You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
4.4 KiB
146 lines
4.4 KiB
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <fp16.h>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/params-init.h>
|
|
#include <xnnpack/params.h>
|
|
|
|
|
|
class HSwishMicrokernelTester {
|
|
public:
|
|
enum class Variant {
|
|
Native,
|
|
Scalar,
|
|
};
|
|
|
|
inline HSwishMicrokernelTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
inline HSwishMicrokernelTester& inplace(bool inplace) {
|
|
this->inplace_ = inplace;
|
|
return *this;
|
|
}
|
|
|
|
inline bool inplace() const {
|
|
return this->inplace_;
|
|
}
|
|
|
|
inline HSwishMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_f16_hswish_ukernel_function hswish) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), std::ref(rng));
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(x.begin(), x.end(), std::ref(f16rng));
|
|
if (inplace()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f16rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
|
|
}
|
|
const uint16_t* x_data = inplace() ? y.data() : x.data();
|
|
|
|
// Prepare parameters.
|
|
struct xnn_f16_hswish_params params = xnn_init_f16_hswish_params();
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
y_ref[i] = (fp16_ieee_to_fp32_value(x_data[i]) / 6.0f) * std::max(std::min(fp16_ieee_to_fp32_value(x_data[i]) + 3.0f, 6.0f), 0.0f);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
hswish(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::max(1.0e-3f, std::abs(y_ref[i]) * 1.0e-2f))
|
|
<< "at position " << i << ", batch_size = " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_hswish_ukernel_function hswish, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-4.0f, 4.0f), rng);
|
|
|
|
std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(x.begin(), x.end(), std::ref(f32rng));
|
|
if (inplace()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f32rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), std::nanf(""));
|
|
}
|
|
const float* x_data = inplace() ? y.data() : x.data();
|
|
|
|
// Prepare parameters.
|
|
union xnn_f32_hswish_params params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
params = xnn_init_f32_hswish_params();
|
|
break;
|
|
case Variant::Scalar:
|
|
params = xnn_init_scalar_f32_hswish_params();
|
|
break;
|
|
}
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
y_ref[i] = (x_data[i] / 6.0f) * std::max(std::min(x_data[i] + 3.0f, 6.0f), 0.0f);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
hswish(batch_size() * sizeof(float), x_data, y.data(), ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_NEAR(y_ref[i], y[i], std::max(1.0e-7f, std::abs(y_ref[i]) * 1.0e-6f))
|
|
<< "at position " << i << ", batch_size = " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_size_{1};
|
|
bool inplace_{false};
|
|
size_t iterations_{5};
|
|
};
|