You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

304 lines
8.0 KiB

// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
class VUnOpMicrokernelTester {
public:
enum class OpType {
Abs,
ELU,
LeakyReLU,
Negate,
ReLU,
RoundToNearestEven,
RoundTowardsZero,
RoundUp,
RoundDown,
Square,
SquareRoot,
Sigmoid,
};
enum class Variant {
Native,
Scalar,
};
inline VUnOpMicrokernelTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline VUnOpMicrokernelTester& inplace(bool inplace) {
this->inplace_ = inplace;
return *this;
}
inline bool inplace() const {
return this->inplace_;
}
inline VUnOpMicrokernelTester& slope(float slope) {
this->slope_ = slope;
return *this;
}
inline float slope() const {
return this->slope_;
}
inline VUnOpMicrokernelTester& prescale(float prescale) {
this->prescale_ = prescale;
return *this;
}
inline float prescale() const {
return this->prescale_;
}
inline VUnOpMicrokernelTester& alpha(float alpha) {
this->alpha_ = alpha;
return *this;
}
inline float alpha() const {
return this->alpha_;
}
inline VUnOpMicrokernelTester& beta(float beta) {
this->beta_ = beta;
return *this;
}
inline float beta() const {
return this->beta_;
}
inline VUnOpMicrokernelTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline VUnOpMicrokernelTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline VUnOpMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void Test(xnn_f32_vunary_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto distribution = std::uniform_real_distribution<float>(-125.0f, 125.0f);
switch (op_type) {
case OpType::ELU:
distribution = std::uniform_real_distribution<float>(-20.0f, 20.0f);
break;
case OpType::SquareRoot:
distribution = std::uniform_real_distribution<float>(0.0f, 10.0f);
break;
default:
break;
}
auto f32rng = std::bind(distribution, std::ref(rng));
std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
std::vector<double> y_ref(batch_size());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
if (inplace()) {
std::generate(y.begin(), y.end(), std::ref(f32rng));
} else {
std::generate(x.begin(), x.end(), std::ref(f32rng));
std::fill(y.begin(), y.end(), nanf(""));
}
const float* x_data = inplace() ? y.data() : x.data();
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
switch (op_type) {
case OpType::Abs:
y_ref[i] = std::abs(x_data[i]);
break;
case OpType::ELU:
{
y_ref[i] = std::signbit(x_data[i]) ? alpha() * std::expm1(double(x_data[i]) * prescale()) : double(x_data[i]) * beta();
break;
}
case OpType::LeakyReLU:
y_ref[i] = std::signbit(x_data[i]) ? x_data[i] * slope() : x_data[i];
break;
case OpType::Negate:
y_ref[i] = -x_data[i];
break;
case OpType::ReLU:
y_ref[i] = std::max(x_data[i], 0.0f);
break;
case OpType::RoundToNearestEven:
y_ref[i] = std::nearbyint(double(x_data[i]));
break;
case OpType::RoundTowardsZero:
y_ref[i] = std::trunc(double(x_data[i]));
break;
case OpType::RoundUp:
y_ref[i] = std::ceil(double(x_data[i]));
break;
case OpType::RoundDown:
y_ref[i] = std::floor(double(x_data[i]));
break;
case OpType::Square:
y_ref[i] = double(x_data[i]) * double(x_data[i]);
break;
case OpType::SquareRoot:
y_ref[i] = std::sqrt(double(x_data[i]));
break;
case OpType::Sigmoid:
{
const double e = std::exp(double(x_data[i]));
y_ref[i] = e / (1.0 + e);
break;
}
}
}
// Prepare parameters.
union {
union xnn_f32_abs_params abs;
union xnn_f32_elu_params elu;
union xnn_f32_relu_params relu;
union xnn_f32_lrelu_params lrelu;
union xnn_f32_neg_params neg;
union xnn_f32_rnd_params rnd;
union xnn_f32_sqrt_params sqrt;
} params;
switch (op_type) {
case OpType::Abs:
switch (variant) {
case Variant::Native:
params.abs = xnn_init_f32_abs_params();
break;
case Variant::Scalar:
params.abs = xnn_init_scalar_f32_abs_params();
break;
}
break;
case OpType::ELU:
switch (variant) {
case Variant::Native:
params.elu = xnn_init_f32_elu_params(prescale(), alpha(), beta());
break;
case Variant::Scalar:
params.elu = xnn_init_scalar_f32_elu_params(prescale(), alpha(), beta());
break;
}
break;
case OpType::LeakyReLU:
switch (variant) {
case Variant::Native:
params.lrelu = xnn_init_f32_lrelu_params(slope());
break;
case Variant::Scalar:
params.lrelu = xnn_init_scalar_f32_lrelu_params(slope());
break;
}
break;
case OpType::Negate:
switch (variant) {
case Variant::Native:
params.neg = xnn_init_f32_neg_params();
break;
case Variant::Scalar:
params.neg = xnn_init_scalar_f32_neg_params();
break;
}
break;
case OpType::RoundToNearestEven:
case OpType::RoundTowardsZero:
case OpType::RoundUp:
case OpType::RoundDown:
switch (variant) {
case Variant::Native:
params.rnd = xnn_init_f32_rnd_params();
break;
case Variant::Scalar:
params.rnd = xnn_init_scalar_f32_rnd_params();
break;
}
break;
case OpType::ReLU:
case OpType::Sigmoid:
case OpType::Square:
break;
case OpType::SquareRoot:
switch (variant) {
case Variant::Native:
params.sqrt = xnn_init_f32_sqrt_params();
break;
case Variant::Scalar:
params.sqrt = xnn_init_scalar_f32_sqrt_params();
break;
}
break;
}
// Call optimized micro-kernel.
vunary(batch_size() * sizeof(float), x_data, y.data(), &params);
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5))
<< "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i];
}
}
}
private:
size_t batch_size_ = 1;
bool inplace_ = false;
float slope_ = 0.5f;
float prescale_ = 1.0f;
float alpha_ = 1.0f;
float beta_ = 1.0f;
uint8_t qmin_ = 0;
uint8_t qmax_ = 255;
size_t iterations_ = 15;
};