You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
252 lines
7.7 KiB
252 lines
7.7 KiB
// Copyright (c) Facebook, Inc. and its affiliates.
|
|
// All rights reserved.
|
|
//
|
|
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
|
|
class SoftMaxOperatorTester {
|
|
public:
|
|
inline SoftMaxOperatorTester& channels(size_t channels) {
|
|
assert(channels != 0);
|
|
this->channels_ = channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t channels() const {
|
|
return this->channels_;
|
|
}
|
|
|
|
inline SoftMaxOperatorTester& input_stride(size_t input_stride) {
|
|
assert(input_stride != 0);
|
|
this->input_stride_ = input_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t input_stride() const {
|
|
if (this->input_stride_ == 0) {
|
|
return this->channels_;
|
|
} else {
|
|
assert(this->input_stride_ >= this->channels_);
|
|
return this->input_stride_;
|
|
}
|
|
}
|
|
|
|
inline SoftMaxOperatorTester& output_stride(size_t output_stride) {
|
|
assert(output_stride != 0);
|
|
this->output_stride_ = output_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t output_stride() const {
|
|
if (this->output_stride_ == 0) {
|
|
return this->channels_;
|
|
} else {
|
|
assert(this->output_stride_ >= this->channels_);
|
|
return this->output_stride_;
|
|
}
|
|
}
|
|
|
|
inline SoftMaxOperatorTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
inline SoftMaxOperatorTester& input_scale(float input_scale) {
|
|
assert(input_scale > 0.0f);
|
|
assert(std::isnormal(input_scale));
|
|
this->input_scale_ = input_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline float input_scale() const {
|
|
return this->input_scale_;
|
|
}
|
|
|
|
inline SoftMaxOperatorTester& input_zero_point(uint8_t input_zero_point) {
|
|
this->input_zero_point_ = input_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t input_zero_point() const {
|
|
return this->input_zero_point_;
|
|
}
|
|
|
|
inline float output_scale() const {
|
|
return 1.0f / 256.0f;
|
|
}
|
|
|
|
inline uint8_t output_zero_point() const {
|
|
return 0;
|
|
}
|
|
|
|
inline SoftMaxOperatorTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void TestQU8() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
|
|
|
|
std::vector<uint8_t> input((batch_size() - 1) * input_stride() + channels());
|
|
std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels());
|
|
std::vector<float> output_ref(batch_size() * channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(u8rng));
|
|
std::fill(output.begin(), output.end(), 0xA5);
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
const int32_t max_input = *std::max_element(
|
|
input.data() + i * input_stride(),
|
|
input.data() + i * input_stride() + channels());
|
|
float sum_exp = 0.0f;
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
sum_exp +=
|
|
std::exp((int32_t(input[i * input_stride() + c]) - max_input) *
|
|
input_scale());
|
|
}
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
output_ref[i * channels() + c] =
|
|
std::exp((int32_t(input[i * input_stride() + c]) - max_input) *
|
|
input_scale()) /
|
|
(sum_exp * output_scale());
|
|
output_ref[i * channels() + c] = std::min(output_ref[i * channels() + c], 255.0f);
|
|
}
|
|
}
|
|
|
|
// Create, setup, run, and destroy SoftMax operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t softmax_op = nullptr;
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_softmax_nc_qu8(
|
|
channels(), input_stride(), output_stride(),
|
|
input_scale(),
|
|
output_zero_point(), output_scale(),
|
|
0, &softmax_op));
|
|
ASSERT_NE(nullptr, softmax_op);
|
|
|
|
// Smart pointer to automatically delete softmax_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_softmax_op(softmax_op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_softmax_nc_qu8(
|
|
softmax_op,
|
|
batch_size(),
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(softmax_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestF32() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
|
|
|
|
std::vector<float> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> output((batch_size() - 1) * output_stride() + channels());
|
|
std::vector<double> output_ref(batch_size() * channels());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), std::nanf(""));
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
const double max_input = *std::max_element(
|
|
input.data() + i * input_stride(),
|
|
input.data() + i * input_stride() + channels());
|
|
double sum_exp = 0.0;
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
sum_exp += std::exp(double(input[i * input_stride() + c]) - max_input);
|
|
}
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
output_ref[i * channels() + c] =
|
|
std::exp(double(input[i * input_stride() + c]) - max_input) / sum_exp;
|
|
}
|
|
}
|
|
|
|
// Create, setup, run, and destroy SoftMax operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t softmax_op = nullptr;
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_softmax_nc_f32(
|
|
channels(), input_stride(), output_stride(),
|
|
0, &softmax_op));
|
|
ASSERT_NE(nullptr, softmax_op);
|
|
|
|
// Smart pointer to automatically delete softmax_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_softmax_op(softmax_op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_softmax_nc_f32(
|
|
softmax_op,
|
|
batch_size(),
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(softmax_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < channels(); c++) {
|
|
ASSERT_NEAR(
|
|
double(output[i * output_stride() + c]),
|
|
output_ref[i * channels() + c],
|
|
output_ref[i * channels() + c] * 1.0e-4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_size_{1};
|
|
size_t channels_{1};
|
|
size_t input_stride_{0};
|
|
size_t output_stride_{0};
|
|
float input_scale_{0.176080093};
|
|
uint8_t input_zero_point_{121};
|
|
size_t iterations_{15};
|
|
};
|