You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3461 lines
138 KiB

/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/minireflect.h"
#include "flatbuffers/registry.h"
#include "flatbuffers/util.h"
// clang-format off
#ifdef FLATBUFFERS_CPP98_STL
#include "flatbuffers/stl_emulation.h"
namespace std {
using flatbuffers::unique_ptr;
}
#endif
// clang-format on
#include "monster_test_generated.h"
#include "namespace_test/namespace_test1_generated.h"
#include "namespace_test/namespace_test2_generated.h"
#include "union_vector/union_vector_generated.h"
#include "monster_extra_generated.h"
#if !defined(_MSC_VER) || _MSC_VER >= 1700
# include "arrays_test_generated.h"
# include "evolution_test/evolution_v1_generated.h"
# include "evolution_test/evolution_v2_generated.h"
#endif
#include "native_type_test_generated.h"
#include "test_assert.h"
#include "flatbuffers/flexbuffers.h"
#include "monster_test_bfbs_generated.h" // Generated using --bfbs-comments --bfbs-builtins --cpp --bfbs-gen-embed
// clang-format off
// Check that char* and uint8_t* are interoperable types.
// The reinterpret_cast<> between the pointers are used to simplify data loading.
static_assert(flatbuffers::is_same<uint8_t, char>::value ||
flatbuffers::is_same<uint8_t, unsigned char>::value,
"unexpected uint8_t type");
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
// Ensure IEEE-754 support if tests of floats with NaN/Inf will run.
static_assert(std::numeric_limits<float>::is_iec559 &&
std::numeric_limits<double>::is_iec559,
"IEC-559 (IEEE-754) standard required");
#endif
// clang-format on
// Shortcuts for the infinity.
static const auto infinityf = std::numeric_limits<float>::infinity();
static const auto infinityd = std::numeric_limits<double>::infinity();
using namespace MyGame::Example;
void FlatBufferBuilderTest();
// Include simple random number generator to ensure results will be the
// same cross platform.
// http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
uint32_t lcg_seed = 48271;
uint32_t lcg_rand() {
return lcg_seed =
(static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL;
}
void lcg_reset() { lcg_seed = 48271; }
std::string test_data_path =
#ifdef BAZEL_TEST_DATA_PATH
"../com_github_google_flatbuffers/tests/";
#else
"tests/";
#endif
// example of how to build up a serialized buffer algorithmically:
flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
flatbuffers::FlatBufferBuilder builder;
auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
auto name = builder.CreateString("MyMonster");
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
auto inventory = builder.CreateVector(inv_data, 10);
// Alternatively, create the vector first, and fill in data later:
// unsigned char *inv_buf = nullptr;
// auto inventory = builder.CreateUninitializedVector<unsigned char>(
// 10, &inv_buf);
// memcpy(inv_buf, inv_data, 10);
Test tests[] = { Test(10, 20), Test(30, 40) };
auto testv = builder.CreateVectorOfStructs(tests, 2);
// clang-format off
#ifndef FLATBUFFERS_CPP98_STL
// Create a vector of structures from a lambda.
auto testv2 = builder.CreateVectorOfStructs<Test>(
2, [&](size_t i, Test* s) -> void {
*s = tests[i];
});
#else
// Create a vector of structures using a plain old C++ function.
auto testv2 = builder.CreateVectorOfStructs<Test>(
2, [](size_t i, Test* s, void *state) -> void {
*s = (reinterpret_cast<Test*>(state))[i];
}, tests);
#endif // FLATBUFFERS_CPP98_STL
// clang-format on
// create monster with very few fields set:
// (same functionality as CreateMonster below, but sets fields manually)
flatbuffers::Offset<Monster> mlocs[3];
auto fred = builder.CreateString("Fred");
auto barney = builder.CreateString("Barney");
auto wilma = builder.CreateString("Wilma");
MonsterBuilder mb1(builder);
mb1.add_name(fred);
mlocs[0] = mb1.Finish();
MonsterBuilder mb2(builder);
mb2.add_name(barney);
mb2.add_hp(1000);
mlocs[1] = mb2.Finish();
MonsterBuilder mb3(builder);
mb3.add_name(wilma);
mlocs[2] = mb3.Finish();
// Create an array of strings. Also test string pooling, and lambdas.
auto vecofstrings =
builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
4,
[](size_t i, flatbuffers::FlatBufferBuilder *b)
-> flatbuffers::Offset<flatbuffers::String> {
static const char *names[] = { "bob", "fred", "bob", "fred" };
return b->CreateSharedString(names[i]);
},
&builder);
// Creating vectors of strings in one convenient call.
std::vector<std::string> names2;
names2.push_back("jane");
names2.push_back("mary");
auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
// Create an array of sorted tables, can be used with binary search when read:
auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
// Create an array of sorted structs,
// can be used with binary search when read:
std::vector<Ability> abilities;
abilities.push_back(Ability(4, 40));
abilities.push_back(Ability(3, 30));
abilities.push_back(Ability(2, 20));
abilities.push_back(Ability(1, 10));
auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
// Create a nested FlatBuffer.
// Nested FlatBuffers are stored in a ubyte vector, which can be convenient
// since they can be memcpy'd around much easier than other FlatBuffer
// values. They have little overhead compared to storing the table directly.
// As a test, create a mostly empty Monster buffer:
flatbuffers::FlatBufferBuilder nested_builder;
auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
nested_builder.CreateString("NestedMonster"));
FinishMonsterBuffer(nested_builder, nmloc);
// Now we can store the buffer in the parent. Note that by default, vectors
// are only aligned to their elements or size field, so in this case if the
// buffer contains 64-bit elements, they may not be correctly aligned. We fix
// that with:
builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
nested_builder.GetBufferMinAlignment());
// If for whatever reason you don't have the nested_builder available, you
// can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
// the largest force_align value in your schema if you're using it.
auto nested_flatbuffer_vector = builder.CreateVector(
nested_builder.GetBufferPointer(), nested_builder.GetSize());
// Test a nested FlexBuffer:
flexbuffers::Builder flexbuild;
flexbuild.Int(1234);
flexbuild.Finish();
auto flex = builder.CreateVector(flexbuild.GetBuffer());
// Test vector of enums.
Color colors[] = { Color_Blue, Color_Green };
// We use this special creation function because we have an array of
// pre-C++11 (enum class) enums whose size likely is int, yet its declared
// type in the schema is byte.
auto vecofcolors = builder.CreateVectorScalarCast<uint8_t, Color>(colors, 2);
// shortcut for creating monster with all fields set:
auto mloc = CreateMonster(
builder, &vec, 150, 80, name, inventory, Color_Blue, Any_Monster,
mlocs[1].Union(), // Store a union.
testv, vecofstrings, vecoftables, 0, nested_flatbuffer_vector, 0, false,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
AnyUniqueAliases_NONE, 0, AnyAmbiguousAliases_NONE, 0, vecofcolors);
FinishMonsterBuffer(builder, mloc);
// clang-format off
#ifdef FLATBUFFERS_TEST_VERBOSE
// print byte data for debugging:
auto p = builder.GetBufferPointer();
for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
printf("%d ", p[i]);
#endif
// clang-format on
// return the buffer for the caller to use.
auto bufferpointer =
reinterpret_cast<const char *>(builder.GetBufferPointer());
buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
return builder.Release();
}
// example of accessing a buffer loaded in memory:
void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
bool pooled = true) {
// First, verify the buffers integrity (optional)
flatbuffers::Verifier verifier(flatbuf, length);
TEST_EQ(VerifyMonsterBuffer(verifier), true);
// clang-format off
#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
std::vector<uint8_t> test_buff;
test_buff.resize(length * 2);
std::memcpy(&test_buff[0], flatbuf, length);
std::memcpy(&test_buff[length], flatbuf, length);
flatbuffers::Verifier verifier1(&test_buff[0], length);
TEST_EQ(VerifyMonsterBuffer(verifier1), true);
TEST_EQ(verifier1.GetComputedSize(), length);
flatbuffers::Verifier verifier2(&test_buff[length], length);
TEST_EQ(VerifyMonsterBuffer(verifier2), true);
TEST_EQ(verifier2.GetComputedSize(), length);
#endif
// clang-format on
TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
// Access the buffer from the root.
auto monster = GetMonster(flatbuf);
TEST_EQ(monster->hp(), 80);
TEST_EQ(monster->mana(), 150); // default
TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
// Can't access the following field, it is deprecated in the schema,
// which means accessors are not generated:
// monster.friendly()
auto pos = monster->pos();
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto inventory = monster->inventory();
TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
TEST_NOTNULL(inventory);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// Check compatibilty of iterators with STL.
std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
int n = 0;
for (auto it = inventory->begin(); it != inventory->end(); ++it, ++n) {
auto indx = it - inventory->begin();
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
n = 0;
for (auto it = inventory->cbegin(); it != inventory->cend(); ++it, ++n) {
auto indx = it - inventory->cbegin();
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
n = 0;
for (auto it = inventory->rbegin(); it != inventory->rend(); ++it, ++n) {
auto indx = inventory->rend() - it - 1;
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
n = 0;
for (auto it = inventory->crbegin(); it != inventory->crend(); ++it, ++n) {
auto indx = inventory->crend() - it - 1;
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
TEST_EQ(monster->color(), Color_Blue);
// Example of accessing a union:
TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
auto monster2 = reinterpret_cast<const Monster *>(monster->test());
TEST_NOTNULL(monster2);
TEST_EQ_STR(monster2->name()->c_str(), "Fred");
// Example of accessing a vector of strings:
auto vecofstrings = monster->testarrayofstring();
TEST_EQ(vecofstrings->size(), 4U);
TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
if (pooled) {
// These should have pointer equality because of string pooling.
TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
}
auto vecofstrings2 = monster->testarrayofstring2();
if (vecofstrings2) {
TEST_EQ(vecofstrings2->size(), 2U);
TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
}
// Example of accessing a vector of tables:
auto vecoftables = monster->testarrayoftables();
TEST_EQ(vecoftables->size(), 3U);
for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it) {
TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
}
TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
TEST_EQ(vecoftables->Get(0)->hp(), 1000);
TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
// Test accessing a vector of sorted structs
auto vecofstructs = monster->testarrayofsortedstruct();
if (vecofstructs) { // not filled in monster_test.bfbs
for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
auto left = vecofstructs->Get(i);
auto right = vecofstructs->Get(i + 1);
TEST_EQ(true, (left->KeyCompareLessThan(right)));
}
TEST_NOTNULL(vecofstructs->LookupByKey(3));
TEST_EQ(static_cast<const Ability *>(nullptr),
vecofstructs->LookupByKey(5));
}
// Test nested FlatBuffers if available:
auto nested_buffer = monster->testnestedflatbuffer();
if (nested_buffer) {
// nested_buffer is a vector of bytes you can memcpy. However, if you
// actually want to access the nested data, this is a convenient
// accessor that directly gives you the root table:
auto nested_monster = monster->testnestedflatbuffer_nested_root();
TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
}
// Test flexbuffer if available:
auto flex = monster->flex();
// flex is a vector of bytes you can memcpy etc.
TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
// However, if you actually want to access the nested data, this is a
// convenient accessor that directly gives you the root value:
TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
// Test vector of enums:
auto colors = monster->vector_of_enums();
if (colors) {
TEST_EQ(colors->size(), 2);
TEST_EQ(colors->Get(0), Color_Blue);
TEST_EQ(colors->Get(1), Color_Green);
}
// Since Flatbuffers uses explicit mechanisms to override the default
// compiler alignment, double check that the compiler indeed obeys them:
// (Test consists of a short and byte):
TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
TEST_EQ(sizeof(Test), 4UL);
const flatbuffers::Vector<const Test *> *tests_array[] = {
monster->test4(),
monster->test5(),
};
for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
auto tests = tests_array[i];
TEST_NOTNULL(tests);
auto test_0 = tests->Get(0);
auto test_1 = tests->Get(1);
TEST_EQ(test_0->a(), 10);
TEST_EQ(test_0->b(), 20);
TEST_EQ(test_1->a(), 30);
TEST_EQ(test_1->b(), 40);
for (auto it = tests->begin(); it != tests->end(); ++it) {
TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
}
}
// Checking for presence of fields:
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
// Obtaining a buffer from a root:
TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
}
// Change a FlatBuffer in-place, after it has been constructed.
void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
// Get non-const pointer to root.
auto monster = GetMutableMonster(flatbuf);
// Each of these tests mutates, then tests, then set back to the original,
// so we can test that the buffer in the end still passes our original test.
auto hp_ok = monster->mutate_hp(10);
TEST_EQ(hp_ok, true); // Field was present.
TEST_EQ(monster->hp(), 10);
// Mutate to default value
auto hp_ok_default = monster->mutate_hp(100);
TEST_EQ(hp_ok_default, true); // Field was present.
TEST_EQ(monster->hp(), 100);
// Test that mutate to default above keeps field valid for further mutations
auto hp_ok_2 = monster->mutate_hp(20);
TEST_EQ(hp_ok_2, true);
TEST_EQ(monster->hp(), 20);
monster->mutate_hp(80);
// Monster originally at 150 mana (default value)
auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
TEST_EQ(mana_default_ok,
true); // Mutation should succeed, because default value.
TEST_EQ(monster->mana(), 150);
auto mana_ok = monster->mutate_mana(10);
TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
TEST_EQ(monster->mana(), 150);
// Mutate structs.
auto pos = monster->mutable_pos();
auto test3 = pos->mutable_test3(); // Struct inside a struct.
test3.mutate_a(50); // Struct fields never fail.
TEST_EQ(test3.a(), 50);
test3.mutate_a(10);
// Mutate vectors.
auto inventory = monster->mutable_inventory();
inventory->Mutate(9, 100);
TEST_EQ(inventory->Get(9), 100);
inventory->Mutate(9, 9);
auto tables = monster->mutable_testarrayoftables();
auto first = tables->GetMutableObject(0);
TEST_EQ(first->hp(), 1000);
first->mutate_hp(0);
TEST_EQ(first->hp(), 0);
first->mutate_hp(1000);
// Run the verifier and the regular test to make sure we didn't trample on
// anything.
AccessFlatBufferTest(flatbuf, length);
}
// Unpack a FlatBuffer into objects.
void ObjectFlatBuffersTest(uint8_t *flatbuf) {
// Optional: we can specify resolver and rehasher functions to turn hashed
// strings into object pointers and back, to implement remote references
// and such.
auto resolver = flatbuffers::resolver_function_t(
[](void **pointer_adr, flatbuffers::hash_value_t hash) {
(void)pointer_adr;
(void)hash;
// Don't actually do anything, leave variable null.
});
auto rehasher = flatbuffers::rehasher_function_t(
[](void *pointer) -> flatbuffers::hash_value_t {
(void)pointer;
return 0;
});
// Turn a buffer into C++ objects.
auto monster1 = UnPackMonster(flatbuf, &resolver);
// Re-serialize the data.
flatbuffers::FlatBufferBuilder fbb1;
fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
MonsterIdentifier());
// Unpack again, and re-serialize again.
auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
flatbuffers::FlatBufferBuilder fbb2;
fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
MonsterIdentifier());
// Now we've gone full round-trip, the two buffers should match.
auto len1 = fbb1.GetSize();
auto len2 = fbb2.GetSize();
TEST_EQ(len1, len2);
TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
// Test it with the original buffer test to make sure all data survived.
AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
// Test accessing fields, similar to AccessFlatBufferTest above.
TEST_EQ(monster2->hp, 80);
TEST_EQ(monster2->mana, 150); // default
TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
auto &pos = monster2->pos;
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto &inventory = monster2->inventory;
TEST_EQ(inventory.size(), 10UL);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (auto it = inventory.begin(); it != inventory.end(); ++it)
TEST_EQ(*it, inv_data[it - inventory.begin()]);
TEST_EQ(monster2->color, Color_Blue);
auto monster3 = monster2->test.AsMonster();
TEST_NOTNULL(monster3);
TEST_EQ_STR(monster3->name.c_str(), "Fred");
auto &vecofstrings = monster2->testarrayofstring;
TEST_EQ(vecofstrings.size(), 4U);
TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
auto &vecofstrings2 = monster2->testarrayofstring2;
TEST_EQ(vecofstrings2.size(), 2U);
TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
auto &vecoftables = monster2->testarrayoftables;
TEST_EQ(vecoftables.size(), 3U);
TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
TEST_EQ(vecoftables[0]->hp, 1000);
TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
auto &tests = monster2->test4;
TEST_EQ(tests[0].a(), 10);
TEST_EQ(tests[0].b(), 20);
TEST_EQ(tests[1].a(), 30);
TEST_EQ(tests[1].b(), 40);
}
// Prefix a FlatBuffer with a size field.
void SizePrefixedTest() {
// Create size prefixed buffer.
flatbuffers::FlatBufferBuilder fbb;
FinishSizePrefixedMonsterBuffer(
fbb, CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob")));
// Verify it.
flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
// Access it.
auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
TEST_EQ(m->mana(), 200);
TEST_EQ(m->hp(), 300);
TEST_EQ_STR(m->name()->c_str(), "bob");
}
void TriviallyCopyableTest() {
// clang-format off
#if __GNUG__ && __GNUC__ < 5
TEST_EQ(__has_trivial_copy(Vec3), true);
#else
#if __cplusplus >= 201103L
TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
#endif
#endif
// clang-format on
}
// Check stringify of an default enum value to json
void JsonDefaultTest() {
// load FlatBuffer schema (.fbs) from disk
std::string schemafile;
TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
false, &schemafile),
true);
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parser;
auto include_test_path =
flatbuffers::ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = { test_data_path.c_str(),
include_test_path.c_str(), nullptr };
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
// create incomplete monster and store to json
parser.opts.output_default_scalars_in_json = true;
parser.opts.output_enum_identifiers = true;
flatbuffers::FlatBufferBuilder builder;
auto name = builder.CreateString("default_enum");
MonsterBuilder color_monster(builder);
color_monster.add_name(name);
FinishMonsterBuffer(builder, color_monster.Finish());
std::string jsongen;
auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
// default value of the "color" field is Blue
TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true);
// default value of the "testf" field is 3.14159
TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true);
}
void JsonEnumsTest() {
// load FlatBuffer schema (.fbs) from disk
std::string schemafile;
TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
false, &schemafile),
true);
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parser;
auto include_test_path =
flatbuffers::ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = { test_data_path.c_str(),
include_test_path.c_str(), nullptr };
parser.opts.output_enum_identifiers = true;
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
flatbuffers::FlatBufferBuilder builder;
auto name = builder.CreateString("bitflag_enum");
MonsterBuilder color_monster(builder);
color_monster.add_name(name);
color_monster.add_color(Color(Color_Blue | Color_Red));
FinishMonsterBuffer(builder, color_monster.Finish());
std::string jsongen;
auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ(std::string::npos != jsongen.find("color: \"Red Blue\""), true);
// Test forward compatibility with 'output_enum_identifiers = true'.
// Current Color doesn't have '(1u << 2)' field, let's add it.
builder.Clear();
std::string future_json;
auto future_name = builder.CreateString("future bitflag_enum");
MonsterBuilder future_color(builder);
future_color.add_name(future_name);
future_color.add_color(
static_cast<Color>((1u << 2) | Color_Blue | Color_Red));
FinishMonsterBuffer(builder, future_color.Finish());
result = GenerateText(parser, builder.GetBufferPointer(), &future_json);
TEST_EQ(result, true);
TEST_EQ(std::string::npos != future_json.find("color: 13"), true);
}
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
// The IEEE-754 quiet_NaN is not simple binary constant.
// All binary NaN bit strings have all the bits of the biased exponent field E
// set to 1. A quiet NaN bit string should be encoded with the first bit d[1]
// of the trailing significand field T being 1 (d[0] is implicit bit).
// It is assumed that endianness of floating-point is same as integer.
template<typename T, typename U, U qnan_base> bool is_quiet_nan_impl(T v) {
static_assert(sizeof(T) == sizeof(U), "unexpected");
U b = 0;
std::memcpy(&b, &v, sizeof(T));
return ((b & qnan_base) == qnan_base);
}
static bool is_quiet_nan(float v) {
return is_quiet_nan_impl<float, uint32_t, 0x7FC00000u>(v);
}
static bool is_quiet_nan(double v) {
return is_quiet_nan_impl<double, uint64_t, 0x7FF8000000000000ul>(v);
}
void TestMonsterExtraFloats() {
TEST_EQ(is_quiet_nan(1.0), false);
TEST_EQ(is_quiet_nan(infinityd), false);
TEST_EQ(is_quiet_nan(-infinityf), false);
TEST_EQ(is_quiet_nan(std::numeric_limits<float>::quiet_NaN()), true);
TEST_EQ(is_quiet_nan(std::numeric_limits<double>::quiet_NaN()), true);
using namespace flatbuffers;
using namespace MyGame;
// Load FlatBuffer schema (.fbs) from disk.
std::string schemafile;
TEST_EQ(LoadFile((test_data_path + "monster_extra.fbs").c_str(), false,
&schemafile),
true);
// Parse schema first, so we can use it to parse the data after.
Parser parser;
auto include_test_path = ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = { test_data_path.c_str(),
include_test_path.c_str(), nullptr };
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
// Create empty extra and store to json.
parser.opts.output_default_scalars_in_json = true;
parser.opts.output_enum_identifiers = true;
FlatBufferBuilder builder;
const auto def_root = MonsterExtraBuilder(builder).Finish();
FinishMonsterExtraBuffer(builder, def_root);
const auto def_obj = builder.GetBufferPointer();
const auto def_extra = GetMonsterExtra(def_obj);
TEST_NOTNULL(def_extra);
TEST_EQ(is_quiet_nan(def_extra->f0()), true);
TEST_EQ(is_quiet_nan(def_extra->f1()), true);
TEST_EQ(def_extra->f2(), +infinityf);
TEST_EQ(def_extra->f3(), -infinityf);
TEST_EQ(is_quiet_nan(def_extra->d0()), true);
TEST_EQ(is_quiet_nan(def_extra->d1()), true);
TEST_EQ(def_extra->d2(), +infinityd);
TEST_EQ(def_extra->d3(), -infinityd);
std::string jsongen;
auto result = GenerateText(parser, def_obj, &jsongen);
TEST_EQ(result, true);
// Check expected default values.
TEST_EQ(std::string::npos != jsongen.find("f0: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("f1: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("f2: inf"), true);
TEST_EQ(std::string::npos != jsongen.find("f3: -inf"), true);
TEST_EQ(std::string::npos != jsongen.find("d0: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("d1: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("d2: inf"), true);
TEST_EQ(std::string::npos != jsongen.find("d3: -inf"), true);
// Parse 'mosterdata_extra.json'.
const auto extra_base = test_data_path + "monsterdata_extra";
jsongen = "";
TEST_EQ(LoadFile((extra_base + ".json").c_str(), false, &jsongen), true);
TEST_EQ(parser.Parse(jsongen.c_str()), true);
const auto test_file = parser.builder_.GetBufferPointer();
const auto test_size = parser.builder_.GetSize();
Verifier verifier(test_file, test_size);
TEST_ASSERT(VerifyMonsterExtraBuffer(verifier));
const auto extra = GetMonsterExtra(test_file);
TEST_NOTNULL(extra);
TEST_EQ(is_quiet_nan(extra->f0()), true);
TEST_EQ(is_quiet_nan(extra->f1()), true);
TEST_EQ(extra->f2(), +infinityf);
TEST_EQ(extra->f3(), -infinityf);
TEST_EQ(is_quiet_nan(extra->d0()), true);
TEST_EQ(extra->d1(), +infinityd);
TEST_EQ(extra->d2(), -infinityd);
TEST_EQ(is_quiet_nan(extra->d3()), true);
TEST_NOTNULL(extra->fvec());
TEST_EQ(extra->fvec()->size(), 4);
TEST_EQ(extra->fvec()->Get(0), 1.0f);
TEST_EQ(extra->fvec()->Get(1), -infinityf);
TEST_EQ(extra->fvec()->Get(2), +infinityf);
TEST_EQ(is_quiet_nan(extra->fvec()->Get(3)), true);
TEST_NOTNULL(extra->dvec());
TEST_EQ(extra->dvec()->size(), 4);
TEST_EQ(extra->dvec()->Get(0), 2.0);
TEST_EQ(extra->dvec()->Get(1), +infinityd);
TEST_EQ(extra->dvec()->Get(2), -infinityd);
TEST_EQ(is_quiet_nan(extra->dvec()->Get(3)), true);
}
#else
void TestMonsterExtraFloats() {}
#endif
// example of parsing text straight into a buffer, and generating
// text back from it:
void ParseAndGenerateTextTest(bool binary) {
// load FlatBuffer schema (.fbs) and JSON from disk
std::string schemafile;
std::string jsonfile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
.c_str(),
binary, &schemafile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "monsterdata_test.golden").c_str(), false,
&jsonfile),
true);
auto include_test_path =
flatbuffers::ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = { test_data_path.c_str(),
include_test_path.c_str(), nullptr };
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parser;
if (binary) {
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(schemafile.c_str()),
schemafile.size());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
// auto schema = reflection::GetSchema(schemafile.c_str());
TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(),
schemafile.size()),
true);
} else {
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
}
TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
// here, parser.builder_ contains a binary buffer that is the parsed data.
// First, verify it, just in case:
flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize());
TEST_EQ(VerifyMonsterBuffer(verifier), true);
AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize(), false);
// to ensure it is correct, we now generate text back from the binary,
// and compare the two:
std::string jsongen;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
// We can also do the above using the convenient Registry that knows about
// a set of file_identifiers mapped to schemas.
flatbuffers::Registry registry;
// Make sure schemas can find their includes.
registry.AddIncludeDirectory(test_data_path.c_str());
registry.AddIncludeDirectory(include_test_path.c_str());
// Call this with many schemas if possible.
registry.Register(MonsterIdentifier(),
(test_data_path + "monster_test.fbs").c_str());
// Now we got this set up, we can parse by just specifying the identifier,
// the correct schema will be loaded on the fly:
auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
// If this fails, check registry.lasterror_.
TEST_NOTNULL(buf.data());
// Test the buffer, to be sure:
AccessFlatBufferTest(buf.data(), buf.size(), false);
// We can use the registry to turn this back into text, in this case it
// will get the file_identifier from the binary:
std::string text;
auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
// If this fails, check registry.lasterror_.
TEST_EQ(ok, true);
TEST_EQ_STR(text.c_str(), jsonfile.c_str());
// Generate text for UTF-8 strings without escapes.
std::string jsonfile_utf8;
TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(),
false, &jsonfile_utf8),
true);
TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
// To ensure it is correct, generate utf-8 text back from the binary.
std::string jsongen_utf8;
// request natural printing for utf-8 strings
parser.opts.natural_utf8 = true;
parser.opts.strict_json = true;
TEST_EQ(
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8),
true);
TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
}
void ReflectionTest(uint8_t *flatbuf, size_t length) {
// Load a binary schema.
std::string bfbsfile;
TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(),
true, &bfbsfile),
true);
// Verify it, just in case:
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
// Make sure the schema is what we expect it to be.
auto &schema = *reflection::GetSchema(bfbsfile.c_str());
auto root_table = schema.root_table();
TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
auto fields = root_table->fields();
auto hp_field_ptr = fields->LookupByKey("hp");
TEST_NOTNULL(hp_field_ptr);
auto &hp_field = *hp_field_ptr;
TEST_EQ_STR(hp_field.name()->c_str(), "hp");
TEST_EQ(hp_field.id(), 2);
TEST_EQ(hp_field.type()->base_type(), reflection::Short);
auto friendly_field_ptr = fields->LookupByKey("friendly");
TEST_NOTNULL(friendly_field_ptr);
TEST_NOTNULL(friendly_field_ptr->attributes());
TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
// Make sure the table index is what we expect it to be.
auto pos_field_ptr = fields->LookupByKey("pos");
TEST_NOTNULL(pos_field_ptr);
TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
TEST_NOTNULL(pos_table_ptr);
TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
// Now use it to dynamically access a buffer.
auto &root = *flatbuffers::GetAnyRoot(flatbuf);
// Verify the buffer first using reflection based verification
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
true);
auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
TEST_EQ(hp, 80);
// Rather than needing to know the type, we can also get the value of
// any field as an int64_t/double/string, regardless of what it actually is.
auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 80);
auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
TEST_EQ(hp_double, 80.0);
auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
TEST_EQ_STR(hp_string.c_str(), "80");
// Get struct field through reflection
auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
TEST_NOTNULL(pos_struct);
TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct,
*pos_table_ptr->fields()->LookupByKey("z")),
3.0f);
auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
TEST_NOTNULL(test3_struct);
auto test3_object = schema.objects()->Get(test3_field->type()->index());
TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct,
*test3_object->fields()->LookupByKey("a")),
10);
// We can also modify it.
flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
TEST_EQ(hp, 200);
// We can also set fields generically:
flatbuffers::SetAnyFieldI(&root, hp_field, 300);
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
flatbuffers::SetAnyFieldS(&root, hp_field, "300");
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
// Test buffer is valid after the modifications
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
true);
// Reset it, for further tests.
flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
// More advanced functionality: changing the size of items in-line!
// First we put the FlatBuffer inside an std::vector.
std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
// Find the field we want to modify.
auto &name_field = *fields->LookupByKey("name");
// Get the root.
// This time we wrap the result from GetAnyRoot in a smartpointer that
// will keep rroot valid as resizingbuf resizes.
auto rroot = flatbuffers::piv(
flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)),
resizingbuf);
SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
&resizingbuf);
// Here resizingbuf has changed, but rroot is still valid.
TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
// Now lets extend a vector by 100 elements (10 -> 110).
auto &inventory_field = *fields->LookupByKey("inventory");
auto rinventory = flatbuffers::piv(
flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf);
flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
&resizingbuf);
// rinventory still valid, so lets read from it.
TEST_EQ(rinventory->Get(10), 50);
// For reflection uses not covered already, there is a more powerful way:
// we can simply generate whatever object we want to add/modify in a
// FlatBuffer of its own, then add that to an existing FlatBuffer:
// As an example, let's add a string to an array of strings.
// First, find our field:
auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
// Find the vector value:
auto rtestarrayofstring = flatbuffers::piv(
flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
**rroot, testarrayofstring_field),
resizingbuf);
// It's a vector of 2 strings, to which we add one more, initialized to
// offset 0.
flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
schema, 3, 0, *rtestarrayofstring, &resizingbuf);
// Here we just create a buffer that contans a single string, but this
// could also be any complex set of tables and other values.
flatbuffers::FlatBufferBuilder stringfbb;
stringfbb.Finish(stringfbb.CreateString("hank"));
// Add the contents of it to our existing FlatBuffer.
// We do this last, so the pointer doesn't get invalidated (since it is
// at the end of the buffer):
auto string_ptr = flatbuffers::AddFlatBuffer(
resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize());
// Finally, set the new value in the vector.
rtestarrayofstring->MutateOffset(2, string_ptr);
TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
// Test integrity of all resize operations above.
flatbuffers::Verifier resize_verifier(
reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)),
resizingbuf.size());
TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
// Test buffer is valid using reflection as well
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
flatbuffers::vector_data(resizingbuf),
resizingbuf.size()),
true);
// As an additional test, also set it on the name field.
// Note: unlike the name change above, this just overwrites the offset,
// rather than changing the string in-place.
SetFieldT(*rroot, name_field, string_ptr);
TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
// Using reflection, rather than mutating binary FlatBuffers, we can also copy
// tables and other things out of other FlatBuffers into a FlatBufferBuilder,
// either part or whole.
flatbuffers::FlatBufferBuilder fbb;
auto root_offset = flatbuffers::CopyTable(
fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true);
fbb.Finish(root_offset, MonsterIdentifier());
// Test that it was copied correctly:
AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
// Test buffer is valid using reflection as well
TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
fbb.GetBufferPointer(), fbb.GetSize()),
true);
}
void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
auto s =
flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable());
TEST_EQ_STR(
s.c_str(),
"{ "
"pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
"{ a: 10, b: 20 } }, "
"hp: 80, "
"name: \"MyMonster\", "
"inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
"test_type: Monster, "
"test: { name: \"Fred\" }, "
"test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
"testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
"testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" "
"}, "
"{ name: \"Wilma\" } ], "
// TODO(wvo): should really print this nested buffer correctly.
"testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, "
"0, "
"4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
"101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
"testarrayofstring2: [ \"jane\", \"mary\" ], "
"testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
"{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
"{ id: 4, distance: 40 } ], "
"flex: [ 210, 4, 5, 2 ], "
"test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
"vector_of_enums: [ Blue, Green ] "
"}");
Test test(16, 32);
Vec3 vec(1, 2, 3, 1.5, Color_Red, test);
flatbuffers::FlatBufferBuilder vec_builder;
vec_builder.Finish(vec_builder.CreateStruct(vec));
auto vec_buffer = vec_builder.Release();
auto vec_str = flatbuffers::FlatBufferToString(vec_buffer.data(),
Vec3::MiniReflectTypeTable());
TEST_EQ_STR(vec_str.c_str(),
"{ x: 1.0, y: 2.0, z: 3.0, test1: 1.5, test2: Red, test3: { a: "
"16, b: 32 } }");
}
// Parse a .proto schema, output as .fbs
void ParseProtoTest() {
// load the .proto and the golden file from disk
std::string protofile;
std::string goldenfile;
std::string goldenunionfile;
TEST_EQ(
flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
false, &protofile),
true);
TEST_EQ(
flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(),
false, &goldenfile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test_union.golden").c_str(), false,
&goldenunionfile),
true);
flatbuffers::IDLOptions opts;
opts.include_dependence_headers = false;
opts.proto_mode = true;
// Parse proto.
flatbuffers::Parser parser(opts);
auto protopath = test_data_path + "prototest/";
const char *include_directories[] = { protopath.c_str(), nullptr };
TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs = flatbuffers::GenerateFBS(parser, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
// Parse proto with --oneof-union option.
opts.proto_oneof_union = true;
flatbuffers::Parser parser3(opts);
TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser4;
TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
}
// Parse a .proto schema, output as .fbs
void ParseProtoTestWithSuffix() {
// load the .proto and the golden file from disk
std::string protofile;
std::string goldenfile;
std::string goldenunionfile;
TEST_EQ(
flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
false, &protofile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test_suffix.golden").c_str(), false,
&goldenfile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test_union_suffix.golden").c_str(),
false, &goldenunionfile),
true);
flatbuffers::IDLOptions opts;
opts.include_dependence_headers = false;
opts.proto_mode = true;
opts.proto_namespace_suffix = "test_namespace_suffix";
// Parse proto.
flatbuffers::Parser parser(opts);
auto protopath = test_data_path + "prototest/";
const char *include_directories[] = { protopath.c_str(), nullptr };
TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs = flatbuffers::GenerateFBS(parser, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
// Parse proto with --oneof-union option.
opts.proto_oneof_union = true;
flatbuffers::Parser parser3(opts);
TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser4;
TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
}
// Parse a .proto schema, output as .fbs
void ParseProtoTestWithIncludes() {
// load the .proto and the golden file from disk
std::string protofile;
std::string goldenfile;
std::string goldenunionfile;
std::string importprotofile;
TEST_EQ(
flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
false, &protofile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/imported.proto").c_str(), false,
&importprotofile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test_include.golden").c_str(), false,
&goldenfile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "prototest/test_union_include.golden").c_str(),
false, &goldenunionfile),
true);
flatbuffers::IDLOptions opts;
opts.include_dependence_headers = true;
opts.proto_mode = true;
// Parse proto.
flatbuffers::Parser parser(opts);
auto protopath = test_data_path + "prototest/";
const char *include_directories[] = { protopath.c_str(), nullptr };
TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs = flatbuffers::GenerateFBS(parser, "test");
// Generate fbs from import.proto
flatbuffers::Parser import_parser(opts);
TEST_EQ(import_parser.Parse(importprotofile.c_str(), include_directories),
true);
auto import_fbs = flatbuffers::GenerateFBS(import_parser, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser2;
TEST_EQ(
parser2.Parse(import_fbs.c_str(), include_directories, "imported.fbs"),
true);
TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
// Parse proto with --oneof-union option.
opts.proto_oneof_union = true;
flatbuffers::Parser parser3(opts);
TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser4;
TEST_EQ(parser4.Parse(import_fbs.c_str(), nullptr, "imported.fbs"), true);
TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
}
template<typename T>
void CompareTableFieldValue(flatbuffers::Table *table,
flatbuffers::voffset_t voffset, T val) {
T read = table->GetField(voffset, static_cast<T>(0));
TEST_EQ(read, val);
}
// Low level stress/fuzz test: serialize/deserialize a variety of
// different kinds of data in different combinations
void FuzzTest1() {
// Values we're testing against: chosen to ensure no bits get chopped
// off anywhere, and also be different from eachother.
const uint8_t bool_val = true;
const int8_t char_val = -127; // 0x81
const uint8_t uchar_val = 0xFF;
const int16_t short_val = -32222; // 0x8222;
const uint16_t ushort_val = 0xFEEE;
const int32_t int_val = 0x83333333;
const uint32_t uint_val = 0xFDDDDDDD;
const int64_t long_val = 0x8444444444444444LL;
const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
const float float_val = 3.14159f;
const double double_val = 3.14159265359;
const int test_values_max = 11;
const flatbuffers::voffset_t fields_per_object = 4;
const int num_fuzz_objects = 10000; // The higher, the more thorough :)
flatbuffers::FlatBufferBuilder builder;
lcg_reset(); // Keep it deterministic.
flatbuffers::uoffset_t objects[num_fuzz_objects];
// Generate num_fuzz_objects random objects each consisting of
// fields_per_object fields, each of a random type.
for (int i = 0; i < num_fuzz_objects; i++) {
auto start = builder.StartTable();
for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
int choice = lcg_rand() % test_values_max;
auto off = flatbuffers::FieldIndexToOffset(f);
switch (choice) {
case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break;
case 1: builder.AddElement<int8_t>(off, char_val, 0); break;
case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break;
case 3: builder.AddElement<int16_t>(off, short_val, 0); break;
case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
case 5: builder.AddElement<int32_t>(off, int_val, 0); break;
case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
case 7: builder.AddElement<int64_t>(off, long_val, 0); break;
case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
case 9: builder.AddElement<float>(off, float_val, 0); break;
case 10: builder.AddElement<double>(off, double_val, 0); break;
}
}
objects[i] = builder.EndTable(start);
}
builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
lcg_reset(); // Reset.
uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
// Test that all objects we generated are readable and return the
// expected values. We generate random objects in the same order
// so this is deterministic.
for (int i = 0; i < num_fuzz_objects; i++) {
auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
int choice = lcg_rand() % test_values_max;
flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
switch (choice) {
case 0: CompareTableFieldValue(table, off, bool_val); break;
case 1: CompareTableFieldValue(table, off, char_val); break;
case 2: CompareTableFieldValue(table, off, uchar_val); break;
case 3: CompareTableFieldValue(table, off, short_val); break;
case 4: CompareTableFieldValue(table, off, ushort_val); break;
case 5: CompareTableFieldValue(table, off, int_val); break;
case 6: CompareTableFieldValue(table, off, uint_val); break;
case 7: CompareTableFieldValue(table, off, long_val); break;
case 8: CompareTableFieldValue(table, off, ulong_val); break;
case 9: CompareTableFieldValue(table, off, float_val); break;
case 10: CompareTableFieldValue(table, off, double_val); break;
}
}
}
}
// High level stress/fuzz test: generate a big schema and
// matching json data in random combinations, then parse both,
// generate json back from the binary, and compare with the original.
void FuzzTest2() {
lcg_reset(); // Keep it deterministic.
const int num_definitions = 30;
const int num_struct_definitions = 5; // Subset of num_definitions.
const int fields_per_definition = 15;
const int instances_per_definition = 5;
const int deprecation_rate = 10; // 1 in deprecation_rate fields will
// be deprecated.
std::string schema = "namespace test;\n\n";
struct RndDef {
std::string instances[instances_per_definition];
// Since we're generating schema and corresponding data in tandem,
// this convenience function adds strings to both at once.
static void Add(RndDef (&definitions_l)[num_definitions],
std::string &schema_l, const int instances_per_definition_l,
const char *schema_add, const char *instance_add,
int definition) {
schema_l += schema_add;
for (int i = 0; i < instances_per_definition_l; i++)
definitions_l[definition].instances[i] += instance_add;
}
};
// clang-format off
#define AddToSchemaAndInstances(schema_add, instance_add) \
RndDef::Add(definitions, schema, instances_per_definition, \
schema_add, instance_add, definition)
#define Dummy() \
RndDef::Add(definitions, schema, instances_per_definition, \
"byte", "1", definition)
// clang-format on
RndDef definitions[num_definitions];
// We are going to generate num_definitions, the first
// num_struct_definitions will be structs, the rest tables. For each
// generate random fields, some of which may be struct/table types
// referring to previously generated structs/tables.
// Simultanenously, we generate instances_per_definition JSON data
// definitions, which will have identical structure to the schema
// being generated. We generate multiple instances such that when creating
// hierarchy, we get some variety by picking one randomly.
for (int definition = 0; definition < num_definitions; definition++) {
std::string definition_name = "D" + flatbuffers::NumToString(definition);
bool is_struct = definition < num_struct_definitions;
AddToSchemaAndInstances(
((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
"{\n");
for (int field = 0; field < fields_per_definition; field++) {
const bool is_last_field = field == fields_per_definition - 1;
// Deprecate 1 in deprecation_rate fields. Only table fields can be
// deprecated.
// Don't deprecate the last field to avoid dangling commas in JSON.
const bool deprecated =
!is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0);
std::string field_name = "f" + flatbuffers::NumToString(field);
AddToSchemaAndInstances((" " + field_name + ":").c_str(),
deprecated ? "" : (field_name + ": ").c_str());
// Pick random type:
auto base_type = static_cast<flatbuffers::BaseType>(
lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
switch (base_type) {
case flatbuffers::BASE_TYPE_STRING:
if (is_struct) {
Dummy(); // No strings in structs.
} else {
AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
}
break;
case flatbuffers::BASE_TYPE_VECTOR:
if (is_struct) {
Dummy(); // No vectors in structs.
} else {
AddToSchemaAndInstances("[ubyte]",
deprecated ? "" : "[\n0,\n1,\n255\n]");
}
break;
case flatbuffers::BASE_TYPE_NONE:
case flatbuffers::BASE_TYPE_UTYPE:
case flatbuffers::BASE_TYPE_STRUCT:
case flatbuffers::BASE_TYPE_UNION:
if (definition) {
// Pick a random previous definition and random data instance of
// that definition.
int defref = lcg_rand() % definition;
int instance = lcg_rand() % instances_per_definition;
AddToSchemaAndInstances(
("D" + flatbuffers::NumToString(defref)).c_str(),
deprecated ? ""
: definitions[defref].instances[instance].c_str());
} else {
// If this is the first definition, we have no definition we can
// refer to.
Dummy();
}
break;
case flatbuffers::BASE_TYPE_BOOL:
AddToSchemaAndInstances(
"bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false"));
break;
case flatbuffers::BASE_TYPE_ARRAY:
if (!is_struct) {
AddToSchemaAndInstances(
"ubyte",
deprecated ? "" : "255"); // No fixed-length arrays in tables.
} else {
AddToSchemaAndInstances("[int:3]", deprecated ? "" : "[\n,\n,\n]");
}
break;
default:
// All the scalar types.
schema += flatbuffers::kTypeNames[base_type];
if (!deprecated) {
// We want each instance to use its own random value.
for (int inst = 0; inst < instances_per_definition; inst++)
definitions[definition].instances[inst] +=
flatbuffers::IsFloat(base_type)
? flatbuffers::NumToString<double>(lcg_rand() % 128)
.c_str()
: flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
}
}
AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n",
deprecated ? "" : is_last_field ? "\n" : ",\n");
}
AddToSchemaAndInstances("}\n\n", "}");
}
schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
schema += ";\n";
flatbuffers::Parser parser;
// Will not compare against the original if we don't write defaults
parser.builder_.ForceDefaults(true);
// Parse the schema, parse the generated data, then generate text back
// from the binary and compare against the original.
TEST_EQ(parser.Parse(schema.c_str()), true);
const std::string &json =
definitions[num_definitions - 1].instances[0] + "\n";
TEST_EQ(parser.Parse(json.c_str()), true);
std::string jsongen;
parser.opts.indent_step = 0;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
if (jsongen != json) {
// These strings are larger than a megabyte, so we show the bytes around
// the first bytes that are different rather than the whole string.
size_t len = std::min(json.length(), jsongen.length());
for (size_t i = 0; i < len; i++) {
if (json[i] != jsongen[i]) {
i -= std::min(static_cast<size_t>(10), i); // show some context;
size_t end = std::min(len, i + 20);
for (; i < end; i++)
TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
static_cast<int>(i), jsongen[i], json[i]);
break;
}
}
TEST_NOTNULL(nullptr); //-V501 (this comment supresses CWE-570 warning)
}
// clang-format off
#ifdef FLATBUFFERS_TEST_VERBOSE
TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
static_cast<int>(schema.length() / 1024),
static_cast<int>(json.length() / 1024));
#endif
// clang-format on
}
// Test that parser errors are actually generated.
void TestError_(const char *src, const char *error_substr, bool strict_json,
const char *file, int line, const char *func) {
flatbuffers::IDLOptions opts;
opts.strict_json = strict_json;
flatbuffers::Parser parser(opts);
if (parser.Parse(src)) {
TestFail("true", "false",
("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
func);
} else if (!strstr(parser.error_.c_str(), error_substr)) {
TestFail(parser.error_.c_str(), error_substr,
("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
func);
}
}
void TestError_(const char *src, const char *error_substr, const char *file,
int line, const char *func) {
TestError_(src, error_substr, false, file, line, func);
}
#ifdef _WIN32
# define TestError(src, ...) \
TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
#else
# define TestError(src, ...) \
TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
#endif
// Test that parsing errors occur as we'd expect.
// Also useful for coverage, making sure these paths are run.
void ErrorTest() {
// In order they appear in idl_parser.cpp
TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
TestError("\"\0", "illegal");
TestError("\"\\q", "escape code");
TestError("table ///", "documentation");
TestError("@", "illegal");
TestError("table 1", "expecting");
TestError("table X { Y:[[int]]; }", "nested vector");
TestError("table X { Y:1; }", "illegal type");
TestError("table X { Y:int; Y:int; }", "field already");
TestError("table Y {} table X { Y:int; }", "same as table");
TestError("struct X { Y:string; }", "only scalar");
TestError("table X { Y:string = \"\"; }", "default values");
TestError("struct X { a:uint = 42; }", "default values");
TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
TestError("struct X { Y:int (deprecated); }", "deprecate");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
"missing type field");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
"type id");
TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
true);
TestError(
"struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
"{ V:{ Y:1 } }",
"wrong number");
TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
"unknown enum value");
TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
TestError("enum X:byte { Y } enum X {", "enum already");
TestError("enum X:float {}", "underlying");
TestError("enum X:byte { Y, Y }", "value already");
TestError("enum X:byte { Y=2, Z=1 }", "ascending");
TestError("table X { Y:int; } table X {", "datatype already");
TestError("struct X (force_align: 7) { Y:int; }", "force_align");
TestError("struct X {}", "size 0");
TestError("{}", "no root");
TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
"end of file");
TestError("root_type X;", "unknown root");
TestError("struct X { Y:int; } root_type X;", "a table");
TestError("union X { Y }", "referenced");
TestError("union Z { X } struct X { Y:int; }", "only tables");
TestError("table X { Y:[int]; YLength:int; }", "clash");
TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
// float to integer conversion is forbidden
TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
TestError("enum X:bool { Y = true }", "must be integral");
}
template<typename T>
T TestValue(const char *json, const char *type_name,
const char *decls = nullptr) {
flatbuffers::Parser parser;
parser.builder_.ForceDefaults(true); // return defaults
auto check_default = json ? false : true;
if (check_default) { parser.opts.output_default_scalars_in_json = true; }
// Simple schema.
std::string schema = std::string(decls ? decls : "") + "\n" +
"table X { Y:" + std::string(type_name) +
"; } root_type X;";
auto schema_done = parser.Parse(schema.c_str());
TEST_EQ_STR(parser.error_.c_str(), "");
TEST_EQ(schema_done, true);
auto done = parser.Parse(check_default ? "{}" : json);
TEST_EQ_STR(parser.error_.c_str(), "");
TEST_EQ(done, true);
// Check with print.
std::string print_back;
parser.opts.indent_step = -1;
TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
true);
// restore value from its default
if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
}
bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
// Additional parser testing not covered elsewhere.
void ValueTest() {
// Test scientific notation numbers.
TEST_EQ(
FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
true);
// number in string
TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"),
3.14159f),
true);
// Test conversion functions.
TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1),
true);
// int embedded to string
TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876);
TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876);
// Test negative hex constant.
TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512);
TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
// positive hex constant
TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef);
// with optional '+' sign
TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
// hex in string
TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
// Make sure we do unsigned 64bit correctly.
TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"),
12335089644688340133ULL);
// bool in string
TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false);
TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true);
TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false);
TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true);
// check comments before and after json object
TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1);
TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1);
}
void NestedListTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
"root_type T;"
"{ F:[ [10,20], [30,40]] }"),
true);
}
void EnumStringsTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
"root_type T;"
"{ F:[ A, B, \"C\", \"A B C\" ] }"),
true);
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
"root_type T;"
"{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
true);
// unsigned bit_flags
flatbuffers::Parser parser3;
TEST_EQ(
parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
" table T { F: E = \"F15 F08\"; }"
"root_type T;"),
true);
}
void EnumNamesTest() {
TEST_EQ_STR("Red", EnumNameColor(Color_Red));
TEST_EQ_STR("Green", EnumNameColor(Color_Green));
TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
// Check that Color to string don't crash while decode a mixture of Colors.
// 1) Example::Color enum is enum with unfixed underlying type.
// 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
// Consequence: A value is out of this range will lead to UB (since C++17).
// For details see C++17 standard or explanation on the SO:
// stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY - 1)));
TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY + 1)));
}
void EnumOutOfRangeTest() {
TestError("enum X:byte { Y = 128 }", "enum value does not fit");
TestError("enum X:byte { Y = -129 }", "enum value does not fit");
TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
// Unions begin with an implicit "NONE = 0".
TestError("table Y{} union X { Y = -1 }",
"enum values must be specified in ascending order");
TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
TestError("enum X:uint { Y = -1 }", "enum value does not fit");
TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
TestError("enum X:long { Y = 9223372036854775807, Z }",
"enum value does not fit");
TestError("enum X:ulong { Y = -1 }", "does not fit");
TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128
// bit_flgs out of range
TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }",
"out of range");
}
void EnumValueTest() {
// json: "{ Y:0 }", schema: table X { Y : "E"}
// 0 in enum (V=0) E then Y=0 is valid.
TEST_EQ(TestValue<int>("{ Y:0 }", "E", "enum E:int { V }"), 0);
TEST_EQ(TestValue<int>("{ Y:V }", "E", "enum E:int { V }"), 0);
// A default value of Y is 0.
TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { V=5 }"), 5);
// Generate json with defaults and check.
TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
// 5 in enum
TEST_EQ(TestValue<int>("{ Y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
// Generate json with defaults and check.
TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
// u84 test
TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
"enum E:ulong { V = 13835058055282163712 }"),
13835058055282163712ULL);
TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
"enum E:ulong { V = 18446744073709551615 }"),
18446744073709551615ULL);
// Assign non-enum value to enum field. Is it right?
TEST_EQ(TestValue<int>("{ Y:7 }", "E", "enum E:int { V = 0 }"), 7);
}
void IntegerOutOfRangeTest() {
TestError("table T { F:byte; } root_type T; { F:128 }",
"constant does not fit");
TestError("table T { F:byte; } root_type T; { F:-129 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:256 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:32768 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:-32769 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:65536 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:2147483648 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:-2147483649 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:4294967296 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:-1 }",
"constant does not fit");
// Check fixed width aliases
TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
"does not fit");
TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
"does not fit");
TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
"does not fit");
// check out-of-int64 as int8
TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
"does not fit");
// Check default values
TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
"does not fit");
TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
"does not fit");
TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
"does not fit");
}
void IntegerBoundaryTest() {
// Check numerical compatibility with non-C++ languages.
// By the C++ standard, std::numerical_limits<int64_t>::min() ==
// -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of
// the languages (C#, Java, Rust) expect that minimum values are: -128,
// -32768,.., -9223372036854775808. Since C++20,
// static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement
// cast. Therefore -9223372036854775808 should be valid negative value.
TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
-9223372036854775807LL);
TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
18446744073709551615ULL);
TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127);
TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128);
TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255);
TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0);
TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767);
TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768);
TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535);
TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0);
TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647);
TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int") + 1, -2147483647);
TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295);
TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0);
TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"),
9223372036854775807LL);
TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long") + 1LL,
-9223372036854775807LL);
TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"),
18446744073709551615ULL);
TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0);
TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"),
18446744073709551615ULL);
// check that the default works
TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
18446744073709551615ULL);
}
void ValidFloatTest() {
// check rounding to infinity
TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf);
TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf);
TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd);
TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd);
TEST_EQ(
FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
true);
// float in string
TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"),
3.14159f),
true);
TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f);
TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f);
TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f);
TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f);
TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f);
TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f);
TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f);
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
// Old MSVC versions may have problem with this check.
// https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"),
6929495644600920.0);
// check nan's
TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true);
TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
// check inf
TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf);
TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf);
TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf);
TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf);
TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf);
TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf);
TestValue<double>(
"{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
"3.0e2] }",
"[double]");
TestValue<float>(
"{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
"3.0e2] }",
"[float]");
// Test binary format of float point.
// https://en.cppreference.com/w/cpp/language/floating_literal
// 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625);
// hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f);
TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f);
TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f);
TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f);
TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0);
TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625);
TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625);
TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
#else // FLATBUFFERS_HAS_NEW_STRTOD
TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
#endif // !FLATBUFFERS_HAS_NEW_STRTOD
}
void InvalidFloatTest() {
auto invalid_msg = "invalid number";
auto comma_msg = "expecting: ,";
TestError("table T { F:float; } root_type T; { F:1,0 }", "");
TestError("table T { F:float; } root_type T; { F:. }", "");
TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:.e }", "");
TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
// exponent pP is mandatory for hex-float
TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
// eE not exponent in hex-float!
TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
// floats in string
TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
// disable escapes for "number-in-string"
TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
// null is not a number constant!
TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
}
void GenerateTableTextTest() {
std::string schemafile;
std::string jsonfile;
bool ok =
flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
false, &schemafile) &&
flatbuffers::LoadFile((test_data_path + "monsterdata_test.json").c_str(),
false, &jsonfile);
TEST_EQ(ok, true);
auto include_test_path =
flatbuffers::ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = { test_data_path.c_str(),
include_test_path.c_str(), nullptr };
flatbuffers::IDLOptions opt;
opt.indent_step = -1;
flatbuffers::Parser parser(opt);
ok = parser.Parse(schemafile.c_str(), include_directories) &&
parser.Parse(jsonfile.c_str(), include_directories);
TEST_EQ(ok, true);
// Test root table
const Monster *monster = GetMonster(parser.builder_.GetBufferPointer());
std::string jsongen;
auto result = GenerateTextFromTable(parser, monster, "MyGame.Example.Monster",
&jsongen);
TEST_EQ(result, true);
// Test sub table
const Vec3 *pos = monster->pos();
jsongen.clear();
result = GenerateTextFromTable(parser, pos, "MyGame.Example.Vec3", &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(
jsongen.c_str(),
"{x: 1.0,y: 2.0,z: 3.0,test1: 3.0,test2: \"Green\",test3: {a: 5,b: 6}}");
const Test &test3 = pos->test3();
jsongen.clear();
result =
GenerateTextFromTable(parser, &test3, "MyGame.Example.Test", &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), "{a: 5,b: 6}");
const Test *test4 = monster->test4()->Get(0);
jsongen.clear();
result =
GenerateTextFromTable(parser, test4, "MyGame.Example.Test", &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), "{a: 10,b: 20}");
}
template<typename T>
void NumericUtilsTestInteger(const char *lower, const char *upper) {
T x;
TEST_EQ(flatbuffers::StringToNumber("1q", &x), false);
TEST_EQ(x, 0);
TEST_EQ(flatbuffers::StringToNumber(upper, &x), false);
TEST_EQ(x, flatbuffers::numeric_limits<T>::max());
TEST_EQ(flatbuffers::StringToNumber(lower, &x), false);
auto expval = flatbuffers::is_unsigned<T>::value
? flatbuffers::numeric_limits<T>::max()
: flatbuffers::numeric_limits<T>::lowest();
TEST_EQ(x, expval);
}
template<typename T>
void NumericUtilsTestFloat(const char *lower, const char *upper) {
T f;
TEST_EQ(flatbuffers::StringToNumber("", &f), false);
TEST_EQ(flatbuffers::StringToNumber("1q", &f), false);
TEST_EQ(f, 0);
TEST_EQ(flatbuffers::StringToNumber(upper, &f), true);
TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity());
TEST_EQ(flatbuffers::StringToNumber(lower, &f), true);
TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity());
}
void NumericUtilsTest() {
NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616");
NumericUtilsTestInteger<uint8_t>("-1", "256");
NumericUtilsTestInteger<int64_t>("-9223372036854775809",
"9223372036854775808");
NumericUtilsTestInteger<int8_t>("-129", "128");
NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38");
NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308");
}
void IsAsciiUtilsTest() {
char c = -128;
for (int cnt = 0; cnt < 256; cnt++) {
auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'));
auto dec = (('0' <= c) && (c <= '9'));
auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F'));
TEST_EQ(flatbuffers::is_alpha(c), alpha);
TEST_EQ(flatbuffers::is_alnum(c), alpha || dec);
TEST_EQ(flatbuffers::is_digit(c), dec);
TEST_EQ(flatbuffers::is_xdigit(c), dec || hex);
c += 1;
}
}
void UnicodeTest() {
flatbuffers::Parser parser;
// Without setting allow_non_utf8 = true, we treat \x sequences as byte
// sequences which are then validated as UTF-8.
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
"3D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestAllowNonUTF8() {
flatbuffers::Parser parser;
parser.opts.allow_non_utf8 = true;
TEST_EQ(
parser.Parse(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(
jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestGenerateTextFailsOnNonUTF8() {
flatbuffers::Parser parser;
// Allow non-UTF-8 initially to model what happens when we load a binary
// flatbuffer from disk which contains non-UTF-8 strings.
parser.opts.allow_non_utf8 = true;
TEST_EQ(
parser.Parse(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
// Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
// failure.
parser.opts.allow_non_utf8 = false;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, false);
}
void UnicodeSurrogatesTest() {
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
"root_type T;"
"{ F:\"\\uD83D\\uDCA9\"}"),
true);
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
auto string = root->GetPointer<flatbuffers::String *>(
flatbuffers::FieldIndexToOffset(0));
TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
}
void UnicodeInvalidSurrogatesTest() {
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800abcd\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\n\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\uD800\"}",
"multiple high surrogates");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uDC00\"}",
"unpaired low surrogate");
}
void InvalidUTF8Test() {
// "1 byte" pattern, under min length of 2 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\x80\"}",
"illegal UTF-8 sequence");
// 2 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xDF\"}",
"illegal UTF-8 sequence");
// 3 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xEF\xBF\"}",
"illegal UTF-8 sequence");
// 4 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF7\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "5 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "6 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "7 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "5 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "6 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "7 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// Three invalid encodings for U+000A (\n, aka NEWLINE)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xC0\x8A\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x80\x8A\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x80\x8A\"}",
"illegal UTF-8 sequence");
// Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x81\xA9\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x81\xA9\"}",
"illegal UTF-8 sequence");
// Invalid encoding for U+20AC (EURO SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x82\x82\xAC\"}",
"illegal UTF-8 sequence");
// UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
// UTF-8
TestError(
"table T { F:string; }"
"root_type T;"
// U+10400 "encoded" as U+D801 U+DC00
"{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
"illegal UTF-8 sequence");
// Check independence of identifier from locale.
std::string locale_ident;
locale_ident += "table T { F";
locale_ident += static_cast<char>(-32); // unsigned 0xE0
locale_ident += " :string; }";
locale_ident += "root_type T;";
locale_ident += "{}";
TestError(locale_ident.c_str(), "");
}
void UnknownFieldsTest() {
flatbuffers::IDLOptions opts;
opts.skip_unexpected_fields_in_json = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { str:string; i:int;}"
"root_type T;"
"{ str:\"test\","
"unknown_string:\"test\","
"\"unknown_string\":\"test\","
"unknown_int:10,"
"unknown_float:1.0,"
"unknown_array: [ 1, 2, 3, 4],"
"unknown_object: { i: 10 },"
"\"unknown_object\": { \"i\": 10 },"
"i:10}"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
}
void ParseUnionTest() {
// Unions must be parseable with the type field following the object.
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { A:int; }"
"union U { T }"
"table V { X:U; }"
"root_type V;"
"{ X:{ A:1 }, X_type: T }"),
true);
// Unions must be parsable with prefixed namespace.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
"table B { e:U; } root_type B;"
"{ e_type: N_A, e: {} }"),
true);
}
void InvalidNestedFlatbufferTest() {
// First, load and parse FlatBuffer schema (.fbs)
std::string schemafile;
TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
false, &schemafile),
true);
auto include_test_path =
flatbuffers::ConCatPathFileName(test_data_path, "include_test");
const char *include_directories[] = { test_data_path.c_str(),
include_test_path.c_str(), nullptr };
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true);
// "color" inside nested flatbuffer contains invalid enum value
TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: "
"\"Leela\", color: \"nonexistent\"}}"),
false);
}
void EvolutionTest() {
// VS10 does not support typed enums, exclude from tests
#if !defined(_MSC_VER) || _MSC_VER >= 1700
const int NUM_VERSIONS = 2;
std::string schemas[NUM_VERSIONS];
std::string jsonfiles[NUM_VERSIONS];
std::vector<uint8_t> binaries[NUM_VERSIONS];
flatbuffers::IDLOptions idl_opts;
idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kBinary;
flatbuffers::Parser parser(idl_opts);
// Load all the schema versions and their associated data.
for (int i = 0; i < NUM_VERSIONS; ++i) {
std::string schema = test_data_path + "evolution_test/evolution_v" +
flatbuffers::NumToString(i + 1) + ".fbs";
TEST_ASSERT(flatbuffers::LoadFile(schema.c_str(), false, &schemas[i]));
std::string json = test_data_path + "evolution_test/evolution_v" +
flatbuffers::NumToString(i + 1) + ".json";
TEST_ASSERT(flatbuffers::LoadFile(json.c_str(), false, &jsonfiles[i]));
TEST_ASSERT(parser.Parse(schemas[i].c_str()));
TEST_ASSERT(parser.Parse(jsonfiles[i].c_str()));
auto bufLen = parser.builder_.GetSize();
auto buf = parser.builder_.GetBufferPointer();
binaries[i].reserve(bufLen);
std::copy(buf, buf + bufLen, std::back_inserter(binaries[i]));
}
// Assert that all the verifiers for the different schema versions properly
// verify any version data.
for (int i = 0; i < NUM_VERSIONS; ++i) {
flatbuffers::Verifier verifier(&binaries[i].front(), binaries[i].size());
TEST_ASSERT(Evolution::V1::VerifyRootBuffer(verifier));
TEST_ASSERT(Evolution::V2::VerifyRootBuffer(verifier));
}
// Test backwards compatibility by reading old data with an evolved schema.
auto root_v1_viewed_from_v2 = Evolution::V2::GetRoot(&binaries[0].front());
// field 'j' is new in version 2, so it should be null.
TEST_ASSERT(nullptr == root_v1_viewed_from_v2->j());
// field 'k' is new in version 2 with a default of 56.
TEST_EQ(root_v1_viewed_from_v2->k(), 56);
// field 'c' of 'TableA' is new in version 2, so it should be null.
TEST_ASSERT(nullptr == root_v1_viewed_from_v2->e()->c());
// 'TableC' was added to field 'c' union in version 2, so it should be null.
TEST_ASSERT(nullptr == root_v1_viewed_from_v2->c_as_TableC());
// The field 'c' union should be of type 'TableB' regardless of schema version
TEST_ASSERT(root_v1_viewed_from_v2->c_type() == Evolution::V2::Union::TableB);
// The field 'f' was renamed to 'ff' in version 2, it should still be
// readable.
TEST_EQ(root_v1_viewed_from_v2->ff()->a(), 16);
// Test forwards compatibility by reading new data with an old schema.
auto root_v2_viewed_from_v1 = Evolution::V1::GetRoot(&binaries[1].front());
// The field 'c' union in version 2 is a new table (index = 3) and should
// still be accessible, but not interpretable.
TEST_EQ(static_cast<uint8_t>(root_v2_viewed_from_v1->c_type()), 3);
TEST_NOTNULL(root_v2_viewed_from_v1->c());
// The field 'd' enum in verison 2 has new members and should still be
// accessible, but not interpretable.
TEST_EQ(static_cast<int8_t>(root_v2_viewed_from_v1->d()), 3);
// The field 'a' in version 2 is deprecated and should return the default
// value (0) instead of the value stored in the in the buffer (42).
TEST_EQ(root_v2_viewed_from_v1->a(), 0);
// The field 'ff' was originally named 'f' in version 1, it should still be
// readable.
TEST_EQ(root_v2_viewed_from_v1->f()->a(), 35);
#endif
}
void UnionVectorTest() {
// load FlatBuffer fbs schema and json.
std::string schemafile, jsonfile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "union_vector/union_vector.fbs").c_str(), false,
&schemafile),
true);
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "union_vector/union_vector.json").c_str(),
false, &jsonfile),
true);
// parse schema.
flatbuffers::IDLOptions idl_opts;
idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kBinary;
flatbuffers::Parser parser(idl_opts);
TEST_EQ(parser.Parse(schemafile.c_str()), true);
flatbuffers::FlatBufferBuilder fbb;
// union types.
std::vector<uint8_t> types;
types.push_back(static_cast<uint8_t>(Character_Belle));
types.push_back(static_cast<uint8_t>(Character_MuLan));
types.push_back(static_cast<uint8_t>(Character_BookFan));
types.push_back(static_cast<uint8_t>(Character_Other));
types.push_back(static_cast<uint8_t>(Character_Unused));
// union values.
std::vector<flatbuffers::Offset<void>> characters;
characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
characters.push_back(fbb.CreateString("Other").Union());
characters.push_back(fbb.CreateString("Unused").Union());
// create Movie.
const auto movie_offset =
CreateMovie(fbb, Character_Rapunzel,
fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
fbb.CreateVector(types), fbb.CreateVector(characters));
FinishMovieBuffer(fbb, movie_offset);
flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
TEST_EQ(VerifyMovieBuffer(verifier), true);
auto flat_movie = GetMovie(fbb.GetBufferPointer());
auto TestMovie = [](const Movie *movie) {
TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
auto cts = movie->characters_type();
TEST_EQ(movie->characters_type()->size(), 5);
TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
auto rapunzel = movie->main_character_as_Rapunzel();
TEST_NOTNULL(rapunzel);
TEST_EQ(rapunzel->hair_length(), 6);
auto cs = movie->characters();
TEST_EQ(cs->size(), 5);
auto belle = cs->GetAs<BookReader>(0);
TEST_EQ(belle->books_read(), 7);
auto mu_lan = cs->GetAs<Attacker>(1);
TEST_EQ(mu_lan->sword_attack_damage(), 5);
auto book_fan = cs->GetAs<BookReader>(2);
TEST_EQ(book_fan->books_read(), 2);
auto other = cs->GetAsString(3);
TEST_EQ_STR(other->c_str(), "Other");
auto unused = cs->GetAsString(4);
TEST_EQ_STR(unused->c_str(), "Unused");
};
TestMovie(flat_movie);
// Also test the JSON we loaded above.
TEST_EQ(parser.Parse(jsonfile.c_str()), true);
auto jbuf = parser.builder_.GetBufferPointer();
flatbuffers::Verifier jverifier(jbuf, parser.builder_.GetSize());
TEST_EQ(VerifyMovieBuffer(jverifier), true);
TestMovie(GetMovie(jbuf));
auto movie_object = flat_movie->UnPack();
TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
fbb.Clear();
fbb.Finish(Movie::Pack(fbb, movie_object));
delete movie_object;
auto repacked_movie = GetMovie(fbb.GetBufferPointer());
TestMovie(repacked_movie);
// Generate text using mini-reflection.
auto s =
flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable());
TEST_EQ_STR(
s.c_str(),
"{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
"characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
"characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
"{ books_read: 2 }, \"Other\", \"Unused\" ] }");
flatbuffers::ToStringVisitor visitor("\n", true, " ");
IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor);
TEST_EQ_STR(visitor.s.c_str(),
"{\n"
" \"main_character_type\": \"Rapunzel\",\n"
" \"main_character\": {\n"
" \"hair_length\": 6\n"
" },\n"
" \"characters_type\": [\n"
" \"Belle\",\n"
" \"MuLan\",\n"
" \"BookFan\",\n"
" \"Other\",\n"
" \"Unused\"\n"
" ],\n"
" \"characters\": [\n"
" {\n"
" \"books_read\": 7\n"
" },\n"
" {\n"
" \"sword_attack_damage\": 5\n"
" },\n"
" {\n"
" \"books_read\": 2\n"
" },\n"
" \"Other\",\n"
" \"Unused\"\n"
" ]\n"
"}");
// Generate text using parsed schema.
std::string jsongen;
auto result = GenerateText(parser, fbb.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(),
"{\n"
" main_character_type: \"Rapunzel\",\n"
" main_character: {\n"
" hair_length: 6\n"
" },\n"
" characters_type: [\n"
" \"Belle\",\n"
" \"MuLan\",\n"
" \"BookFan\",\n"
" \"Other\",\n"
" \"Unused\"\n"
" ],\n"
" characters: [\n"
" {\n"
" books_read: 7\n"
" },\n"
" {\n"
" sword_attack_damage: 5\n"
" },\n"
" {\n"
" books_read: 2\n"
" },\n"
" \"Other\",\n"
" \"Unused\"\n"
" ]\n"
"}\n");
// Simple test with reflection.
parser.Serialize();
auto schema = reflection::GetSchema(parser.builder_.GetBufferPointer());
auto ok = flatbuffers::Verify(*schema, *schema->root_table(),
fbb.GetBufferPointer(), fbb.GetSize());
TEST_EQ(ok, true);
flatbuffers::Parser parser2(idl_opts);
TEST_EQ(parser2.Parse("struct Bool { b:bool; }"
"union Any { Bool }"
"table Root { a:Any; }"
"root_type Root;"),
true);
TEST_EQ(parser2.Parse("{a_type:Bool,a:{b:true}}"), true);
}
void ConformTest() {
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
auto test_conform = [](flatbuffers::Parser &parser1, const char *test,
const char *expected_err) {
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse(test), true);
auto err = parser2.ConformTo(parser1);
TEST_NOTNULL(strstr(err.c_str(), expected_err));
};
test_conform(parser, "table T { A:byte; }", "types differ for field");
test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
test_conform(parser, "table T { B:float; }",
"field renamed to different type");
test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
}
void ParseProtoBufAsciiTest() {
// We can put the parser in a mode where it will accept JSON that looks more
// like Protobuf ASCII, for users that have data in that format.
// This uses no "" for field names (which we already support by default,
// omits `,`, `:` before `{` and a couple of other features.
flatbuffers::Parser parser;
parser.opts.protobuf_ascii_alike = true;
TEST_EQ(
parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"),
true);
TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
// Similarly, in text output, it should omit these.
std::string text;
auto ok = flatbuffers::GenerateText(
parser, parser.builder_.GetBufferPointer(), &text);
TEST_EQ(ok, true);
TEST_EQ_STR(text.c_str(),
"{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
}
void FlexBuffersTest() {
flexbuffers::Builder slb(512,
flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
// Write the equivalent of:
// { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
// foo: 100, bool: true, mymap: { foo: "Fred" } }
// clang-format off
#ifndef FLATBUFFERS_CPP98_STL
// It's possible to do this without std::function support as well.
slb.Map([&]() {
slb.Vector("vec", [&]() {
slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
slb += "Fred";
slb.IndirectFloat(4.0f);
auto i_f = slb.LastValue();
uint8_t blob[] = { 77 };
slb.Blob(blob, 1);
slb += false;
slb.ReuseValue(i_f);
});
int ints[] = { 1, 2, 3 };
slb.Vector("bar", ints, 3);
slb.FixedTypedVector("bar3", ints, 3);
bool bools[] = {true, false, true, false};
slb.Vector("bools", bools, 4);
slb.Bool("bool", true);
slb.Double("foo", 100);
slb.Map("mymap", [&]() {
slb.String("foo", "Fred"); // Testing key and string reuse.
});
});
slb.Finish();
#else
// It's possible to do this without std::function support as well.
slb.Map([](flexbuffers::Builder& slb2) {
slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
slb3 += "Fred";
slb3.IndirectFloat(4.0f);
auto i_f = slb3.LastValue();
uint8_t blob[] = { 77 };
slb3.Blob(blob, 1);
slb3 += false;
slb3.ReuseValue(i_f);
}, slb2);
int ints[] = { 1, 2, 3 };
slb2.Vector("bar", ints, 3);
slb2.FixedTypedVector("bar3", ints, 3);
slb2.Bool("bool", true);
slb2.Double("foo", 100);
slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
slb3.String("foo", "Fred"); // Testing key and string reuse.
}, slb2);
}, slb);
slb.Finish();
#endif // FLATBUFFERS_CPP98_STL
#ifdef FLATBUFFERS_TEST_VERBOSE
for (size_t i = 0; i < slb.GetBuffer().size(); i++)
printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
printf("\n");
#endif
// clang-format on
auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
TEST_EQ(map.size(), 7);
auto vec = map["vec"].AsVector();
TEST_EQ(vec.size(), 6);
TEST_EQ(vec[0].AsInt64(), -100);
TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
TEST_EQ(vec[2].AsDouble(), 4.0);
TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
// Few tests for templated version of As.
TEST_EQ(vec[0].As<int64_t>(), -100);
TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
TEST_EQ(vec[2].As<double>(), 4.0);
// Test that the blob can be accessed.
TEST_EQ(vec[3].IsBlob(), true);
auto blob = vec[3].AsBlob();
TEST_EQ(blob.size(), 1);
TEST_EQ(blob.data()[0], 77);
TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
TEST_EQ(vec[4].AsBool(), false); // Check if value is false
TEST_EQ(vec[5].AsDouble(), 4.0); // This is shared with vec[2] !
auto tvec = map["bar"].AsTypedVector();
TEST_EQ(tvec.size(), 3);
TEST_EQ(tvec[2].AsInt8(), 3);
auto tvec3 = map["bar3"].AsFixedTypedVector();
TEST_EQ(tvec3.size(), 3);
TEST_EQ(tvec3[2].AsInt8(), 3);
TEST_EQ(map["bool"].AsBool(), true);
auto tvecb = map["bools"].AsTypedVector();
TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
TEST_EQ(map["foo"].AsUInt8(), 100);
TEST_EQ(map["unknown"].IsNull(), true);
auto mymap = map["mymap"].AsMap();
// These should be equal by pointer equality, since key and value are shared.
TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
// We can mutate values in the buffer.
TEST_EQ(vec[0].MutateInt(-99), true);
TEST_EQ(vec[0].AsInt64(), -99);
TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
TEST_EQ_STR(vec[1].AsString().c_str(), "John");
TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
TEST_EQ(vec[2].MutateFloat(2.0f), true);
TEST_EQ(vec[2].AsFloat(), 2.0f);
TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
TEST_EQ(vec[4].AsBool(), false); // Is false before change
TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
// Parse from JSON:
flatbuffers::Parser parser;
slb.Clear();
auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
auto jmap = jroot.AsMap();
auto jvec = jmap["a"].AsVector();
TEST_EQ(jvec[0].AsInt64(), 123);
TEST_EQ(jvec[1].AsDouble(), 456.0);
TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
// And from FlexBuffer back to JSON:
auto jsonback = jroot.ToString();
TEST_EQ_STR(jsontest, jsonback.c_str());
}
void FlexBuffersDeprecatedTest() {
// FlexBuffers as originally designed had a flaw involving the
// FBT_VECTOR_STRING datatype, and this test documents/tests the fix for it.
// Discussion: https://github.com/google/flatbuffers/issues/5627
flexbuffers::Builder slb;
// FBT_VECTOR_* are "typed vectors" where all elements are of the same type.
// Problem is, when storing FBT_STRING elements, it relies on that type to
// get the bit-width for the size field of the string, which in this case
// isn't present, and instead defaults to 8-bit. This means that any strings
// stored inside such a vector, when accessed thru the old API that returns
// a String reference, will appear to be truncated if the string stored is
// actually >=256 bytes.
std::string test_data(300, 'A');
auto start = slb.StartVector();
// This one will have a 16-bit size field.
slb.String(test_data);
// This one will have an 8-bit size field.
slb.String("hello");
// We're asking this to be serialized as a typed vector (true), but not
// fixed size (false). The type will be FBT_VECTOR_STRING with a bit-width
// of whatever the offsets in the vector need, the bit-widths of the strings
// are not stored(!) <- the actual design flaw.
// Note that even in the fixed code, we continue to serialize the elements of
// FBT_VECTOR_STRING as FBT_STRING, since there may be old code out there
// reading new data that we want to continue to function.
// Thus, FBT_VECTOR_STRING, while deprecated, will always be represented the
// same way, the fix lies on the reading side.
slb.EndVector(start, true, false);
slb.Finish();
// So now lets read this data back.
// For existing data, since we have no way of knowing what the actual
// bit-width of the size field of the string is, we are going to ignore this
// field, and instead treat these strings as FBT_KEY (null-terminated), so we
// can deal with strings of arbitrary length. This of course truncates strings
// with embedded nulls, but we think that that is preferrable over truncating
// strings >= 256 bytes.
auto vec = flexbuffers::GetRoot(slb.GetBuffer()).AsTypedVector();
// Even though this was serialized as FBT_VECTOR_STRING, it is read as
// FBT_VECTOR_KEY:
TEST_EQ(vec.ElementType(), flexbuffers::FBT_KEY);
// Access the long string. Previously, this would return a string of size 1,
// since it would read the high-byte of the 16-bit length.
// This should now correctly test the full 300 bytes, using AsKey():
TEST_EQ_STR(vec[0].AsKey(), test_data.c_str());
// Old code that called AsString will continue to work, as the String
// accessor objects now use a cached size that can come from a key as well.
TEST_EQ_STR(vec[0].AsString().c_str(), test_data.c_str());
// Short strings work as before:
TEST_EQ_STR(vec[1].AsKey(), "hello");
TEST_EQ_STR(vec[1].AsString().c_str(), "hello");
// So, while existing code and data mostly "just work" with the fixes applied
// to AsTypedVector and AsString, what do you do going forward?
// Code accessing existing data doesn't necessarily need to change, though
// you could consider using AsKey instead of AsString for a) documenting
// that you are accessing keys, or b) a speedup if you don't actually use
// the string size.
// For new data, or data that doesn't need to be backwards compatible,
// instead serialize as FBT_VECTOR (call EndVector with typed = false, then
// read elements with AsString), or, for maximum compactness, use
// FBT_VECTOR_KEY (call slb.Key above instead, read with AsKey or AsString).
}
void TypeAliasesTest() {
flatbuffers::FlatBufferBuilder builder;
builder.Finish(CreateTypeAliases(
builder, flatbuffers::numeric_limits<int8_t>::min(),
flatbuffers::numeric_limits<uint8_t>::max(),
flatbuffers::numeric_limits<int16_t>::min(),
flatbuffers::numeric_limits<uint16_t>::max(),
flatbuffers::numeric_limits<int32_t>::min(),
flatbuffers::numeric_limits<uint32_t>::max(),
flatbuffers::numeric_limits<int64_t>::min(),
flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
auto p = builder.GetBufferPointer();
auto ta = flatbuffers::GetRoot<TypeAliases>(p);
TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
TEST_EQ(ta->f32(), 2.3f);
TEST_EQ(ta->f64(), 2.3);
using namespace flatbuffers; // is_same
static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
}
void EndianSwapTest() {
TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412);
TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
0x78563412);
TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
0xEFCDAB9078563412);
TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
}
void UninitializedVectorTest() {
flatbuffers::FlatBufferBuilder builder;
Test *buf = nullptr;
auto vector_offset =
builder.CreateUninitializedVectorOfStructs<Test>(2, &buf);
TEST_NOTNULL(buf);
buf[0] = Test(10, 20);
buf[1] = Test(30, 40);
auto required_name = builder.CreateString("myMonster");
auto monster_builder = MonsterBuilder(builder);
monster_builder.add_name(
required_name); // required field mandated for monster.
monster_builder.add_test4(vector_offset);
builder.Finish(monster_builder.Finish());
auto p = builder.GetBufferPointer();
auto uvt = flatbuffers::GetRoot<Monster>(p);
TEST_NOTNULL(uvt);
auto vec = uvt->test4();
TEST_NOTNULL(vec);
auto test_0 = vec->Get(0);
auto test_1 = vec->Get(1);
TEST_EQ(test_0->a(), 10);
TEST_EQ(test_0->b(), 20);
TEST_EQ(test_1->a(), 30);
TEST_EQ(test_1->b(), 40);
}
void EqualOperatorTest() {
MonsterT a;
MonsterT b;
TEST_EQ(b == a, true);
TEST_EQ(b != a, false);
b.mana = 33;
TEST_EQ(b == a, false);
TEST_EQ(b != a, true);
b.mana = 150;
TEST_EQ(b == a, true);
TEST_EQ(b != a, false);
b.inventory.push_back(3);
TEST_EQ(b == a, false);
TEST_EQ(b != a, true);
b.inventory.clear();
TEST_EQ(b == a, true);
TEST_EQ(b != a, false);
b.test.type = Any_Monster;
TEST_EQ(b == a, false);
TEST_EQ(b != a, true);
}
// For testing any binaries, e.g. from fuzzing.
void LoadVerifyBinaryTest() {
std::string binary;
if (flatbuffers::LoadFile(
(test_data_path + "fuzzer/your-filename-here").c_str(), true,
&binary)) {
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
TEST_EQ(VerifyMonsterBuffer(verifier), true);
}
}
void CreateSharedStringTest() {
flatbuffers::FlatBufferBuilder builder;
const auto one1 = builder.CreateSharedString("one");
const auto two = builder.CreateSharedString("two");
const auto one2 = builder.CreateSharedString("one");
TEST_EQ(one1.o, one2.o);
const auto onetwo = builder.CreateSharedString("onetwo");
TEST_EQ(onetwo.o != one1.o, true);
TEST_EQ(onetwo.o != two.o, true);
// Support for embedded nulls
const char chars_b[] = { 'a', '\0', 'b' };
const char chars_c[] = { 'a', '\0', 'c' };
const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b));
const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c));
const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b));
TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro
TEST_EQ(null_b1.o, null_b2.o);
// Put the strings into an array for round trip verification.
const flatbuffers::Offset<flatbuffers::String> array[7] = {
one1, two, one2, onetwo, null_b1, null_c, null_b2
};
const auto vector_offset =
builder.CreateVector(array, flatbuffers::uoffset_t(7));
MonsterBuilder monster_builder(builder);
monster_builder.add_name(two);
monster_builder.add_testarrayofstring(vector_offset);
builder.Finish(monster_builder.Finish());
// Read the Monster back.
const auto *monster =
flatbuffers::GetRoot<Monster>(builder.GetBufferPointer());
TEST_EQ_STR(monster->name()->c_str(), "two");
const auto *testarrayofstring = monster->testarrayofstring();
TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7));
const auto &a = *testarrayofstring;
TEST_EQ_STR(a[0]->c_str(), "one");
TEST_EQ_STR(a[1]->c_str(), "two");
TEST_EQ_STR(a[2]->c_str(), "one");
TEST_EQ_STR(a[3]->c_str(), "onetwo");
TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b))));
TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c))));
TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b))));
// Make sure String::operator< works, too, since it is related to
// StringOffsetCompare.
TEST_EQ((*a[0]) < (*a[1]), true);
TEST_EQ((*a[1]) < (*a[0]), false);
TEST_EQ((*a[1]) < (*a[2]), false);
TEST_EQ((*a[2]) < (*a[1]), true);
TEST_EQ((*a[4]) < (*a[3]), true);
TEST_EQ((*a[5]) < (*a[4]), false);
TEST_EQ((*a[5]) < (*a[4]), false);
TEST_EQ((*a[6]) < (*a[5]), true);
}
void FixedLengthArrayTest() {
// VS10 does not support typed enums, exclude from tests
#if !defined(_MSC_VER) || _MSC_VER >= 1700
// Generate an ArrayTable containing one ArrayStruct.
flatbuffers::FlatBufferBuilder fbb;
MyGame::Example::NestedStruct nStruct0(MyGame::Example::TestEnum::B);
TEST_NOTNULL(nStruct0.mutable_a());
nStruct0.mutable_a()->Mutate(0, 1);
nStruct0.mutable_a()->Mutate(1, 2);
TEST_NOTNULL(nStruct0.mutable_c());
nStruct0.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C);
nStruct0.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A);
TEST_NOTNULL(nStruct0.mutable_d());
nStruct0.mutable_d()->Mutate(0, flatbuffers::numeric_limits<int64_t>::max());
nStruct0.mutable_d()->Mutate(1, flatbuffers::numeric_limits<int64_t>::min());
MyGame::Example::NestedStruct nStruct1(MyGame::Example::TestEnum::C);
TEST_NOTNULL(nStruct1.mutable_a());
nStruct1.mutable_a()->Mutate(0, 3);
nStruct1.mutable_a()->Mutate(1, 4);
TEST_NOTNULL(nStruct1.mutable_c());
nStruct1.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C);
nStruct1.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A);
TEST_NOTNULL(nStruct1.mutable_d());
nStruct1.mutable_d()->Mutate(0, flatbuffers::numeric_limits<int64_t>::min());
nStruct1.mutable_d()->Mutate(1, flatbuffers::numeric_limits<int64_t>::max());
MyGame::Example::ArrayStruct aStruct(2, 12, 1);
TEST_NOTNULL(aStruct.b());
TEST_NOTNULL(aStruct.mutable_b());
TEST_NOTNULL(aStruct.mutable_d());
TEST_NOTNULL(aStruct.mutable_f());
for (int i = 0; i < aStruct.b()->size(); i++)
aStruct.mutable_b()->Mutate(i, i + 1);
aStruct.mutable_d()->Mutate(0, nStruct0);
aStruct.mutable_d()->Mutate(1, nStruct1);
auto aTable = MyGame::Example::CreateArrayTable(fbb, &aStruct);
fbb.Finish(aTable);
// Verify correctness of the ArrayTable.
flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
MyGame::Example::VerifyArrayTableBuffer(verifier);
auto p = MyGame::Example::GetMutableArrayTable(fbb.GetBufferPointer());
auto mArStruct = p->mutable_a();
TEST_NOTNULL(mArStruct);
TEST_NOTNULL(mArStruct->b());
TEST_NOTNULL(mArStruct->d());
TEST_NOTNULL(mArStruct->f());
TEST_NOTNULL(mArStruct->mutable_b());
TEST_NOTNULL(mArStruct->mutable_d());
TEST_NOTNULL(mArStruct->mutable_f());
mArStruct->mutable_b()->Mutate(14, -14);
TEST_EQ(mArStruct->a(), 2);
TEST_EQ(mArStruct->b()->size(), 15);
TEST_EQ(mArStruct->b()->Get(aStruct.b()->size() - 1), -14);
TEST_EQ(mArStruct->c(), 12);
TEST_NOTNULL(mArStruct->d()->Get(0));
TEST_NOTNULL(mArStruct->d()->Get(0)->a());
TEST_EQ(mArStruct->d()->Get(0)->a()->Get(0), 1);
TEST_EQ(mArStruct->d()->Get(0)->a()->Get(1), 2);
TEST_NOTNULL(mArStruct->d()->Get(1));
TEST_NOTNULL(mArStruct->d()->Get(1)->a());
TEST_EQ(mArStruct->d()->Get(1)->a()->Get(0), 3);
TEST_EQ(mArStruct->d()->Get(1)->a()->Get(1), 4);
TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1));
TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a());
mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a()->Mutate(1, 5);
TEST_EQ(5, mArStruct->d()->Get(1)->a()->Get(1));
TEST_EQ(MyGame::Example::TestEnum::B, mArStruct->d()->Get(0)->b());
TEST_NOTNULL(mArStruct->d()->Get(0)->c());
TEST_EQ(MyGame::Example::TestEnum::C, mArStruct->d()->Get(0)->c()->Get(0));
TEST_EQ(MyGame::Example::TestEnum::A, mArStruct->d()->Get(0)->c()->Get(1));
TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(),
mArStruct->d()->Get(0)->d()->Get(0));
TEST_EQ(flatbuffers::numeric_limits<int64_t>::min(),
mArStruct->d()->Get(0)->d()->Get(1));
TEST_EQ(MyGame::Example::TestEnum::C, mArStruct->d()->Get(1)->b());
TEST_NOTNULL(mArStruct->d()->Get(1)->c());
TEST_EQ(MyGame::Example::TestEnum::C, mArStruct->d()->Get(1)->c()->Get(0));
TEST_EQ(MyGame::Example::TestEnum::A, mArStruct->d()->Get(1)->c()->Get(1));
TEST_EQ(flatbuffers::numeric_limits<int64_t>::min(),
mArStruct->d()->Get(1)->d()->Get(0));
TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(),
mArStruct->d()->Get(1)->d()->Get(1));
for (int i = 0; i < mArStruct->b()->size() - 1; i++)
TEST_EQ(mArStruct->b()->Get(i), i + 1);
// Check alignment
TEST_EQ(0, reinterpret_cast<uintptr_t>(mArStruct->d()) % 8);
TEST_EQ(0, reinterpret_cast<uintptr_t>(mArStruct->f()) % 8);
#endif
}
void NativeTypeTest() {
const int N = 3;
Geometry::ApplicationDataT src_data;
src_data.vectors.reserve(N);
for (int i = 0; i < N; ++i) {
src_data.vectors.push_back(
Native::Vector3D(10 * i + 0.1f, 10 * i + 0.2f, 10 * i + 0.3f));
}
flatbuffers::FlatBufferBuilder fbb;
fbb.Finish(Geometry::ApplicationData::Pack(fbb, &src_data));
auto dstDataT = Geometry::UnPackApplicationData(fbb.GetBufferPointer());
for (int i = 0; i < N; ++i) {
Native::Vector3D &v = dstDataT->vectors[i];
TEST_EQ(v.x, 10 * i + 0.1f);
TEST_EQ(v.y, 10 * i + 0.2f);
TEST_EQ(v.z, 10 * i + 0.3f);
}
}
void FixedLengthArrayJsonTest(bool binary) {
// VS10 does not support typed enums, exclude from tests
#if !defined(_MSC_VER) || _MSC_VER >= 1700
// load FlatBuffer schema (.fbs) and JSON from disk
std::string schemafile;
std::string jsonfile;
TEST_EQ(
flatbuffers::LoadFile(
(test_data_path + "arrays_test." + (binary ? "bfbs" : "fbs")).c_str(),
binary, &schemafile),
true);
TEST_EQ(flatbuffers::LoadFile((test_data_path + "arrays_test.golden").c_str(),
false, &jsonfile),
true);
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parserOrg, parserGen;
if (binary) {
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(schemafile.c_str()),
schemafile.size());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
TEST_EQ(parserOrg.Deserialize((const uint8_t *)schemafile.c_str(),
schemafile.size()),
true);
TEST_EQ(parserGen.Deserialize((const uint8_t *)schemafile.c_str(),
schemafile.size()),
true);
} else {
TEST_EQ(parserOrg.Parse(schemafile.c_str()), true);
TEST_EQ(parserGen.Parse(schemafile.c_str()), true);
}
TEST_EQ(parserOrg.Parse(jsonfile.c_str()), true);
// First, verify it, just in case:
flatbuffers::Verifier verifierOrg(parserOrg.builder_.GetBufferPointer(),
parserOrg.builder_.GetSize());
TEST_EQ(VerifyArrayTableBuffer(verifierOrg), true);
// Export to JSON
std::string jsonGen;
TEST_EQ(
GenerateText(parserOrg, parserOrg.builder_.GetBufferPointer(), &jsonGen),
true);
// Import from JSON
TEST_EQ(parserGen.Parse(jsonGen.c_str()), true);
// Verify buffer from generated JSON
flatbuffers::Verifier verifierGen(parserGen.builder_.GetBufferPointer(),
parserGen.builder_.GetSize());
TEST_EQ(VerifyArrayTableBuffer(verifierGen), true);
// Compare generated buffer to original
TEST_EQ(parserOrg.builder_.GetSize(), parserGen.builder_.GetSize());
TEST_EQ(std::memcmp(parserOrg.builder_.GetBufferPointer(),
parserGen.builder_.GetBufferPointer(),
parserOrg.builder_.GetSize()),
0);
#else
(void)binary;
#endif
}
void TestEmbeddedBinarySchema() {
// load JSON from disk
std::string jsonfile;
TEST_EQ(flatbuffers::LoadFile(
(test_data_path + "monsterdata_test.golden").c_str(), false,
&jsonfile),
true);
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parserOrg, parserGen;
flatbuffers::Verifier verifier(MyGame::Example::MonsterBinarySchema::data(),
MyGame::Example::MonsterBinarySchema::size());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
TEST_EQ(parserOrg.Deserialize(MyGame::Example::MonsterBinarySchema::data(),
MyGame::Example::MonsterBinarySchema::size()),
true);
TEST_EQ(parserGen.Deserialize(MyGame::Example::MonsterBinarySchema::data(),
MyGame::Example::MonsterBinarySchema::size()),
true);
TEST_EQ(parserOrg.Parse(jsonfile.c_str()), true);
// First, verify it, just in case:
flatbuffers::Verifier verifierOrg(parserOrg.builder_.GetBufferPointer(),
parserOrg.builder_.GetSize());
TEST_EQ(VerifyMonsterBuffer(verifierOrg), true);
// Export to JSON
std::string jsonGen;
TEST_EQ(
GenerateText(parserOrg, parserOrg.builder_.GetBufferPointer(), &jsonGen),
true);
// Import from JSON
TEST_EQ(parserGen.Parse(jsonGen.c_str()), true);
// Verify buffer from generated JSON
flatbuffers::Verifier verifierGen(parserGen.builder_.GetBufferPointer(),
parserGen.builder_.GetSize());
TEST_EQ(VerifyMonsterBuffer(verifierGen), true);
// Compare generated buffer to original
TEST_EQ(parserOrg.builder_.GetSize(), parserGen.builder_.GetSize());
TEST_EQ(std::memcmp(parserOrg.builder_.GetBufferPointer(),
parserGen.builder_.GetBufferPointer(),
parserOrg.builder_.GetSize()),
0);
}
int FlatBufferTests() {
// clang-format off
// Run our various test suites:
std::string rawbuf;
auto flatbuf1 = CreateFlatBufferTest(rawbuf);
#if !defined(FLATBUFFERS_CPP98_STL)
auto flatbuf = std::move(flatbuf1); // Test move assignment.
#else
auto &flatbuf = flatbuf1;
#endif // !defined(FLATBUFFERS_CPP98_STL)
TriviallyCopyableTest();
AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
rawbuf.length());
AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
ObjectFlatBuffersTest(flatbuf.data());
MiniReflectFlatBuffersTest(flatbuf.data());
SizePrefixedTest();
#ifndef FLATBUFFERS_NO_FILE_TESTS
#ifdef FLATBUFFERS_TEST_PATH_PREFIX
test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
test_data_path;
#endif
ParseAndGenerateTextTest(false);
ParseAndGenerateTextTest(true);
FixedLengthArrayJsonTest(false);
FixedLengthArrayJsonTest(true);
ReflectionTest(flatbuf.data(), flatbuf.size());
ParseProtoTest();
ParseProtoTestWithSuffix();
ParseProtoTestWithIncludes();
EvolutionTest();
UnionVectorTest();
LoadVerifyBinaryTest();
GenerateTableTextTest();
TestEmbeddedBinarySchema();
#endif
// clang-format on
FuzzTest1();
FuzzTest2();
ErrorTest();
ValueTest();
EnumValueTest();
EnumStringsTest();
EnumNamesTest();
EnumOutOfRangeTest();
IntegerOutOfRangeTest();
IntegerBoundaryTest();
UnicodeTest();
UnicodeTestAllowNonUTF8();
UnicodeTestGenerateTextFailsOnNonUTF8();
UnicodeSurrogatesTest();
UnicodeInvalidSurrogatesTest();
InvalidUTF8Test();
UnknownFieldsTest();
ParseUnionTest();
InvalidNestedFlatbufferTest();
ConformTest();
ParseProtoBufAsciiTest();
TypeAliasesTest();
EndianSwapTest();
CreateSharedStringTest();
JsonDefaultTest();
JsonEnumsTest();
FlexBuffersTest();
FlexBuffersDeprecatedTest();
UninitializedVectorTest();
EqualOperatorTest();
NumericUtilsTest();
IsAsciiUtilsTest();
ValidFloatTest();
InvalidFloatTest();
TestMonsterExtraFloats();
FixedLengthArrayTest();
NativeTypeTest();
return 0;
}
int main(int /*argc*/, const char * /*argv*/[]) {
InitTestEngine();
std::string req_locale;
if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE",
&req_locale)) {
TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s",
req_locale.c_str());
req_locale = flatbuffers::RemoveStringQuotes(req_locale);
std::string the_locale;
TEST_ASSERT_FUNC(
flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale));
TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str());
}
FlatBufferTests();
FlatBufferBuilderTest();
if (!testing_fails) {
TEST_OUTPUT_LINE("ALL TESTS PASSED");
} else {
TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
}
return CloseTestEngine();
}