You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
896 lines
40 KiB
896 lines
40 KiB
/******************************************************************************
|
|
*
|
|
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
******************************************************************************/
|
|
/**
|
|
*******************************************************************************
|
|
* @file
|
|
* ihevc_chroma_itrans_recon_16x16.c
|
|
*
|
|
* @brief
|
|
* Contains function definitions for 16x16 inverse transform and reconstruction
|
|
* of chroma interleaved data.
|
|
*
|
|
* @author
|
|
* 100470
|
|
*
|
|
* @par List of Functions:
|
|
* - ihevc_chroma_itrans_recon_16x16()
|
|
*
|
|
* @remarks
|
|
* None
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "ihevc_typedefs.h"
|
|
#include "ihevc_macros.h"
|
|
#include "ihevc_platform_macros.h"
|
|
#include "ihevc_defs.h"
|
|
#include "ihevc_trans_tables.h"
|
|
#include "ihevc_chroma_itrans_recon.h"
|
|
#include "ihevc_func_selector.h"
|
|
#include "ihevc_trans_macros.h"
|
|
|
|
/* All the functions work one component(U or V) of interleaved data depending upon pointers passed to it */
|
|
/* Data visualization */
|
|
/* U V U V U V U V */
|
|
/* U V U V U V U V */
|
|
/* U V U V U V U V */
|
|
/* U V U V U V U V */
|
|
/* If the pointer points to first byte of above stream (U) , functions will operate on U component */
|
|
/* If the pointer points to second byte of above stream (V) , functions will operate on V component */
|
|
|
|
|
|
/**
|
|
*******************************************************************************
|
|
*
|
|
* @brief
|
|
* This function performs Inverse transform and reconstruction for 16x16
|
|
* input block
|
|
*
|
|
* @par Description:
|
|
* Performs inverse transform and adds the prediction data and clips output
|
|
* to 8 bit
|
|
*
|
|
* @param[in] pi2_src
|
|
* Input 16x16 coefficients
|
|
*
|
|
* @param[in] pi2_tmp
|
|
* Temporary 16x16 buffer for storing inverse transform
|
|
* 1st stage output
|
|
*
|
|
* @param[in] pu1_pred
|
|
* Prediction 16x16 block
|
|
*
|
|
* @param[out] pu1_dst
|
|
* Output 16x16 block
|
|
*
|
|
* @param[in] src_strd
|
|
* Input stride
|
|
*
|
|
* @param[in] pred_strd
|
|
* Prediction stride
|
|
*
|
|
* @param[in] dst_strd
|
|
* Output Stride
|
|
*
|
|
* @param[in] shift
|
|
* Output shift
|
|
*
|
|
* @param[in] zero_cols
|
|
* Zero columns in pi2_src
|
|
*
|
|
* @returns Void
|
|
*
|
|
* @remarks
|
|
* None
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
|
|
void ihevc_chroma_itrans_recon_16x16(WORD16 *pi2_src,
|
|
WORD16 *pi2_tmp,
|
|
UWORD8 *pu1_pred,
|
|
UWORD8 *pu1_dst,
|
|
WORD32 src_strd,
|
|
WORD32 pred_strd,
|
|
WORD32 dst_strd,
|
|
WORD32 zero_cols,
|
|
WORD32 zero_rows)
|
|
{
|
|
WORD32 j, k;
|
|
WORD32 e[8], o[8];
|
|
WORD32 ee[4], eo[4];
|
|
WORD32 eee[2], eeo[2];
|
|
WORD32 add;
|
|
WORD32 shift;
|
|
WORD16 *pi2_tmp_orig;
|
|
WORD32 trans_size;
|
|
WORD32 row_limit_2nd_stage, zero_rows_2nd_stage = zero_cols;
|
|
|
|
trans_size = TRANS_SIZE_16;
|
|
pi2_tmp_orig = pi2_tmp;
|
|
|
|
if((zero_cols & 0xFFF0) == 0xFFF0)
|
|
row_limit_2nd_stage = 4;
|
|
else if((zero_cols & 0xFF00) == 0xFF00)
|
|
row_limit_2nd_stage = 8;
|
|
else
|
|
row_limit_2nd_stage = TRANS_SIZE_16;
|
|
|
|
if((zero_rows & 0xFFF0) == 0xFFF0) /* First 4 rows of input are non-zero */
|
|
{
|
|
/************************************************************************************************/
|
|
/**********************************START - IT_RECON_16x16****************************************/
|
|
/************************************************************************************************/
|
|
|
|
/* Inverse Transform 1st stage */
|
|
shift = IT_SHIFT_STAGE_1;
|
|
add = 1 << (shift - 1);
|
|
|
|
for(j = 0; j < row_limit_2nd_stage; j++)
|
|
{
|
|
/* Checking for Zero Cols */
|
|
if((zero_cols & 1) == 1)
|
|
{
|
|
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
|
|
}
|
|
else
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_src[3 * src_strd];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd];
|
|
}
|
|
eeo[0] = 0;
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0];
|
|
eeo[1] = 0;
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
pi2_tmp[k] =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pi2_tmp[k + 8] =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
}
|
|
}
|
|
pi2_src++;
|
|
pi2_tmp += trans_size;
|
|
zero_cols = zero_cols >> 1;
|
|
}
|
|
|
|
pi2_tmp = pi2_tmp_orig;
|
|
|
|
/* Inverse Transform 2nd stage */
|
|
shift = IT_SHIFT_STAGE_2;
|
|
add = 1 << (shift - 1);
|
|
if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size];
|
|
}
|
|
eeo[0] = 0;
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0];
|
|
eeo[1] = 0;
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 8 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_tmp[7 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_tmp[6 * trans_size];
|
|
}
|
|
eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0];
|
|
eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else /* All rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_tmp[7 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[9][k]
|
|
* pi2_tmp[9 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[11][k]
|
|
* pi2_tmp[11 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[13][k]
|
|
* pi2_tmp[13 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[15][k]
|
|
* pi2_tmp[15 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_tmp[6 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[10][k]
|
|
* pi2_tmp[10 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[14][k]
|
|
* pi2_tmp[14 * trans_size];
|
|
}
|
|
eeo[0] =
|
|
g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[12][0]
|
|
* pi2_tmp[12
|
|
* trans_size];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size];
|
|
eeo[1] =
|
|
g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[12][1]
|
|
* pi2_tmp[12
|
|
* trans_size];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
/************************************************************************************************/
|
|
/************************************END - IT_RECON_16x16****************************************/
|
|
/************************************************************************************************/
|
|
}
|
|
else if((zero_rows & 0xFF00) == 0xFF00) /* First 8 rows of input are non-zero */
|
|
{
|
|
/************************************************************************************************/
|
|
/**********************************START - IT_RECON_16x16****************************************/
|
|
/************************************************************************************************/
|
|
|
|
/* Inverse Transform 1st stage */
|
|
shift = IT_SHIFT_STAGE_1;
|
|
add = 1 << (shift - 1);
|
|
|
|
for(j = 0; j < row_limit_2nd_stage; j++)
|
|
{
|
|
/* Checking for Zero Cols */
|
|
if((zero_cols & 1) == 1)
|
|
{
|
|
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
|
|
}
|
|
else
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_src[3 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_src[5 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_src[7 * src_strd];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_src[6 * src_strd];
|
|
}
|
|
eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0];
|
|
eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
pi2_tmp[k] =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pi2_tmp[k + 8] =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
}
|
|
}
|
|
pi2_src++;
|
|
pi2_tmp += trans_size;
|
|
zero_cols = zero_cols >> 1;
|
|
}
|
|
|
|
pi2_tmp = pi2_tmp_orig;
|
|
|
|
/* Inverse Transform 2nd stage */
|
|
shift = IT_SHIFT_STAGE_2;
|
|
add = 1 << (shift - 1);
|
|
if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size];
|
|
}
|
|
eeo[0] = 0;
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0];
|
|
eeo[1] = 0;
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 8 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_tmp[7 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_tmp[6 * trans_size];
|
|
}
|
|
eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0];
|
|
eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else /* All rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_tmp[7 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[9][k]
|
|
* pi2_tmp[9 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[11][k]
|
|
* pi2_tmp[11 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[13][k]
|
|
* pi2_tmp[13 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[15][k]
|
|
* pi2_tmp[15 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_tmp[6 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[10][k]
|
|
* pi2_tmp[10 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[14][k]
|
|
* pi2_tmp[14 * trans_size];
|
|
}
|
|
eeo[0] =
|
|
g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[12][0]
|
|
* pi2_tmp[12
|
|
* trans_size];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size];
|
|
eeo[1] =
|
|
g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[12][1]
|
|
* pi2_tmp[12
|
|
* trans_size];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
/************************************************************************************************/
|
|
/************************************END - IT_RECON_16x16****************************************/
|
|
/************************************************************************************************/
|
|
}
|
|
else /* All rows of input are non-zero */
|
|
{
|
|
/************************************************************************************************/
|
|
/**********************************START - IT_RECON_16x16****************************************/
|
|
/************************************************************************************************/
|
|
|
|
/* Inverse Transform 1st stage */
|
|
shift = IT_SHIFT_STAGE_1;
|
|
add = 1 << (shift - 1);
|
|
|
|
for(j = 0; j < row_limit_2nd_stage; j++)
|
|
{
|
|
/* Checking for Zero Cols */
|
|
if((zero_cols & 1) == 1)
|
|
{
|
|
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
|
|
}
|
|
else
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_src[3 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_src[5 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_src[7 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[9][k]
|
|
* pi2_src[9 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[11][k]
|
|
* pi2_src[11 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[13][k]
|
|
* pi2_src[13 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[15][k]
|
|
* pi2_src[15 * src_strd];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_src[6 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[10][k]
|
|
* pi2_src[10 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[14][k]
|
|
* pi2_src[14 * src_strd];
|
|
}
|
|
eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[12][0]
|
|
* pi2_src[12 * src_strd];
|
|
eee[0] =
|
|
g_ai2_ihevc_trans_16[0][0] * pi2_src[0]
|
|
+ g_ai2_ihevc_trans_16[8][0]
|
|
* pi2_src[8
|
|
* src_strd];
|
|
eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd]
|
|
+ g_ai2_ihevc_trans_16[12][1]
|
|
* pi2_src[12 * src_strd];
|
|
eee[1] =
|
|
g_ai2_ihevc_trans_16[0][1] * pi2_src[0]
|
|
+ g_ai2_ihevc_trans_16[8][1]
|
|
* pi2_src[8
|
|
* src_strd];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
pi2_tmp[k] =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pi2_tmp[k + 8] =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
}
|
|
}
|
|
pi2_src++;
|
|
pi2_tmp += trans_size;
|
|
zero_cols = zero_cols >> 1;
|
|
}
|
|
|
|
pi2_tmp = pi2_tmp_orig;
|
|
|
|
/* Inverse Transform 2nd stage */
|
|
shift = IT_SHIFT_STAGE_2;
|
|
add = 1 << (shift - 1);
|
|
if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size];
|
|
}
|
|
eeo[0] = 0;
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0];
|
|
eeo[1] = 0;
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 8 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_tmp[7 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_tmp[6 * trans_size];
|
|
}
|
|
eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0];
|
|
eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else /* All rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_16[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[7][k]
|
|
* pi2_tmp[7 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[9][k]
|
|
* pi2_tmp[9 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[11][k]
|
|
* pi2_tmp[11 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[13][k]
|
|
* pi2_tmp[13 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[15][k]
|
|
* pi2_tmp[15 * trans_size];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[6][k]
|
|
* pi2_tmp[6 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[10][k]
|
|
* pi2_tmp[10 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[14][k]
|
|
* pi2_tmp[14 * trans_size];
|
|
}
|
|
eeo[0] =
|
|
g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[12][0]
|
|
* pi2_tmp[12
|
|
* trans_size];
|
|
eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size];
|
|
eeo[1] =
|
|
g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]
|
|
+ g_ai2_ihevc_trans_16[12][1]
|
|
* pi2_tmp[12
|
|
* trans_size];
|
|
eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
for(k = 0; k < 2; k++)
|
|
{
|
|
ee[k] = eee[k] + eeo[k];
|
|
ee[k + 2] = eee[1 - k] - eeo[1 - k];
|
|
}
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
e[k] = ee[k] + eo[k];
|
|
e[k + 4] = ee[3 - k] - eo[3 - k];
|
|
}
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
|
|
itrans_out =
|
|
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift));
|
|
pu1_dst[(k + 8) * 2] = CLIP_U8((itrans_out + pu1_pred[(k + 8) * 2]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
/************************************************************************************************/
|
|
/************************************END - IT_RECON_16x16****************************************/
|
|
/************************************************************************************************/
|
|
}
|
|
}
|
|
|