You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1023 lines
32 KiB
1023 lines
32 KiB
// Copyright (c) Facebook, Inc. and its affiliates.
|
|
// All rights reserved.
|
|
//
|
|
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <xnnpack/common.h>
|
|
|
|
#include <xnnpack/requantization-stubs.h>
|
|
#include "requantization-tester.h"
|
|
|
|
|
|
/*
|
|
* Precise scalar implementation using unsigned 32-bit arithmetics.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED32, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__scalar_unsigned32);
|
|
}
|
|
|
|
|
|
/*
|
|
* Precise scalar implementation using unsigned 64-bit arithmetics.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_UNSIGNED64, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__scalar_unsigned64);
|
|
}
|
|
|
|
|
|
/*
|
|
* Precise scalar implementation using signed 64-bit arithmetics.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SCALAR_SIGNED64, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__scalar_signed64);
|
|
}
|
|
|
|
|
|
/*
|
|
* FP32-based scalar implementation using lrintf function.
|
|
*/
|
|
|
|
TEST(QU8_FP32__SCALAR_LRINTF, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(1000)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__scalar_lrintf);
|
|
}
|
|
|
|
|
|
/*
|
|
* FP32-based scalar implementation using magic trick for FP32->INT32 conversion.
|
|
*/
|
|
|
|
TEST(QU8_FP32__SCALAR_MAGIC, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(1000)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__scalar_magic);
|
|
}
|
|
|
|
|
|
/*
|
|
* Q31-based scalar implementation.
|
|
*/
|
|
|
|
TEST(QU8_Q31__SCALAR, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__scalar);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SCALAR, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__scalar);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SCALAR, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_q31__scalar);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No rounding down test - it fails because of upward bias in multiplication */
|
|
/* No rounding away test - it fails because of upward bias in multiplication */
|
|
|
|
TEST(QU8_Q31__SCALAR, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_q31__scalar);
|
|
}
|
|
|
|
TEST(QU8_Q31__SCALAR, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(100)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_q31__scalar);
|
|
}
|
|
|
|
|
|
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
|
|
/*
|
|
* Precise SSE2 implementation using floating-point shuffle.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__SSE2, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE2, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE2, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE2, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE2, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE2, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE2, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__sse2);
|
|
}
|
|
|
|
|
|
/*
|
|
* Precise SSSE3 implementation using floating-point shuffle.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__SSSE3, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSSE3, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSSE3, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSSE3, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSSE3, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSSE3, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSSE3, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__ssse3);
|
|
}
|
|
|
|
|
|
/*
|
|
* Precise SSE4.1 implementation using static blend instruction.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__SSE4, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE4, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE4, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE4, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE4, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE4, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__SSE4, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__sse4);
|
|
}
|
|
|
|
|
|
/*
|
|
* FP32-based x86 SSE2 implementation.
|
|
*/
|
|
|
|
TEST(QU8_FP32__SSE2, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(1000)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__sse2);
|
|
}
|
|
|
|
|
|
/*
|
|
* Q31-based x86 SSE2 implementation.
|
|
*/
|
|
|
|
TEST(QU8_Q31__SSE2, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__sse2);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SSE2, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__sse2);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SSE2, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_q31__sse2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No rounding down test - it fails because of upward bias in multiplication */
|
|
/* No rounding away test - it fails because of upward bias in multiplication */
|
|
|
|
TEST(QU8_Q31__SSE2, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_q31__sse2);
|
|
}
|
|
|
|
TEST(QU8_Q31__SSE2, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(100)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_q31__sse2);
|
|
}
|
|
|
|
|
|
/*
|
|
* Q31-based x86 SSSE3 implementation.
|
|
*/
|
|
|
|
TEST(QU8_Q31__SSSE3, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__ssse3);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SSSE3, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__ssse3);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SSSE3, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_q31__ssse3);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No rounding down test - it fails because of upward bias in multiplication */
|
|
/* No rounding away test - it fails because of upward bias in multiplication */
|
|
|
|
TEST(QU8_Q31__SSSE3, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_q31__ssse3);
|
|
}
|
|
|
|
TEST(QU8_Q31__SSSE3, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(100)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_q31__ssse3);
|
|
}
|
|
|
|
|
|
/*
|
|
* Q31-based x86 SSE4 implementation.
|
|
*/
|
|
|
|
TEST(QU8_Q31__SSE4, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__sse4);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SSE4, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__sse4);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__SSE4, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_q31__sse4);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No rounding down test - it fails because of upward bias in multiplication */
|
|
/* No rounding away test - it fails because of upward bias in multiplication */
|
|
|
|
TEST(QU8_Q31__SSE4, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_q31__sse4);
|
|
}
|
|
|
|
TEST(QU8_Q31__SSE4, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(100)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_q31__sse4);
|
|
}
|
|
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
|
|
|
|
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
|
|
/*
|
|
* Precise ARM NEON implementation.
|
|
*/
|
|
|
|
TEST(QU8_PRECISE__NEON, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__NEON, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__NEON, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__NEON, divide_by_po2_with_rounding_down) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__NEON, divide_by_po2_with_rounding_away) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingAway(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_PRECISE__NEON, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
|
|
TEST(QU8_PRECISE__NEON, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.zero_point(128)
|
|
.iterations(100)
|
|
.TestRandomCasesPrecise(xnn_qu8_requantize_precise__neon);
|
|
}
|
|
|
|
|
|
/*
|
|
* FP32-based ARM NEON implementation.
|
|
*/
|
|
|
|
TEST(QU8_FP32__NEON, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(1000)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__neon);
|
|
}
|
|
|
|
|
|
/*
|
|
* Q31-based ARM NEON implementation.
|
|
*/
|
|
|
|
TEST(QU8_Q31__NEON, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__neon);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__NEON, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__neon);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__NEON, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_q31__neon);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No rounding down test - it fails because of upward bias in multiplication */
|
|
/* No rounding away test - it fails because of upward bias in multiplication */
|
|
|
|
TEST(QU8_Q31__NEON, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_q31__neon);
|
|
}
|
|
|
|
TEST(QU8_Q31__NEON, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(100)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_q31__neon);
|
|
}
|
|
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
|
|
|
|
#if XNN_ARCH_WASMSIMD
|
|
/*
|
|
* FP32-based ARM NEON implementation.
|
|
*/
|
|
|
|
TEST(QU8_FP32__WASMSIMD, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(1000)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__wasmsimd);
|
|
}
|
|
|
|
|
|
/*
|
|
* Q31-based WAsmd SIMD implementation.
|
|
*/
|
|
|
|
TEST(QU8_Q31__WASMSIMD, exact_divide_by_po2) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__wasmsimd);
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__WASMSIMD, exact_divide_by_po2_with_zero_point) {
|
|
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestExactDivideByPO2(xnn_qu8_requantize_q31__wasmsimd);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(QU8_Q31__WASMSIMD, divide_by_po2_with_rounding_up) {
|
|
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
|
|
for (uint32_t s = 1; s < 32; s++) {
|
|
RequantizationTester()
|
|
.zero_point(zero_point)
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.s(s)
|
|
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_q31__wasmsimd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No rounding down test - it fails because of upward bias in multiplication */
|
|
/* No rounding away test - it fails because of upward bias in multiplication */
|
|
|
|
TEST(QU8_Q31__WASMSIMD, special_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.TestSpecialCases(xnn_qu8_requantize_q31__wasmsimd);
|
|
}
|
|
|
|
TEST(QU8_Q31__WASMSIMD, random_cases) {
|
|
RequantizationTester()
|
|
.qmin(std::numeric_limits<uint8_t>::min())
|
|
.qmax(std::numeric_limits<uint8_t>::max())
|
|
.iterations(100)
|
|
.TestRandomCasesApproximate(xnn_qu8_requantize_q31__wasmsimd);
|
|
}
|
|
#endif // XNN_ARCH_WASMSIMD
|