You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
16 KiB
461 lines
16 KiB
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <fp16.h>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/params-init.h>
|
|
#include <xnnpack/params.h>
|
|
|
|
|
|
class VBinOpMicrokernelTester {
|
|
public:
|
|
enum class OpType {
|
|
Add,
|
|
Div,
|
|
Max,
|
|
Min,
|
|
Mul,
|
|
Sub,
|
|
SqrDiff,
|
|
};
|
|
|
|
enum class Variant {
|
|
Native,
|
|
Scalar,
|
|
};
|
|
|
|
inline VBinOpMicrokernelTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
inline VBinOpMicrokernelTester& inplace_a(bool inplace_a) {
|
|
this->inplace_a_ = inplace_a;
|
|
return *this;
|
|
}
|
|
|
|
inline bool inplace_a() const {
|
|
return this->inplace_a_;
|
|
}
|
|
|
|
inline VBinOpMicrokernelTester& inplace_b(bool inplace_b) {
|
|
this->inplace_b_ = inplace_b;
|
|
return *this;
|
|
}
|
|
|
|
inline bool inplace_b() const {
|
|
return this->inplace_b_;
|
|
}
|
|
|
|
inline VBinOpMicrokernelTester& qmin(uint8_t qmin) {
|
|
this->qmin_ = qmin;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
inline VBinOpMicrokernelTester& qmax(uint8_t qmax) {
|
|
this->qmax_ = qmax;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
inline VBinOpMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_f16_vbinary_ukernel_function vbinary, OpType op_type) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(a.begin(), a.end(), std::ref(f16rng));
|
|
std::generate(b.begin(), b.end(), std::ref(f16rng));
|
|
if (inplace_a() || inplace_b()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f16rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), nanf(""));
|
|
}
|
|
const uint16_t* a_data = inplace_a() ? y.data() : a.data();
|
|
const uint16_t* b_data = inplace_b() ? y.data() : b.data();
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
switch (op_type) {
|
|
case OpType::Add:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
case OpType::Div:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
case OpType::Max:
|
|
y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
|
|
break;
|
|
case OpType::Min:
|
|
y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
|
|
break;
|
|
case OpType::Mul:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
case OpType::SqrDiff:
|
|
{
|
|
const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
|
|
y_ref[i] = diff * diff;
|
|
break;
|
|
}
|
|
case OpType::Sub:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
vbinary(batch_size() * sizeof(uint16_t), a_data, b_data, y.data(), nullptr);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f))
|
|
<< "at " << i << " / " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f16_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(a.begin(), a.end(), std::ref(f16rng));
|
|
std::generate(b.begin(), b.end(), std::ref(f16rng));
|
|
if (inplace_a() || inplace_b()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f16rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), nanf(""));
|
|
}
|
|
const uint16_t* a_data = inplace_a() ? y.data() : a.data();
|
|
const uint16_t* b_data = inplace_b() ? y.data() : b.data();
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
switch (op_type) {
|
|
case OpType::Add:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
case OpType::Div:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
case OpType::Max:
|
|
y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
|
|
break;
|
|
case OpType::Min:
|
|
y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i]));
|
|
break;
|
|
case OpType::Mul:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
case OpType::SqrDiff:
|
|
{
|
|
const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
|
|
y_ref[i] = diff * diff;
|
|
break;
|
|
}
|
|
case OpType::Sub:
|
|
y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
|
|
const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ?
|
|
(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) :
|
|
+std::numeric_limits<float>::infinity()));
|
|
const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ?
|
|
(accumulated_min + accumulated_range / 255.0f * float(qmin())) :
|
|
-std::numeric_limits<float>::infinity()));
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_minmax_params params = xnn_init_f16_minmax_params(
|
|
fp16_ieee_from_fp32_value(y_min),
|
|
fp16_ieee_from_fp32_value(y_max));
|
|
|
|
// Call optimized micro-kernel.
|
|
vbinary_minmax(batch_size() * sizeof(uint16_t), a_data, b_data, y.data(), ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f))
|
|
<< "at " << i << " / " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_vbinary_ukernel_function vbinary, OpType op_type, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
|
|
|
|
std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(a.begin(), a.end(), std::ref(f32rng));
|
|
std::generate(b.begin(), b.end(), std::ref(f32rng));
|
|
if (inplace_a() || inplace_b()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f32rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), nanf(""));
|
|
}
|
|
const float* a_data = inplace_a() ? y.data() : a.data();
|
|
const float* b_data = inplace_b() ? y.data() : b.data();
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
switch (op_type) {
|
|
case OpType::Add:
|
|
y_ref[i] = a_data[i] + b_data[i];
|
|
break;
|
|
case OpType::Div:
|
|
y_ref[i] = a_data[i] / b_data[i];
|
|
break;
|
|
case OpType::Max:
|
|
y_ref[i] = std::max<float>(a_data[i], b_data[i]);
|
|
break;
|
|
case OpType::Min:
|
|
y_ref[i] = std::min<float>(a_data[i], b_data[i]);
|
|
break;
|
|
case OpType::Mul:
|
|
y_ref[i] = a_data[i] * b_data[i];
|
|
break;
|
|
case OpType::SqrDiff:
|
|
{
|
|
const float diff = a_data[i] - b_data[i];
|
|
y_ref[i] = diff * diff;
|
|
break;
|
|
}
|
|
case OpType::Sub:
|
|
y_ref[i] = a_data[i] - b_data[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
vbinary(batch_size() * sizeof(float), a_data, b_data, y.data(), nullptr);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
|
|
<< "at " << i << " / " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
|
|
|
|
std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(a.begin(), a.end(), std::ref(f32rng));
|
|
std::generate(b.begin(), b.end(), std::ref(f32rng));
|
|
if (inplace_a() || inplace_b()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f32rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), nanf(""));
|
|
}
|
|
const float* a_data = inplace_a() ? y.data() : a.data();
|
|
const float* b_data = inplace_b() ? y.data() : b.data();
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
switch (op_type) {
|
|
case OpType::Add:
|
|
y_ref[i] = a_data[i] + b_data[i];
|
|
break;
|
|
case OpType::Div:
|
|
y_ref[i] = a_data[i] / b_data[i];
|
|
break;
|
|
case OpType::Max:
|
|
y_ref[i] = std::max<float>(a_data[i], b_data[i]);
|
|
break;
|
|
case OpType::Min:
|
|
y_ref[i] = std::min<float>(a_data[i], b_data[i]);
|
|
break;
|
|
case OpType::Mul:
|
|
y_ref[i] = a_data[i] * b_data[i];
|
|
break;
|
|
case OpType::SqrDiff:
|
|
{
|
|
const float diff = a_data[i] - b_data[i];
|
|
y_ref[i] = diff * diff;
|
|
break;
|
|
}
|
|
case OpType::Sub:
|
|
y_ref[i] = a_data[i] - b_data[i];
|
|
break;
|
|
}
|
|
}
|
|
const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
|
|
const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float y_max = accumulated_range > 0.0f ?
|
|
(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) :
|
|
+std::numeric_limits<float>::infinity();
|
|
const float y_min = accumulated_range > 0.0f ?
|
|
(accumulated_min + accumulated_range / 255.0f * float(qmin())) :
|
|
-std::numeric_limits<float>::infinity();
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f32_minmax_params params = { };
|
|
switch (variant) {
|
|
case Variant::Native:
|
|
params = xnn_init_f32_minmax_params(y_min, y_max);
|
|
break;
|
|
case Variant::Scalar:
|
|
params = xnn_init_scalar_f32_minmax_params(y_min, y_max);
|
|
break;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
vbinary_minmax(batch_size() * sizeof(float), a_data, b_data, y.data(), ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
|
|
<< "at " << i << " / " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_vbinary_relu_ukernel_function vbinary_relu, OpType op_type, Variant variant = Variant::Native) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
|
|
|
|
std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
|
|
std::vector<float> y_ref(batch_size());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(a.begin(), a.end(), std::ref(f32rng));
|
|
std::generate(b.begin(), b.end(), std::ref(f32rng));
|
|
if (inplace_a() || inplace_b()) {
|
|
std::generate(y.begin(), y.end(), std::ref(f32rng));
|
|
} else {
|
|
std::fill(y.begin(), y.end(), nanf(""));
|
|
}
|
|
const float* a_data = inplace_a() ? y.data() : a.data();
|
|
const float* b_data = inplace_b() ? y.data() : b.data();
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
switch (op_type) {
|
|
case OpType::Add:
|
|
y_ref[i] = a_data[i] + b_data[i];
|
|
break;
|
|
case OpType::Div:
|
|
y_ref[i] = a_data[i] / b_data[i];
|
|
break;
|
|
case OpType::Max:
|
|
y_ref[i] = std::max<float>(a_data[i], b_data[i]);
|
|
break;
|
|
case OpType::Min:
|
|
y_ref[i] = std::min<float>(a_data[i], b_data[i]);
|
|
break;
|
|
case OpType::Mul:
|
|
y_ref[i] = a_data[i] * b_data[i];
|
|
break;
|
|
case OpType::SqrDiff:
|
|
{
|
|
const float diff = a_data[i] - b_data[i];
|
|
y_ref[i] = diff * diff;
|
|
break;
|
|
}
|
|
case OpType::Sub:
|
|
y_ref[i] = a_data[i] - b_data[i];
|
|
break;
|
|
}
|
|
}
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
y_ref[i] = std::max(y_ref[i], 0.0f);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f32_relu_params params = { };
|
|
|
|
// Call optimized micro-kernel.
|
|
vbinary_relu(batch_size() * sizeof(float), a_data, b_data, y.data(), ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
ASSERT_GE(y[i], 0.0f)
|
|
<< "at " << i << " / " << batch_size();
|
|
ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
|
|
<< "at " << i << " / " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_size_{1};
|
|
bool inplace_a_{false};
|
|
bool inplace_b_{false};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
size_t iterations_{15};
|
|
};
|