); ky++) {
|
|
const size_t iy = oy * subsampling_height() + ky - padding_top();
|
|
if (iy < input_height()) {
|
|
for (size_t kx = 0; kx < kernel_width(); kx++) {
|
|
const size_t ix = ox * subsampling_width() + kx - padding_left();
|
|
if (ix < input_width()) {
|
|
for (size_t ic = 0; ic < input_channels(); ic++) {
|
|
acc +=
|
|
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] *
|
|
kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
output_ref[((i * output_channels() + oc) * output_height() + oy) * output_width() + ox] = acc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
|
|
const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
|
|
const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
|
|
|
|
// Clamp reference results.
|
|
for (float& value : output_ref) {
|
|
value = std::max(std::min(value, output_max), output_min);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f32_minmax_params params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
params = xnn_init_f32_minmax_params(output_min, output_max);
|
|
break;
|
|
case Variant::Scalar:
|
|
params = xnn_init_scalar_f32_minmax_params(output_min, output_max);
|
|
break;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
conv(
|
|
input_height(), input_width(),
|
|
output_y_start(), output_y_end(),
|
|
input.data(), zero.data(), packed_weights.data(), output.data(),
|
|
padding_top(), output_channels(),
|
|
output_width() * sizeof(float),
|
|
output_height() * output_width() * sizeof(float),
|
|
¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t y = output_y_start(); y < output_y_end(); y++) {
|
|
for (size_t x = 0; x < output_width(); x++) {
|
|
for (size_t c = 0; c < output_channels(); c++) {
|
|
ASSERT_GE(output[((i * output_channels() + c) * output_height() + y) * output_width() + x], output_min)
|
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c;
|
|
ASSERT_LE(output[((i * output_channels() + c) * output_height() + y) * output_width() + x], output_max)
|
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c;
|
|
ASSERT_NEAR(
|
|
output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x],
|
|
output[((i * output_channels() + c) * output_height() + y) * output_width() + x],
|
|
1.0e-4 * std::abs(output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x]))
|
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
uint32_t padding_top_{0};
|
|
uint32_t padding_right_{0};
|
|
uint32_t padding_bottom_{0};
|
|
uint32_t padding_left_{0};
|
|
size_t input_height_{1};
|
|
size_t input_width_{1};
|
|
size_t input_channels_{1};
|
|
size_t output_channels_{1};
|
|
uint32_t output_channels_tile_{1};
|
|
size_t batch_size_{1};
|
|
uint32_t kernel_height_{1};
|
|
uint32_t kernel_width_{1};
|
|
uint32_t subsampling_height_{1};
|
|
uint32_t subsampling_width_{1};
|
|
uint32_t output_y_start_{0};
|
|
uint32_t output_y_end_{std::numeric_limits<uint32_t>::max()};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
size_t iterations_{1};
|
|
};
|