You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

702 lines
28 KiB

// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack/params.h>
#include <xnnpack/requantization-stubs.h>
#include <xnnpack/requantization.h>
class RequantizationTester {
public:
inline RequantizationTester& s(uint32_t s) {
this->s_ = s;
return *this;
}
inline uint32_t s() const {
return this->s_;
}
inline float scale() const {
return ldexpf(1.0f, -s());
}
inline RequantizationTester& zero_point(int32_t zero_point) {
this->zero_point_ = zero_point;
return *this;
}
inline int32_t zero_point() const {
return this->zero_point_;
}
inline RequantizationTester& qmin(int16_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline int16_t qmin() const {
return this->qmin_;
}
inline RequantizationTester& qmax(int16_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline int16_t qmax() const {
return this->qmax_;
}
inline RequantizationTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
/*
* Test that requantization of numbers ((i - zero point) * 2**s) with
* - scale = exp2(-s)
* - zero point in [0, 255]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestExactDivideByPO2(xnn_qu8_requantization_function requantize) const {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
const int32_t max_i = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point();
const int32_t min_i = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point();
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
inputs[i] = int32_t(uint32_t(clamped_i - zero_point()) << s());
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
ASSERT_EQ(uint32_t(clamped_i), uint32_t(outputs[i]))
<< "i = " << i << ", clamped i = " << clamped_i << ", input = " << inputs[i]
<< ", min i = " << min_i << ", max i = " << max_i
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
/*
* Test that requantization of numbers ((i - zero point) * 2**s) with
* - scale = exp2(-s)
* - zero point in [-128, 127]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestExactDivideByPO2(xnn_qs8_requantization_function requantize) const {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<int8_t> outputs(inputs.size());
const int32_t max_i = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point();
const int32_t min_i = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point();
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(uint32_t(clamped_i - zero_point()) << s());
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
const int32_t clamped_i = std::max(min_i, std::min(max_i, i));
ASSERT_EQ(clamped_i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
<< "i = " << i << ", clamped i = " << clamped_i
<< ", input = " << inputs[i - std::numeric_limits<int8_t>::min()]
<< ", min i = " << min_i << ", max i = " << max_i
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
/*
* Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with
* - scale = exp2(-s)
* - zero point in [1, 255]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestDivideByPO2WithRoundingUp(xnn_qu8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
(INT64_C(1) << (s() - 1)) + (int64_t) (i <= zero_point());
inputs[i] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
(INT64_C(1) << (s() - 1)) + (int64_t) (i <= zero_point());
if (int32_t(input) == input) {
ASSERT_EQ(i, int32_t(outputs[i]))
<< "i = " << i << ", input = " << input
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
}
/*
* Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with
* - scale = exp2(-s)
* - zero point in [-128, 127]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestDivideByPO2WithRoundingUp(xnn_qs8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<int8_t> outputs(inputs.size());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
(INT64_C(1) << (s() - 1)) + (int64_t) (i <= zero_point());
inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
(INT64_C(1) << (s() - 1)) + (int64_t) (i <= zero_point());
if (int32_t(input) == input) {
ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
<< "i = " << i << ", input = " << input
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
}
/*
* Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with
* - scale = exp2(-s)
* - zero point in [1, 255]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestDivideByPO2WithRoundingDown(xnn_qu8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
(INT64_C(1) << (s() - 1)) - (int64_t) (i >= zero_point());
inputs[i] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
(INT64_C(1) << (s() - 1)) - (int64_t) (i >= zero_point());
if (int32_t(input) == input) {
ASSERT_EQ(i, int32_t(outputs[i]))
<< "i = " << i << ", input = " << input
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
}
/*
* Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with
* - scale = exp2(-s)
* - zero point in [-128, 127]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestDivideByPO2WithRoundingDown(xnn_qs8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<int8_t> outputs(inputs.size());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
(INT64_C(1) << (s() - 1)) - (int64_t) (i >= zero_point());
inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
(INT64_C(1) << (s() - 1)) - (int64_t) (i >= zero_point());
if (int32_t(input) == input) {
ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
<< "i = " << i << ", input = " << input
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
}
void TestDivideByPO2WithRoundingAway(xnn_qu8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
if (input > 0) {
input -= INT64_C(1) << (s() - 1);
} else if (input < 0) {
input += INT64_C(1) << (s() - 1);
}
inputs[i] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) {
int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
if (input > 0) {
input -= INT64_C(1) << (s() - 1);
} else if (input < 0) {
input += INT64_C(1) << (s() - 1);
}
if (int32_t(input) == input) {
ASSERT_EQ(i, int32_t(outputs[i]))
<< "i = " << i << ", input = " << input
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
}
void TestDivideByPO2WithRoundingAway(xnn_qs8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<int8_t> outputs(inputs.size());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
if (input > 0) {
input -= INT64_C(1) << (s() - 1);
} else if (input < 0) {
input += INT64_C(1) << (s() - 1);
}
inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) {
int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
if (input > 0) {
input -= INT64_C(1) << (s() - 1);
} else if (input < 0) {
input += INT64_C(1) << (s() - 1);
}
if (int32_t(input) == input) {
ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()]))
<< "i = " << i << ", input = " << input
<< ", s = " << s() << ", zero point = " << zero_point();
}
}
}
void TestSpecialCases(xnn_qu8_requantization_function requantize) {
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min());
for (int32_t zero_point = 0; zero_point <= std::numeric_limits<uint8_t>::max(); zero_point++) {
requantize(
inputs.size(),
inputs.data(),
ldexpf(1.0f, -32) /* scale */,
zero_point /* zero point */,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
for (size_t i = 0; i < outputs.size(); i++) {
ASSERT_EQ(std::max(int32_t(int32_t(std::numeric_limits<uint8_t>::min())), zero_point - 1), int32_t(outputs[i]));
}
}
std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max());
requantize(
inputs.size(),
inputs.data(),
0x1.FFFFFEp-1f /* scale */,
std::numeric_limits<uint8_t>::max() /* zero point */,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
for (size_t i = 0; i < outputs.size(); i++) {
ASSERT_EQ(std::numeric_limits<uint8_t>::max(), int32_t(outputs[i]));
}
}
void TestSpecialCases(xnn_qs8_requantization_function requantize) {
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
std::vector<int32_t> inputs(256);
std::vector<int8_t> outputs(inputs.size());
std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min());
for (int32_t zero_point = std::numeric_limits<int8_t>::min();
zero_point <= std::numeric_limits<int8_t>::max();
zero_point++)
{
requantize(
inputs.size(),
inputs.data(),
ldexpf(1.0f, -32) /* scale */,
zero_point,
std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(),
outputs.data());
for (size_t i = 0; i < outputs.size(); i++) {
ASSERT_EQ(std::max(int32_t(std::numeric_limits<int8_t>::min()), zero_point - 1), int32_t(outputs[i]));
}
}
std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max());
requantize(
inputs.size(),
inputs.data(),
0x1.FFFFFEp-1f /* scale */,
std::numeric_limits<int8_t>::max() /* zero point */,
std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(),
outputs.data());
for (size_t i = 0; i < outputs.size(); i++) {
ASSERT_EQ(std::numeric_limits<int8_t>::max(), int32_t(outputs[i]));
}
}
void TestRandomCasesPrecise(xnn_qu8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto u8rng =
std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<int32_t> inputs(4096);
std::vector<uint8_t> outputs(inputs.size());
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t approximate_output = std::min(std::max(uint8_t(u8rng()), uint8_t(qmin())), uint8_t(qmax()));
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
outputs.data());
/* Ensure that outputs are not all identical, as in this case the test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t reference_output =
xnn_qu8_requantize_precise(inputs[i], scale, zero_point(), qmin(), qmax());
ASSERT_EQ(uint32_t(reference_output), uint32_t(outputs[i]));
}
}
}
void TestRandomCasesPrecise(xnn_qs8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
std::vector<int32_t> inputs(4096);
std::vector<int8_t> outputs(inputs.size());
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax()));
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
outputs.data());
/* Ensure that outputs are not all identical, as in this case the test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
const int8_t reference_output =
xnn_qs8_requantize_precise(inputs[i], scale, zero_point(), qmin(), qmax());
ASSERT_EQ(int32_t(reference_output), int32_t(outputs[i]));
}
}
}
void TestRandomCasesApproximate(xnn_qu8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto u8rng =
std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<int32_t> inputs(4096);
std::vector<uint8_t> outputs(inputs.size());
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t approximate_output = std::min(std::max(uint8_t(u8rng()), uint8_t(qmin())), uint8_t(qmax()));
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
outputs.data());
/* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
const double reference_output = RequantizationTester::RequantizeApproximate(
inputs[i], scale, uint8_t(zero_point()), uint8_t(qmin()), uint8_t(qmax()));
ASSERT_LE(std::abs(reference_output - double(outputs[i])), 0.55)
<< "input = " << inputs[i] << ", output = " << int32_t(outputs[i])
<< ", reference output = " << reference_output;
}
}
}
void TestRandomCasesApproximate(xnn_qs8_requantization_function requantize) {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max());
ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
std::vector<int32_t> inputs(4096);
std::vector<int8_t> outputs(inputs.size());
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax()));
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(),
outputs.data());
/* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
const double reference_output = RequantizationTester::RequantizeApproximate(
inputs[i], scale, int8_t(zero_point()), int8_t(qmin()), int8_t(qmax()));
ASSERT_LE(std::abs(reference_output - double(outputs[i])), 0.55)
<< "input = " << inputs[i] << ", output = " << int32_t(outputs[i])
<< ", reference output = " << reference_output;
}
}
}
static inline int64_t ShiftLeft(int64_t w, uint32_t n) {
return (int64_t) ((uint64_t) w << n);
}
static inline double RequantizeApproximate(
int32_t value,
float scale,
uint8_t zero_point,
uint8_t qmin,
uint8_t qmax)
{
assert(scale < 1.0f);
assert(scale >= 0x1.0p-32f);
return std::min(std::max(double(value) * double(scale) + double(zero_point), double(qmin)), double(qmax));
}
static inline double RequantizeApproximate(
int32_t value,
float scale,
int8_t zero_point,
int8_t qmin,
int8_t qmax)
{
assert(scale < 1.0f);
assert(scale >= 0x1.0p-32f);
return std::min(std::max(double(value) * double(scale) + double(zero_point), double(qmin)), double(qmax));
}
private:
uint32_t s_{1};
int32_t zero_point_{0};
int16_t qmin_{std::numeric_limits<int16_t>::min()};
int16_t qmax_{std::numeric_limits<int16_t>::max()};
size_t iterations_{1};
};