You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.5 KiB
151 lines
5.5 KiB
//===- cuda-runtime-wrappers.cpp - MLIR CUDA runner wrapper library -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implements C wrappers around the CUDA library for easy linking in ORC jit.
|
|
// Also adds some debugging helpers that are helpful when writing MLIR code to
|
|
// run on GPUs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <cassert>
|
|
#include <numeric>
|
|
|
|
#include "mlir/ExecutionEngine/CRunnerUtils.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include "cuda.h"
|
|
|
|
#define CUDA_REPORT_IF_ERROR(expr) \
|
|
[](CUresult result) { \
|
|
if (!result) \
|
|
return; \
|
|
const char *name = nullptr; \
|
|
cuGetErrorName(result, &name); \
|
|
if (!name) \
|
|
name = "<unknown>"; \
|
|
llvm::errs() << "'" << #expr << "' failed with '" << name << "'\n"; \
|
|
}(expr)
|
|
|
|
// Static initialization of CUDA context for device ordinal 0.
|
|
static auto InitializeCtx = [] {
|
|
CUDA_REPORT_IF_ERROR(cuInit(/*flags=*/0));
|
|
CUdevice device;
|
|
CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/0));
|
|
CUcontext context;
|
|
CUDA_REPORT_IF_ERROR(cuCtxCreate(&context, /*flags=*/0, device));
|
|
return 0;
|
|
}();
|
|
|
|
extern "C" CUmodule mgpuModuleLoad(void *data) {
|
|
CUmodule module = nullptr;
|
|
CUDA_REPORT_IF_ERROR(cuModuleLoadData(&module, data));
|
|
return module;
|
|
}
|
|
|
|
extern "C" void mgpuModuleUnload(CUmodule module) {
|
|
CUDA_REPORT_IF_ERROR(cuModuleUnload(module));
|
|
}
|
|
|
|
extern "C" CUfunction mgpuModuleGetFunction(CUmodule module, const char *name) {
|
|
CUfunction function = nullptr;
|
|
CUDA_REPORT_IF_ERROR(cuModuleGetFunction(&function, module, name));
|
|
return function;
|
|
}
|
|
|
|
// The wrapper uses intptr_t instead of CUDA's unsigned int to match
|
|
// the type of MLIR's index type. This avoids the need for casts in the
|
|
// generated MLIR code.
|
|
extern "C" void mgpuLaunchKernel(CUfunction function, intptr_t gridX,
|
|
intptr_t gridY, intptr_t gridZ,
|
|
intptr_t blockX, intptr_t blockY,
|
|
intptr_t blockZ, int32_t smem, CUstream stream,
|
|
void **params, void **extra) {
|
|
CUDA_REPORT_IF_ERROR(cuLaunchKernel(function, gridX, gridY, gridZ, blockX,
|
|
blockY, blockZ, smem, stream, params,
|
|
extra));
|
|
}
|
|
|
|
extern "C" CUstream mgpuStreamCreate() {
|
|
CUstream stream = nullptr;
|
|
CUDA_REPORT_IF_ERROR(cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING));
|
|
return stream;
|
|
}
|
|
|
|
extern "C" void mgpuStreamDestroy(CUstream stream) {
|
|
CUDA_REPORT_IF_ERROR(cuStreamDestroy(stream));
|
|
}
|
|
|
|
extern "C" void mgpuStreamSynchronize(CUstream stream) {
|
|
CUDA_REPORT_IF_ERROR(cuStreamSynchronize(stream));
|
|
}
|
|
|
|
extern "C" void mgpuStreamWaitEvent(CUstream stream, CUevent event) {
|
|
CUDA_REPORT_IF_ERROR(cuStreamWaitEvent(stream, event, /*flags=*/0));
|
|
}
|
|
|
|
extern "C" CUevent mgpuEventCreate() {
|
|
CUevent event = nullptr;
|
|
CUDA_REPORT_IF_ERROR(cuEventCreate(&event, CU_EVENT_DISABLE_TIMING));
|
|
return event;
|
|
}
|
|
|
|
extern "C" void mgpuEventDestroy(CUevent event) {
|
|
CUDA_REPORT_IF_ERROR(cuEventDestroy(event));
|
|
}
|
|
|
|
extern "C" void mgpuEventSynchronize(CUevent event) {
|
|
CUDA_REPORT_IF_ERROR(cuEventSynchronize(event));
|
|
}
|
|
|
|
extern "C" void mgpuEventRecord(CUevent event, CUstream stream) {
|
|
CUDA_REPORT_IF_ERROR(cuEventRecord(event, stream));
|
|
}
|
|
|
|
extern "C" void *mgpuMemAlloc(uint64_t sizeBytes, CUstream /*stream*/) {
|
|
CUdeviceptr ptr;
|
|
CUDA_REPORT_IF_ERROR(cuMemAlloc(&ptr, sizeBytes));
|
|
return reinterpret_cast<void *>(ptr);
|
|
}
|
|
|
|
extern "C" void mgpuMemFree(void *ptr, CUstream /*stream*/) {
|
|
CUDA_REPORT_IF_ERROR(cuMemFree(reinterpret_cast<CUdeviceptr>(ptr)));
|
|
}
|
|
|
|
/// Helper functions for writing mlir example code
|
|
|
|
// Allows to register byte array with the CUDA runtime. Helpful until we have
|
|
// transfer functions implemented.
|
|
extern "C" void mgpuMemHostRegister(void *ptr, uint64_t sizeBytes) {
|
|
CUDA_REPORT_IF_ERROR(cuMemHostRegister(ptr, sizeBytes, /*flags=*/0));
|
|
}
|
|
|
|
// Allows to register a MemRef with the CUDA runtime. Helpful until we have
|
|
// transfer functions implemented.
|
|
extern "C" void
|
|
mgpuMemHostRegisterMemRef(int64_t rank, StridedMemRefType<char, 1> *descriptor,
|
|
int64_t elementSizeBytes) {
|
|
|
|
llvm::SmallVector<int64_t, 4> denseStrides(rank);
|
|
llvm::ArrayRef<int64_t> sizes(descriptor->sizes, rank);
|
|
llvm::ArrayRef<int64_t> strides(sizes.end(), rank);
|
|
|
|
std::partial_sum(sizes.rbegin(), sizes.rend(), denseStrides.rbegin(),
|
|
std::multiplies<int64_t>());
|
|
auto sizeBytes = denseStrides.front() * elementSizeBytes;
|
|
|
|
// Only densely packed tensors are currently supported.
|
|
std::rotate(denseStrides.begin(), denseStrides.begin() + 1,
|
|
denseStrides.end());
|
|
denseStrides.back() = 1;
|
|
assert(strides == llvm::makeArrayRef(denseStrides));
|
|
|
|
auto ptr = descriptor->data + descriptor->offset * elementSizeBytes;
|
|
mgpuMemHostRegister(ptr, sizeBytes);
|
|
}
|