You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
727 lines
30 KiB
727 lines
30 KiB
// Copyright (c) Facebook, Inc. and its affiliates.
|
|
// All rights reserved.
|
|
//
|
|
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <fp16.h>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/AlignedAllocator.h>
|
|
#include <xnnpack/params-init.h>
|
|
#include <xnnpack/params.h>
|
|
#include <xnnpack/requantization.h>
|
|
|
|
|
|
class GAvgPoolMicrokernelTester {
|
|
public:
|
|
enum class Variant {
|
|
Native,
|
|
Scalar,
|
|
};
|
|
|
|
inline GAvgPoolMicrokernelTester& rows(size_t rows) {
|
|
assert(rows != 0);
|
|
this->rows_ = rows;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t rows() const {
|
|
return this->rows_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& channels(size_t channels) {
|
|
assert(channels != 0);
|
|
this->channels_ = channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t channels() const {
|
|
return this->channels_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& channel_tile(size_t channel_tile) {
|
|
assert(channel_tile != 0);
|
|
this->channel_tile_ = channel_tile;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t channel_tile() const {
|
|
return this->channel_tile_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& input_stride(size_t input_stride) {
|
|
assert(input_stride != 0);
|
|
this->input_stride_ = input_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t input_stride() const {
|
|
if (this->input_stride_ == 0) {
|
|
return channels();
|
|
} else {
|
|
assert(this->input_stride_ >= channels());
|
|
return this->input_stride_;
|
|
}
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& input_scale(float input_scale) {
|
|
assert(input_scale > 0.0f);
|
|
assert(std::isnormal(input_scale));
|
|
this->input_scale_ = input_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline float input_scale() const {
|
|
return this->input_scale_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
|
|
this->input_zero_point_ = input_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t input_zero_point() const {
|
|
return this->input_zero_point_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& output_scale(float output_scale) {
|
|
assert(output_scale > 0.0f);
|
|
assert(std::isnormal(output_scale));
|
|
this->output_scale_ = output_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline float output_scale() const {
|
|
return this->output_scale_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
|
|
this->output_zero_point_ = output_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t output_zero_point() const {
|
|
return this->output_zero_point_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& qmin(uint8_t qmin) {
|
|
this->qmin_ = qmin;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& qmax(uint8_t qmax) {
|
|
this->qmax_ = qmax;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
inline GAvgPoolMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_qu8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
|
|
|
|
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
|
|
(rows() - 1) * input_stride() + channels());
|
|
std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
|
|
std::vector<uint8_t> output(channels());
|
|
std::vector<uint8_t> output_ref(channels());
|
|
std::vector<float> output_fp(channels());
|
|
std::vector<int32_t> accumulators(channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(u8rng));
|
|
std::fill(output.begin(), output.end(), 0xA5);
|
|
|
|
// Prepare parameters.
|
|
union xnn_qu8_avgpool_params quantization_params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
quantization_params = xnn_init_qu8_avgpool_params(
|
|
-int32_t(input_zero_point()) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
output_zero_point(), qmin(), qmax());
|
|
break;
|
|
case Variant::Scalar:
|
|
quantization_params = xnn_init_scalar_qu8_avgpool_params(
|
|
-int32_t(input_zero_point()) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
output_zero_point(), qmin(), qmax());
|
|
break;
|
|
}
|
|
const union xnn_qu8_avgpool_params scalar_quantization_params =
|
|
xnn_init_scalar_qu8_avgpool_params(
|
|
-int32_t(input_zero_point()) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
output_zero_point(), qmin(), qmax());
|
|
|
|
// Compute reference results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
int32_t acc = scalar_quantization_params.scalar.bias;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += input[n * input_stride() + c];
|
|
}
|
|
accumulators[c] = acc;
|
|
output_ref[c] = xnn_qu8_quantize_avgpool(acc, scalar_quantization_params);
|
|
output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point());
|
|
output_fp[c] = std::min<float>(output_fp[c], float(qmax()));
|
|
output_fp[c] = std::max<float>(output_fp[c], float(qmin()));
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(uint8_t),
|
|
zero.data(),
|
|
output.data(),
|
|
&quantization_params);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(uint32_t(output[c]), uint32_t(qmax()))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_GE(uint32_t(output[c]), uint32_t(qmin()))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
|
|
<< ", acc = " << accumulators[c];
|
|
ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c]))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
|
|
<< ", acc = " << accumulators[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_qu8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
|
|
|
|
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
|
|
(rows() - 1) * input_stride() + channels());
|
|
std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
|
|
std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
|
|
std::vector<uint8_t> output(channels());
|
|
std::vector<uint8_t> output_ref(channels());
|
|
std::vector<float> output_fp(channels());
|
|
std::vector<int32_t> accumulators(channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(u8rng));
|
|
std::fill(output.begin(), output.end(), 0xA5);
|
|
|
|
// Prepare parameters.
|
|
union xnn_qu8_avgpool_params quantization_params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
quantization_params = xnn_init_qu8_avgpool_params(
|
|
-int32_t(input_zero_point()) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
output_zero_point(), qmin(), qmax());
|
|
break;
|
|
case Variant::Scalar:
|
|
quantization_params = xnn_init_scalar_qu8_avgpool_params(
|
|
-int32_t(input_zero_point()) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
output_zero_point(), qmin(), qmax());
|
|
break;
|
|
}
|
|
const union xnn_qu8_avgpool_params scalar_quantization_params =
|
|
xnn_init_scalar_qu8_avgpool_params(
|
|
-int32_t(input_zero_point()) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
output_zero_point(), qmin(), qmax());
|
|
|
|
// Compute reference results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
int32_t acc = scalar_quantization_params.scalar.bias;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += input[n * input_stride() + c];
|
|
}
|
|
|
|
accumulators[c] = acc;
|
|
output_ref[c] = xnn_qu8_quantize_avgpool(acc, scalar_quantization_params);
|
|
output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point());
|
|
output_fp[c] = std::min<float>(output_fp[c], float(qmax()));
|
|
output_fp[c] = std::max<float>(output_fp[c], float(qmin()));
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(uint8_t),
|
|
zero.data(),
|
|
buffer.data(),
|
|
output.data(),
|
|
&quantization_params);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(uint32_t(output[c]), uint32_t(qmax()))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_GE(uint32_t(output[c]), uint32_t(qmin()))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
|
|
<< ", acc = " << accumulators[c];
|
|
ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c]))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
|
|
<< ", acc = " << accumulators[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_qs8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i8rng = std::bind(
|
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng);
|
|
|
|
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
|
|
(rows() - 1) * input_stride() + channels());
|
|
std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
|
|
std::vector<int8_t> output(channels());
|
|
std::vector<int8_t> output_ref(channels());
|
|
std::vector<float> output_fp(channels());
|
|
std::vector<int32_t> accumulators(channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(i8rng));
|
|
std::fill(output.begin(), output.end(), 0xA5);
|
|
|
|
// Prepare parameters.
|
|
union xnn_qs8_avgpool_params quantization_params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
quantization_params = xnn_init_qs8_avgpool_params(
|
|
-int32_t(input_zero_point() - 0x80) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
|
|
break;
|
|
case Variant::Scalar:
|
|
quantization_params = xnn_init_scalar_qs8_avgpool_params(
|
|
-int32_t(input_zero_point() - 0x80) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
|
|
break;
|
|
}
|
|
const union xnn_qs8_avgpool_params scalar_quantization_params =
|
|
xnn_init_scalar_qs8_avgpool_params(
|
|
-int32_t(input_zero_point() - 0x80) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
|
|
|
|
// Compute reference results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
int32_t acc = scalar_quantization_params.scalar.bias;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += input[n * input_stride() + c];
|
|
}
|
|
accumulators[c] = acc;
|
|
output_ref[c] = xnn_qs8_quantize_avgpool(acc, scalar_quantization_params);
|
|
output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point() - 0x80);
|
|
output_fp[c] = std::min<float>(output_fp[c], float(qmax() - 0x80));
|
|
output_fp[c] = std::max<float>(output_fp[c], float(qmin() - 0x80));
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(int8_t),
|
|
zero.data(),
|
|
output.data(),
|
|
&quantization_params);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(int32_t(output[c]), int32_t(qmax() - 0x80))
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows();
|
|
ASSERT_GE(int32_t(output[c]), int32_t(qmin() - 0x80))
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows();
|
|
ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows()
|
|
<< ", accumulator = " << accumulators[c];
|
|
ASSERT_EQ(int32_t(output_ref[c]), int32_t(output[c]))
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows()
|
|
<< ", accumulator = " << accumulators[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_qs8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i8rng = std::bind(
|
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng);
|
|
|
|
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
|
|
(rows() - 1) * input_stride() + channels());
|
|
std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
|
|
std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
|
|
std::vector<int8_t> output(channels());
|
|
std::vector<int8_t> output_ref(channels());
|
|
std::vector<float> output_fp(channels());
|
|
std::vector<int32_t> accumulators(channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(i8rng));
|
|
std::fill(output.begin(), output.end(), 0xA5);
|
|
|
|
// Prepare parameters.
|
|
union xnn_qs8_avgpool_params quantization_params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
quantization_params = xnn_init_qs8_avgpool_params(
|
|
-int32_t(input_zero_point() - 0x80) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
|
|
break;
|
|
case Variant::Scalar:
|
|
quantization_params = xnn_init_scalar_qs8_avgpool_params(
|
|
-int32_t(input_zero_point() - 0x80) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
|
|
break;
|
|
}
|
|
const union xnn_qs8_avgpool_params scalar_quantization_params =
|
|
xnn_init_scalar_qs8_avgpool_params(
|
|
-int32_t(input_zero_point() - 0x80) * int32_t(rows()),
|
|
input_scale() / (output_scale() * float(rows())),
|
|
int8_t(output_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
|
|
|
|
// Compute reference results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
int32_t acc = scalar_quantization_params.scalar.bias;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += input[n * input_stride() + c];
|
|
}
|
|
accumulators[c] = acc;
|
|
output_ref[c] = xnn_qs8_quantize_avgpool(acc, scalar_quantization_params);
|
|
output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point() - 0x80);
|
|
output_fp[c] = std::min<float>(output_fp[c], float(qmax() - 0x80));
|
|
output_fp[c] = std::max<float>(output_fp[c], float(qmin() - 0x80));
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(int8_t),
|
|
zero.data(),
|
|
buffer.data(),
|
|
output.data(),
|
|
&quantization_params);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(int32_t(output[c]), int32_t(qmax() - 0x80))
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows();
|
|
ASSERT_GE(int32_t(output[c]), int32_t(qmin() - 0x80))
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows();
|
|
ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows()
|
|
<< ", accumulator = " << accumulators[c];
|
|
ASSERT_EQ(int32_t(output_ref[c]), int32_t(output[c]))
|
|
<< "at channel " << c << " / " << channels() << ", rows = " << rows()
|
|
<< ", accumulator = " << accumulators[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f16_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> output(channels());
|
|
std::vector<float> output_ref(channels());
|
|
|
|
std::fill(zero.begin(), zero.end(), 0);
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f16rng));
|
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
|
|
|
|
// Compute reference results, without clamping.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
float acc = 0.0f;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]);
|
|
}
|
|
output_ref[c] = acc / float(rows());
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range));
|
|
const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range));
|
|
|
|
// Clamp reference results.
|
|
for (float& output_values : output_ref) {
|
|
output_values = std::max(std::min(output_values, output_max), output_min);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params(
|
|
fp16_ieee_from_fp32_value(1.0f / float(rows())),
|
|
fp16_ieee_from_fp32_value(output_min),
|
|
fp16_ieee_from_fp32_value(output_max));
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(uint16_t),
|
|
zero.data(),
|
|
output.data(),
|
|
¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::max(1.0e-4f, std::abs(output_ref[c]) * 1.0e-2f))
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f16_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> output(channels());
|
|
std::vector<float> output_ref(channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f16rng));
|
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
|
|
|
|
// Compute reference results, without clamping.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
float acc = 0.0f;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]);
|
|
}
|
|
output_ref[c] = acc / float(rows());
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range));
|
|
const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range));
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params(
|
|
fp16_ieee_from_fp32_value(1.0f / float(rows())),
|
|
fp16_ieee_from_fp32_value(output_min),
|
|
fp16_ieee_from_fp32_value(output_max));
|
|
|
|
// Clamp reference results.
|
|
for (float& output_values : output_ref) {
|
|
output_values = std::max(std::min(output_values, output_max), output_min);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(uint16_t),
|
|
zero.data(),
|
|
buffer.data(),
|
|
output.data(),
|
|
¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::abs(output_ref[c]) * 1.0e-0f)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
|
|
|
|
std::vector<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> output(channels());
|
|
std::vector<float> output_ref(channels());
|
|
|
|
std::fill(zero.begin(), zero.end(), 0.0f);
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), std::nanf(""));
|
|
|
|
// Compute reference results, without clamping.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
float acc = 0.0f;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += input[n * input_stride() + c];
|
|
}
|
|
output_ref[c] = acc / float(rows());
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
|
|
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
|
|
|
|
// Clamp reference results.
|
|
for (float& output_values : output_ref) {
|
|
output_values = std::max(std::min(output_values, output_max), output_min);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
union xnn_f32_scaleminmax_params params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
params = xnn_init_f32_scaleminmax_params(
|
|
1.0f / float(rows()), output_min, output_max);
|
|
break;
|
|
case Variant::Scalar:
|
|
params = xnn_init_scalar_f32_scaleminmax_params(
|
|
1.0f / float(rows()), output_min, output_max);
|
|
break;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(float),
|
|
zero.data(),
|
|
output.data(),
|
|
¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(output[c], output_max)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_GE(output[c], output_min)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
|
|
|
|
std::vector<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float, AlignedAllocator<float, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> output(channels());
|
|
std::vector<float> output_ref(channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), std::nanf(""));
|
|
|
|
// Compute reference results, without clamping.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
float acc = 0.0f;
|
|
for (size_t n = 0; n < rows(); n++) {
|
|
acc += input[n * input_stride() + c];
|
|
}
|
|
output_ref[c] = acc / float(rows());
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
|
|
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
|
|
|
|
// Prepare parameters.
|
|
union xnn_f32_scaleminmax_params params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
params = xnn_init_f32_scaleminmax_params(
|
|
1.0f / float(rows()), output_min, output_max);
|
|
break;
|
|
case Variant::Scalar:
|
|
params = xnn_init_scalar_f32_scaleminmax_params(
|
|
1.0f / float(rows()), output_min, output_max);
|
|
break;
|
|
}
|
|
|
|
// Clamp reference results.
|
|
for (float& output_values : output_ref) {
|
|
output_values = std::max(std::min(output_values, output_max), output_min);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
gavgpool_minmax(rows(), channels(),
|
|
input.data(), input_stride() * sizeof(float),
|
|
zero.data(),
|
|
buffer.data(),
|
|
output.data(),
|
|
¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_LE(output[c], output_max)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_GE(output[c], output_min)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
|
|
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t rows_{1};
|
|
size_t channels_{1};
|
|
size_t channel_tile_{1};
|
|
size_t input_stride_{0};
|
|
float input_scale_{1.25f};
|
|
float output_scale_{0.75f};
|
|
uint8_t input_zero_point_{121};
|
|
uint8_t output_zero_point_{133};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
size_t iterations_{15};
|
|
};
|