You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

908 lines
30 KiB

//===- llvm/unittest/Support/BinaryStreamTest.cpp -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryItemStream.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::support;
namespace {
class BrokenStream : public WritableBinaryStream {
public:
BrokenStream(MutableArrayRef<uint8_t> Data, endianness Endian,
uint32_t Align)
: Data(Data), PartitionIndex(alignDown(Data.size() / 2, Align)),
Endian(Endian) {}
endianness getEndian() const override { return Endian; }
Error readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) override {
if (auto EC = checkOffsetForRead(Offset, Size))
return EC;
uint32_t S = startIndex(Offset);
auto Ref = Data.drop_front(S);
if (Ref.size() >= Size) {
Buffer = Ref.take_front(Size);
return Error::success();
}
uint32_t BytesLeft = Size - Ref.size();
uint8_t *Ptr = Allocator.Allocate<uint8_t>(Size);
::memcpy(Ptr, Ref.data(), Ref.size());
::memcpy(Ptr + Ref.size(), Data.data(), BytesLeft);
Buffer = makeArrayRef<uint8_t>(Ptr, Size);
return Error::success();
}
Error readLongestContiguousChunk(uint32_t Offset,
ArrayRef<uint8_t> &Buffer) override {
if (auto EC = checkOffsetForRead(Offset, 1))
return EC;
uint32_t S = startIndex(Offset);
Buffer = Data.drop_front(S);
return Error::success();
}
uint32_t getLength() override { return Data.size(); }
Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override {
if (auto EC = checkOffsetForWrite(Offset, SrcData.size()))
return EC;
if (SrcData.empty())
return Error::success();
uint32_t S = startIndex(Offset);
MutableArrayRef<uint8_t> Ref(Data);
Ref = Ref.drop_front(S);
if (Ref.size() >= SrcData.size()) {
::memcpy(Ref.data(), SrcData.data(), SrcData.size());
return Error::success();
}
uint32_t BytesLeft = SrcData.size() - Ref.size();
::memcpy(Ref.data(), SrcData.data(), Ref.size());
::memcpy(&Data[0], SrcData.data() + Ref.size(), BytesLeft);
return Error::success();
}
Error commit() override { return Error::success(); }
private:
uint32_t startIndex(uint32_t Offset) const {
return (Offset + PartitionIndex) % Data.size();
}
uint32_t endIndex(uint32_t Offset, uint32_t Size) const {
return (startIndex(Offset) + Size - 1) % Data.size();
}
// Buffer is organized like this:
// -------------------------------------------------
// | N/2 | N/2+1 | ... | N-1 | 0 | 1 | ... | N/2-1 |
// -------------------------------------------------
// So reads from the beginning actually come from the middle.
MutableArrayRef<uint8_t> Data;
uint32_t PartitionIndex = 0;
endianness Endian;
BumpPtrAllocator Allocator;
};
constexpr endianness Endians[] = {big, little, native};
constexpr uint32_t NumEndians = llvm::array_lengthof(Endians);
constexpr uint32_t NumStreams = 2 * NumEndians;
class BinaryStreamTest : public testing::Test {
public:
BinaryStreamTest() {}
void SetUp() override {
Streams.clear();
Streams.resize(NumStreams);
for (uint32_t I = 0; I < NumStreams; ++I)
Streams[I].IsContiguous = (I % 2 == 0);
InputData.clear();
OutputData.clear();
}
protected:
struct StreamPair {
bool IsContiguous;
std::unique_ptr<BinaryStream> Input;
std::unique_ptr<WritableBinaryStream> Output;
};
void initializeInput(ArrayRef<uint8_t> Input, uint32_t Align) {
InputData = Input;
BrokenInputData.resize(InputData.size());
if (!Input.empty()) {
uint32_t PartitionIndex = alignDown(InputData.size() / 2, Align);
uint32_t RightBytes = InputData.size() - PartitionIndex;
uint32_t LeftBytes = PartitionIndex;
if (RightBytes > 0)
::memcpy(&BrokenInputData[PartitionIndex], Input.data(), RightBytes);
if (LeftBytes > 0)
::memcpy(&BrokenInputData[0], Input.data() + RightBytes, LeftBytes);
}
for (uint32_t I = 0; I < NumEndians; ++I) {
auto InByteStream =
std::make_unique<BinaryByteStream>(InputData, Endians[I]);
auto InBrokenStream = std::make_unique<BrokenStream>(
BrokenInputData, Endians[I], Align);
Streams[I * 2].Input = std::move(InByteStream);
Streams[I * 2 + 1].Input = std::move(InBrokenStream);
}
}
void initializeOutput(uint32_t Size, uint32_t Align) {
OutputData.resize(Size);
BrokenOutputData.resize(Size);
for (uint32_t I = 0; I < NumEndians; ++I) {
Streams[I * 2].Output =
std::make_unique<MutableBinaryByteStream>(OutputData, Endians[I]);
Streams[I * 2 + 1].Output = std::make_unique<BrokenStream>(
BrokenOutputData, Endians[I], Align);
}
}
void initializeOutputFromInput(uint32_t Align) {
for (uint32_t I = 0; I < NumEndians; ++I) {
Streams[I * 2].Output =
std::make_unique<MutableBinaryByteStream>(InputData, Endians[I]);
Streams[I * 2 + 1].Output = std::make_unique<BrokenStream>(
BrokenInputData, Endians[I], Align);
}
}
void initializeInputFromOutput(uint32_t Align) {
for (uint32_t I = 0; I < NumEndians; ++I) {
Streams[I * 2].Input =
std::make_unique<BinaryByteStream>(OutputData, Endians[I]);
Streams[I * 2 + 1].Input = std::make_unique<BrokenStream>(
BrokenOutputData, Endians[I], Align);
}
}
std::vector<uint8_t> InputData;
std::vector<uint8_t> BrokenInputData;
std::vector<uint8_t> OutputData;
std::vector<uint8_t> BrokenOutputData;
std::vector<StreamPair> Streams;
};
// Tests that a we can read from a BinaryByteStream without a StreamReader.
TEST_F(BinaryStreamTest, BinaryByteStreamBounds) {
std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
initializeInput(InputData, 1);
for (auto &Stream : Streams) {
ArrayRef<uint8_t> Buffer;
// 1. If the read fits it should work.
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
ASSERT_THAT_ERROR(Stream.Input->readBytes(2, 1, Buffer), Succeeded());
EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
ASSERT_THAT_ERROR(Stream.Input->readBytes(0, 4, Buffer), Succeeded());
EXPECT_EQ(makeArrayRef(InputData).slice(0, 4), Buffer);
// 2. Reading past the bounds of the input should fail.
EXPECT_THAT_ERROR(Stream.Input->readBytes(4, 2, Buffer), Failed());
}
}
TEST_F(BinaryStreamTest, StreamRefBounds) {
std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
initializeInput(InputData, 1);
for (const auto &Stream : Streams) {
ArrayRef<uint8_t> Buffer;
BinaryStreamRef Ref(*Stream.Input);
// Read 1 byte from offset 2 should work
ASSERT_EQ(InputData.size(), Ref.getLength());
ASSERT_THAT_ERROR(Ref.readBytes(2, 1, Buffer), Succeeded());
EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
// Reading everything from offset 2 on.
ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
if (Stream.IsContiguous)
EXPECT_EQ(makeArrayRef(InputData).slice(2), Buffer);
else
EXPECT_FALSE(Buffer.empty());
// Reading 6 bytes from offset 0 is too big.
EXPECT_THAT_ERROR(Ref.readBytes(0, 6, Buffer), Failed());
EXPECT_THAT_ERROR(Ref.readLongestContiguousChunk(6, Buffer), Failed());
// Reading 1 byte from offset 2 after dropping 1 byte is the same as reading
// 1 byte from offset 3.
Ref = Ref.drop_front(1);
ASSERT_THAT_ERROR(Ref.readBytes(2, 1, Buffer), Succeeded());
if (Stream.IsContiguous)
EXPECT_EQ(makeArrayRef(InputData).slice(3, 1), Buffer);
else
EXPECT_FALSE(Buffer.empty());
// Reading everything from offset 2 on after dropping 1 byte.
ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
if (Stream.IsContiguous)
EXPECT_EQ(makeArrayRef(InputData).slice(3), Buffer);
else
EXPECT_FALSE(Buffer.empty());
// Reading 2 bytes from offset 2 after dropping 2 bytes is the same as
// reading 2 bytes from offset 4, and should fail.
Ref = Ref.drop_front(1);
EXPECT_THAT_ERROR(Ref.readBytes(2, 2, Buffer), Failed());
// But if we read the longest contiguous chunk instead, we should still
// get the 1 byte at the end.
ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
EXPECT_EQ(makeArrayRef(InputData).take_back(), Buffer);
}
}
TEST_F(BinaryStreamTest, StreamRefDynamicSize) {
StringRef Strings[] = {"1", "2", "3", "4"};
AppendingBinaryByteStream Stream(support::little);
BinaryStreamWriter Writer(Stream);
BinaryStreamReader Reader(Stream);
const uint8_t *Byte;
StringRef Str;
// When the stream is empty, it should report a 0 length and we should get an
// error trying to read even 1 byte from it.
BinaryStreamRef ConstRef(Stream);
EXPECT_EQ(0U, ConstRef.getLength());
EXPECT_THAT_ERROR(Reader.readObject(Byte), Failed());
// But if we write to it, its size should increase and we should be able to
// read not just a byte, but the string that was written.
EXPECT_THAT_ERROR(Writer.writeCString(Strings[0]), Succeeded());
EXPECT_EQ(2U, ConstRef.getLength());
EXPECT_THAT_ERROR(Reader.readObject(Byte), Succeeded());
Reader.setOffset(0);
EXPECT_THAT_ERROR(Reader.readCString(Str), Succeeded());
EXPECT_EQ(Str, Strings[0]);
// If we drop some bytes from the front, we should still track the length as
// the
// underlying stream grows.
BinaryStreamRef Dropped = ConstRef.drop_front(1);
EXPECT_EQ(1U, Dropped.getLength());
EXPECT_THAT_ERROR(Writer.writeCString(Strings[1]), Succeeded());
EXPECT_EQ(4U, ConstRef.getLength());
EXPECT_EQ(3U, Dropped.getLength());
// If we drop zero bytes from the back, we should continue tracking the
// length.
Dropped = Dropped.drop_back(0);
EXPECT_THAT_ERROR(Writer.writeCString(Strings[2]), Succeeded());
EXPECT_EQ(6U, ConstRef.getLength());
EXPECT_EQ(5U, Dropped.getLength());
// If we drop non-zero bytes from the back, we should stop tracking the
// length.
Dropped = Dropped.drop_back(1);
EXPECT_THAT_ERROR(Writer.writeCString(Strings[3]), Succeeded());
EXPECT_EQ(8U, ConstRef.getLength());
EXPECT_EQ(4U, Dropped.getLength());
}
TEST_F(BinaryStreamTest, DropOperations) {
std::vector<uint8_t> InputData = {1, 2, 3, 4, 5, 4, 3, 2, 1};
auto RefData = makeArrayRef(InputData);
initializeInput(InputData, 1);
ArrayRef<uint8_t> Result;
BinaryStreamRef Original(InputData, support::little);
ASSERT_EQ(InputData.size(), Original.getLength());
EXPECT_THAT_ERROR(Original.readBytes(0, InputData.size(), Result),
Succeeded());
EXPECT_EQ(RefData, Result);
auto Dropped = Original.drop_front(2);
EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
Succeeded());
EXPECT_EQ(RefData.drop_front(2), Result);
Dropped = Original.drop_back(2);
EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
Succeeded());
EXPECT_EQ(RefData.drop_back(2), Result);
Dropped = Original.keep_front(2);
EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
Succeeded());
EXPECT_EQ(RefData.take_front(2), Result);
Dropped = Original.keep_back(2);
EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
Succeeded());
EXPECT_EQ(RefData.take_back(2), Result);
Dropped = Original.drop_symmetric(2);
EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
Succeeded());
EXPECT_EQ(RefData.drop_front(2).drop_back(2), Result);
}
// Test that we can write to a BinaryStream without a StreamWriter.
TEST_F(BinaryStreamTest, MutableBinaryByteStreamBounds) {
std::vector<uint8_t> InputData = {'T', 'e', 's', 't', '\0'};
initializeInput(InputData, 1);
initializeOutput(InputData.size(), 1);
// For every combination of input stream and output stream.
for (auto &Stream : Streams) {
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
// 1. Try two reads that are supposed to work. One from offset 0, and one
// from the middle.
uint32_t Offsets[] = {0, 3};
for (auto Offset : Offsets) {
uint32_t ExpectedSize = Stream.Input->getLength() - Offset;
// Read everything from Offset until the end of the input data.
ArrayRef<uint8_t> Data;
ASSERT_THAT_ERROR(Stream.Input->readBytes(Offset, ExpectedSize, Data),
Succeeded());
ASSERT_EQ(ExpectedSize, Data.size());
// Then write it to the destination.
ASSERT_THAT_ERROR(Stream.Output->writeBytes(0, Data), Succeeded());
// Then we read back what we wrote, it should match the corresponding
// slice of the original input data.
ArrayRef<uint8_t> Data2;
ASSERT_THAT_ERROR(Stream.Output->readBytes(Offset, ExpectedSize, Data2),
Succeeded());
EXPECT_EQ(makeArrayRef(InputData).drop_front(Offset), Data2);
}
std::vector<uint8_t> BigData = {0, 1, 2, 3, 4};
// 2. If the write is too big, it should fail.
EXPECT_THAT_ERROR(Stream.Output->writeBytes(3, BigData), Failed());
}
}
TEST_F(BinaryStreamTest, AppendingStream) {
AppendingBinaryByteStream Stream(llvm::support::little);
EXPECT_EQ(0U, Stream.getLength());
std::vector<uint8_t> InputData = {'T', 'e', 's', 't', 'T', 'e', 's', 't'};
auto Test = makeArrayRef(InputData).take_front(4);
// Writing past the end of the stream is an error.
EXPECT_THAT_ERROR(Stream.writeBytes(4, Test), Failed());
// Writing exactly at the end of the stream is ok.
EXPECT_THAT_ERROR(Stream.writeBytes(0, Test), Succeeded());
EXPECT_EQ(Test, Stream.data());
// And now that the end of the stream is where we couldn't write before, now
// we can write.
EXPECT_THAT_ERROR(Stream.writeBytes(4, Test), Succeeded());
EXPECT_EQ(MutableArrayRef<uint8_t>(InputData), Stream.data());
}
// Test that FixedStreamArray works correctly.
TEST_F(BinaryStreamTest, FixedStreamArray) {
std::vector<uint32_t> Ints = {90823, 12908, 109823, 209823};
ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(Ints.data()),
Ints.size() * sizeof(uint32_t));
initializeInput(IntBytes, alignof(uint32_t));
for (auto &Stream : Streams) {
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
FixedStreamArray<uint32_t> Array(*Stream.Input);
auto Iter = Array.begin();
ASSERT_EQ(Ints[0], *Iter++);
ASSERT_EQ(Ints[1], *Iter++);
ASSERT_EQ(Ints[2], *Iter++);
ASSERT_EQ(Ints[3], *Iter++);
ASSERT_EQ(Array.end(), Iter);
}
}
// Ensure FixedStreamArrayIterator::operator-> works.
// Added for coverage of r302257.
TEST_F(BinaryStreamTest, FixedStreamArrayIteratorArrow) {
std::vector<std::pair<uint32_t, uint32_t>> Pairs = {{867, 5309}, {555, 1212}};
ArrayRef<uint8_t> PairBytes(reinterpret_cast<uint8_t *>(Pairs.data()),
Pairs.size() * sizeof(Pairs[0]));
initializeInput(PairBytes, alignof(uint32_t));
for (auto &Stream : Streams) {
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
const FixedStreamArray<std::pair<uint32_t, uint32_t>> Array(*Stream.Input);
auto Iter = Array.begin();
ASSERT_EQ(Pairs[0].first, Iter->first);
ASSERT_EQ(Pairs[0].second, Iter->second);
++Iter;
ASSERT_EQ(Pairs[1].first, Iter->first);
ASSERT_EQ(Pairs[1].second, Iter->second);
++Iter;
ASSERT_EQ(Array.end(), Iter);
}
}
// Test that VarStreamArray works correctly.
TEST_F(BinaryStreamTest, VarStreamArray) {
StringLiteral Strings("1. Test2. Longer Test3. Really Long Test4. Super "
"Extra Longest Test Of All");
ArrayRef<uint8_t> StringBytes(
reinterpret_cast<const uint8_t *>(Strings.data()), Strings.size());
initializeInput(StringBytes, 1);
struct StringExtractor {
public:
Error operator()(BinaryStreamRef Stream, uint32_t &Len, StringRef &Item) {
if (Index == 0)
Len = strlen("1. Test");
else if (Index == 1)
Len = strlen("2. Longer Test");
else if (Index == 2)
Len = strlen("3. Really Long Test");
else
Len = strlen("4. Super Extra Longest Test Of All");
ArrayRef<uint8_t> Bytes;
if (auto EC = Stream.readBytes(0, Len, Bytes))
return EC;
Item =
StringRef(reinterpret_cast<const char *>(Bytes.data()), Bytes.size());
++Index;
return Error::success();
}
uint32_t Index = 0;
};
for (auto &Stream : Streams) {
VarStreamArray<StringRef, StringExtractor> Array(*Stream.Input);
auto Iter = Array.begin();
ASSERT_EQ("1. Test", *Iter++);
ASSERT_EQ("2. Longer Test", *Iter++);
ASSERT_EQ("3. Really Long Test", *Iter++);
ASSERT_EQ("4. Super Extra Longest Test Of All", *Iter++);
ASSERT_EQ(Array.end(), Iter);
}
}
TEST_F(BinaryStreamTest, StreamReaderBounds) {
std::vector<uint8_t> Bytes;
initializeInput(Bytes, 1);
for (auto &Stream : Streams) {
StringRef S;
BinaryStreamReader Reader(*Stream.Input);
EXPECT_EQ(0U, Reader.bytesRemaining());
EXPECT_THAT_ERROR(Reader.readFixedString(S, 1), Failed());
}
Bytes.resize(5);
initializeInput(Bytes, 1);
for (auto &Stream : Streams) {
StringRef S;
BinaryStreamReader Reader(*Stream.Input);
EXPECT_EQ(Bytes.size(), Reader.bytesRemaining());
EXPECT_THAT_ERROR(Reader.readFixedString(S, 5), Succeeded());
EXPECT_THAT_ERROR(Reader.readFixedString(S, 6), Failed());
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegers) {
support::ulittle64_t Little{908234};
support::ubig32_t Big{28907823};
short NS = 2897;
int NI = -89723;
unsigned long NUL = 902309023UL;
constexpr uint32_t Size =
sizeof(Little) + sizeof(Big) + sizeof(NS) + sizeof(NI) + sizeof(NUL);
initializeOutput(Size, alignof(support::ulittle64_t));
initializeInputFromOutput(alignof(support::ulittle64_t));
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
ASSERT_THAT_ERROR(Writer.writeObject(Little), Succeeded());
ASSERT_THAT_ERROR(Writer.writeObject(Big), Succeeded());
ASSERT_THAT_ERROR(Writer.writeInteger(NS), Succeeded());
ASSERT_THAT_ERROR(Writer.writeInteger(NI), Succeeded());
ASSERT_THAT_ERROR(Writer.writeInteger(NUL), Succeeded());
const support::ulittle64_t *Little2;
const support::ubig32_t *Big2;
short NS2;
int NI2;
unsigned long NUL2;
// 1. Reading fields individually.
BinaryStreamReader Reader(*Stream.Input);
ASSERT_THAT_ERROR(Reader.readObject(Little2), Succeeded());
ASSERT_THAT_ERROR(Reader.readObject(Big2), Succeeded());
ASSERT_THAT_ERROR(Reader.readInteger(NS2), Succeeded());
ASSERT_THAT_ERROR(Reader.readInteger(NI2), Succeeded());
ASSERT_THAT_ERROR(Reader.readInteger(NUL2), Succeeded());
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(Little, *Little2);
EXPECT_EQ(Big, *Big2);
EXPECT_EQ(NS, NS2);
EXPECT_EQ(NI, NI2);
EXPECT_EQ(NUL, NUL2);
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegerArray) {
// 1. Arrays of integers
std::vector<int> Ints = {1, 2, 3, 4, 5};
ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(&Ints[0]),
Ints.size() * sizeof(int));
initializeInput(IntBytes, alignof(int));
for (auto &Stream : Streams) {
BinaryStreamReader Reader(*Stream.Input);
ArrayRef<int> IntsRef;
ASSERT_THAT_ERROR(Reader.readArray(IntsRef, Ints.size()), Succeeded());
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(makeArrayRef(Ints), IntsRef);
Reader.setOffset(0);
FixedStreamArray<int> FixedIntsRef;
ASSERT_THAT_ERROR(Reader.readArray(FixedIntsRef, Ints.size()), Succeeded());
ASSERT_EQ(0U, Reader.bytesRemaining());
ASSERT_EQ(Ints, std::vector<int>(FixedIntsRef.begin(), FixedIntsRef.end()));
}
}
TEST_F(BinaryStreamTest, StreamReaderEnum) {
enum class MyEnum : int64_t { Foo = -10, Bar = 0, Baz = 10 };
std::vector<MyEnum> Enums = {MyEnum::Bar, MyEnum::Baz, MyEnum::Foo};
initializeOutput(Enums.size() * sizeof(MyEnum), alignof(MyEnum));
initializeInputFromOutput(alignof(MyEnum));
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
for (auto Value : Enums)
ASSERT_THAT_ERROR(Writer.writeEnum(Value), Succeeded());
BinaryStreamReader Reader(*Stream.Input);
FixedStreamArray<MyEnum> FSA;
for (size_t I = 0; I < Enums.size(); ++I) {
MyEnum Value;
ASSERT_THAT_ERROR(Reader.readEnum(Value), Succeeded());
EXPECT_EQ(Enums[I], Value);
}
ASSERT_EQ(0U, Reader.bytesRemaining());
}
}
TEST_F(BinaryStreamTest, StreamReaderULEB128) {
std::vector<uint64_t> TestValues = {
0, // Zero
0x7F, // One byte
0xFF, // One byte, all-ones
0xAAAA, // Two bytes
0xAAAAAAAA, // Four bytes
0xAAAAAAAAAAAAAAAA, // Eight bytes
0xffffffffffffffff // Eight bytess, all-ones
};
// Conservatively assume a 10-byte encoding for each of our LEB128s, with no
// alignment requirement.
initializeOutput(10 * TestValues.size(), 1);
initializeInputFromOutput(1);
for (auto &Stream : Streams) {
// Write fields.
BinaryStreamWriter Writer(*Stream.Output);
for (const auto &Value : TestValues)
ASSERT_THAT_ERROR(Writer.writeULEB128(Value), Succeeded());
// Read fields.
BinaryStreamReader Reader(*Stream.Input);
std::vector<uint64_t> Results;
Results.resize(TestValues.size());
for (unsigned I = 0; I != TestValues.size(); ++I)
ASSERT_THAT_ERROR(Reader.readULEB128(Results[I]), Succeeded());
for (unsigned I = 0; I != TestValues.size(); ++I)
EXPECT_EQ(TestValues[I], Results[I]);
}
}
TEST_F(BinaryStreamTest, StreamReaderSLEB128) {
std::vector<int64_t> TestValues = {
0, // Zero
0x7F, // One byte
-0x7F, // One byte, negative
0xFF, // One byte, all-ones
0xAAAA, // Two bytes
-0xAAAA, // Two bytes, negative
0xAAAAAAAA, // Four bytes
-0xAAAAAAAA, // Four bytes, negative
0x2AAAAAAAAAAAAAAA, // Eight bytes
-0x7ffffffffffffff // Eight bytess, negative
};
// Conservatively assume a 10-byte encoding for each of our LEB128s, with no
// alignment requirement.
initializeOutput(10 * TestValues.size(), 1);
initializeInputFromOutput(1);
for (auto &Stream : Streams) {
// Write fields.
BinaryStreamWriter Writer(*Stream.Output);
for (const auto &Value : TestValues)
ASSERT_THAT_ERROR(Writer.writeSLEB128(Value), Succeeded());
// Read fields.
BinaryStreamReader Reader(*Stream.Input);
std::vector<int64_t> Results;
Results.resize(TestValues.size());
for (unsigned I = 0; I != TestValues.size(); ++I)
ASSERT_THAT_ERROR(Reader.readSLEB128(Results[I]), Succeeded());
for (unsigned I = 0; I != TestValues.size(); ++I)
EXPECT_EQ(TestValues[I], Results[I]);
}
}
TEST_F(BinaryStreamTest, StreamReaderObject) {
struct Foo {
int X;
double Y;
char Z;
bool operator==(const Foo &Other) const {
return X == Other.X && Y == Other.Y && Z == Other.Z;
}
};
std::vector<Foo> Foos;
Foos.push_back({-42, 42.42, 42});
Foos.push_back({100, 3.1415, static_cast<char>(-89)});
Foos.push_back({200, 2.718, static_cast<char>(-12) });
const uint8_t *Bytes = reinterpret_cast<const uint8_t *>(&Foos[0]);
initializeInput(makeArrayRef(Bytes, 3 * sizeof(Foo)), alignof(Foo));
for (auto &Stream : Streams) {
// 1. Reading object pointers.
BinaryStreamReader Reader(*Stream.Input);
const Foo *FPtrOut = nullptr;
const Foo *GPtrOut = nullptr;
const Foo *HPtrOut = nullptr;
ASSERT_THAT_ERROR(Reader.readObject(FPtrOut), Succeeded());
ASSERT_THAT_ERROR(Reader.readObject(GPtrOut), Succeeded());
ASSERT_THAT_ERROR(Reader.readObject(HPtrOut), Succeeded());
EXPECT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(Foos[0], *FPtrOut);
EXPECT_EQ(Foos[1], *GPtrOut);
EXPECT_EQ(Foos[2], *HPtrOut);
}
}
TEST_F(BinaryStreamTest, StreamReaderStrings) {
std::vector<uint8_t> Bytes = {'O', 'n', 'e', '\0', 'T', 'w', 'o',
'\0', 'T', 'h', 'r', 'e', 'e', '\0',
'F', 'o', 'u', 'r', '\0'};
initializeInput(Bytes, 1);
for (auto &Stream : Streams) {
BinaryStreamReader Reader(*Stream.Input);
StringRef S1;
StringRef S2;
StringRef S3;
StringRef S4;
ASSERT_THAT_ERROR(Reader.readCString(S1), Succeeded());
ASSERT_THAT_ERROR(Reader.readCString(S2), Succeeded());
ASSERT_THAT_ERROR(Reader.readCString(S3), Succeeded());
ASSERT_THAT_ERROR(Reader.readCString(S4), Succeeded());
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ("One", S1);
EXPECT_EQ("Two", S2);
EXPECT_EQ("Three", S3);
EXPECT_EQ("Four", S4);
S1 = S2 = S3 = S4 = "";
Reader.setOffset(0);
ASSERT_THAT_ERROR(Reader.readFixedString(S1, 3), Succeeded());
ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
ASSERT_THAT_ERROR(Reader.readFixedString(S2, 3), Succeeded());
ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
ASSERT_THAT_ERROR(Reader.readFixedString(S3, 5), Succeeded());
ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
ASSERT_THAT_ERROR(Reader.readFixedString(S4, 4), Succeeded());
ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ("One", S1);
EXPECT_EQ("Two", S2);
EXPECT_EQ("Three", S3);
EXPECT_EQ("Four", S4);
}
}
TEST_F(BinaryStreamTest, StreamWriterBounds) {
initializeOutput(5, 1);
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
// 1. Can write a string that exactly fills the buffer.
EXPECT_EQ(5U, Writer.bytesRemaining());
EXPECT_THAT_ERROR(Writer.writeFixedString("abcde"), Succeeded());
EXPECT_EQ(0U, Writer.bytesRemaining());
// 2. Can write an empty string even when you're full
EXPECT_THAT_ERROR(Writer.writeFixedString(""), Succeeded());
EXPECT_THAT_ERROR(Writer.writeFixedString("a"), Failed());
// 3. Can't write a string that is one character too long.
Writer.setOffset(0);
EXPECT_THAT_ERROR(Writer.writeFixedString("abcdef"), Failed());
}
}
TEST_F(BinaryStreamTest, StreamWriterIntegerArrays) {
// 3. Arrays of integers
std::vector<int> SourceInts = {1, 2, 3, 4, 5};
ArrayRef<uint8_t> SourceBytes(reinterpret_cast<uint8_t *>(&SourceInts[0]),
SourceInts.size() * sizeof(int));
initializeInput(SourceBytes, alignof(int));
initializeOutputFromInput(alignof(int));
for (auto &Stream : Streams) {
BinaryStreamReader Reader(*Stream.Input);
BinaryStreamWriter Writer(*Stream.Output);
ArrayRef<int> Ints;
ArrayRef<int> Ints2;
// First read them, then write them, then read them back.
ASSERT_THAT_ERROR(Reader.readArray(Ints, SourceInts.size()), Succeeded());
ASSERT_THAT_ERROR(Writer.writeArray(Ints), Succeeded());
BinaryStreamReader ReaderBacker(*Stream.Output);
ASSERT_THAT_ERROR(ReaderBacker.readArray(Ints2, SourceInts.size()),
Succeeded());
EXPECT_EQ(makeArrayRef(SourceInts), Ints2);
}
}
TEST_F(BinaryStreamTest, StringWriterStrings) {
StringRef Strings[] = {"First", "Second", "Third", "Fourth"};
size_t Length = 0;
for (auto S : Strings)
Length += S.size() + 1;
initializeOutput(Length, 1);
initializeInputFromOutput(1);
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
for (auto S : Strings)
ASSERT_THAT_ERROR(Writer.writeCString(S), Succeeded());
std::vector<StringRef> InStrings;
BinaryStreamReader Reader(*Stream.Input);
while (!Reader.empty()) {
StringRef S;
ASSERT_THAT_ERROR(Reader.readCString(S), Succeeded());
InStrings.push_back(S);
}
EXPECT_EQ(makeArrayRef(Strings), makeArrayRef(InStrings));
}
}
TEST_F(BinaryStreamTest, StreamWriterAppend) {
StringRef Strings[] = {"First", "Second", "Third", "Fourth"};
AppendingBinaryByteStream Stream(support::little);
BinaryStreamWriter Writer(Stream);
for (auto &Str : Strings) {
EXPECT_THAT_ERROR(Writer.writeCString(Str), Succeeded());
}
BinaryStreamReader Reader(Stream);
for (auto &Str : Strings) {
StringRef S;
EXPECT_THAT_ERROR(Reader.readCString(S), Succeeded());
EXPECT_EQ(Str, S);
}
}
}
namespace {
struct BinaryItemStreamObject {
explicit BinaryItemStreamObject(ArrayRef<uint8_t> Bytes) : Bytes(Bytes) {}
ArrayRef<uint8_t> Bytes;
};
}
namespace llvm {
template <> struct BinaryItemTraits<BinaryItemStreamObject> {
static size_t length(const BinaryItemStreamObject &Item) {
return Item.Bytes.size();
}
static ArrayRef<uint8_t> bytes(const BinaryItemStreamObject &Item) {
return Item.Bytes;
}
};
}
namespace {
TEST_F(BinaryStreamTest, BinaryItemStream) {
std::vector<BinaryItemStreamObject> Objects;
struct Foo {
int X;
double Y;
};
std::vector<Foo> Foos = {{1, 1.0}, {2, 2.0}, {3, 3.0}};
BumpPtrAllocator Allocator;
for (const auto &F : Foos) {
uint8_t *Ptr = static_cast<uint8_t *>(Allocator.Allocate(sizeof(Foo),
alignof(Foo)));
MutableArrayRef<uint8_t> Buffer(Ptr, sizeof(Foo));
MutableBinaryByteStream Stream(Buffer, llvm::support::big);
BinaryStreamWriter Writer(Stream);
ASSERT_THAT_ERROR(Writer.writeObject(F), Succeeded());
Objects.push_back(BinaryItemStreamObject(Buffer));
}
BinaryItemStream<BinaryItemStreamObject> ItemStream(big);
ItemStream.setItems(Objects);
BinaryStreamReader Reader(ItemStream);
for (const auto &F : Foos) {
const Foo *F2;
ASSERT_THAT_ERROR(Reader.readObject(F2), Succeeded());
EXPECT_EQ(F.X, F2->X);
EXPECT_DOUBLE_EQ(F.Y, F2->Y);
}
}
} // end anonymous namespace