You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

883 lines
36 KiB

//===- VulkanRuntime.cpp - MLIR Vulkan runtime ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a library for running a module on a Vulkan device.
// Implements a Vulkan runtime.
//
//===----------------------------------------------------------------------===//
#include "VulkanRuntime.h"
#include <chrono>
#include <cstring>
// TODO: It's generally bad to access stdout/stderr in a library.
// Figure out a better way for error reporting.
#include <iomanip>
#include <iostream>
inline void emitVulkanError(const char *api, VkResult error) {
std::cerr << " failed with error code " << error << " when executing " << api;
}
#define RETURN_ON_VULKAN_ERROR(result, api) \
if ((result) != VK_SUCCESS) { \
emitVulkanError(api, (result)); \
return failure(); \
}
using namespace mlir;
void VulkanRuntime::setNumWorkGroups(const NumWorkGroups &numberWorkGroups) {
numWorkGroups = numberWorkGroups;
}
void VulkanRuntime::setResourceStorageClassBindingMap(
const ResourceStorageClassBindingMap &stClassData) {
resourceStorageClassData = stClassData;
}
void VulkanRuntime::setResourceData(
const DescriptorSetIndex desIndex, const BindingIndex bindIndex,
const VulkanHostMemoryBuffer &hostMemBuffer) {
resourceData[desIndex][bindIndex] = hostMemBuffer;
resourceStorageClassData[desIndex][bindIndex] =
SPIRVStorageClass::StorageBuffer;
}
void VulkanRuntime::setEntryPoint(const char *entryPointName) {
entryPoint = entryPointName;
}
void VulkanRuntime::setResourceData(const ResourceData &resData) {
resourceData = resData;
}
void VulkanRuntime::setShaderModule(uint8_t *shader, uint32_t size) {
binary = shader;
binarySize = size;
}
LogicalResult VulkanRuntime::mapStorageClassToDescriptorType(
SPIRVStorageClass storageClass, VkDescriptorType &descriptorType) {
switch (storageClass) {
case SPIRVStorageClass::StorageBuffer:
descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
break;
case SPIRVStorageClass::Uniform:
descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
break;
}
return success();
}
LogicalResult VulkanRuntime::mapStorageClassToBufferUsageFlag(
SPIRVStorageClass storageClass, VkBufferUsageFlagBits &bufferUsage) {
switch (storageClass) {
case SPIRVStorageClass::StorageBuffer:
bufferUsage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
break;
case SPIRVStorageClass::Uniform:
bufferUsage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
break;
}
return success();
}
LogicalResult VulkanRuntime::countDeviceMemorySize() {
for (const auto &resourceDataMapPair : resourceData) {
const auto &resourceDataMap = resourceDataMapPair.second;
for (const auto &resourceDataBindingPair : resourceDataMap) {
if (resourceDataBindingPair.second.size) {
memorySize += resourceDataBindingPair.second.size;
} else {
std::cerr << "expected buffer size greater than zero for resource data";
return failure();
}
}
}
return success();
}
LogicalResult VulkanRuntime::initRuntime() {
if (!resourceData.size()) {
std::cerr << "Vulkan runtime needs at least one resource";
return failure();
}
if (!binarySize || !binary) {
std::cerr << "binary shader size must be greater than zero";
return failure();
}
if (failed(countDeviceMemorySize())) {
return failure();
}
return success();
}
LogicalResult VulkanRuntime::destroy() {
// According to Vulkan spec:
// "To ensure that no work is active on the device, vkDeviceWaitIdle can be
// used to gate the destruction of the device. Prior to destroying a device,
// an application is responsible for destroying/freeing any Vulkan objects
// that were created using that device as the first parameter of the
// corresponding vkCreate* or vkAllocate* command."
RETURN_ON_VULKAN_ERROR(vkDeviceWaitIdle(device), "vkDeviceWaitIdle");
// Free and destroy.
vkFreeCommandBuffers(device, commandPool, commandBuffers.size(),
commandBuffers.data());
vkDestroyQueryPool(device, queryPool, nullptr);
vkDestroyCommandPool(device, commandPool, nullptr);
vkFreeDescriptorSets(device, descriptorPool, descriptorSets.size(),
descriptorSets.data());
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
for (auto &descriptorSetLayout : descriptorSetLayouts) {
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
}
vkDestroyShaderModule(device, shaderModule, nullptr);
// For each descriptor set.
for (auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
// For each descriptor binding.
for (auto &memoryBuffer : deviceMemoryBuffers) {
vkFreeMemory(device, memoryBuffer.deviceMemory, nullptr);
vkFreeMemory(device, memoryBuffer.hostMemory, nullptr);
vkDestroyBuffer(device, memoryBuffer.hostBuffer, nullptr);
vkDestroyBuffer(device, memoryBuffer.deviceBuffer, nullptr);
}
}
vkDestroyDevice(device, nullptr);
vkDestroyInstance(instance, nullptr);
return success();
}
LogicalResult VulkanRuntime::run() {
// Create logical device, shader module and memory buffers.
if (failed(createInstance()) || failed(createDevice()) ||
failed(createMemoryBuffers()) || failed(createShaderModule())) {
return failure();
}
// Descriptor bindings divided into sets. Each descriptor binding
// must have a layout binding attached into a descriptor set layout.
// Each layout set must be binded into a pipeline layout.
initDescriptorSetLayoutBindingMap();
if (failed(createDescriptorSetLayout()) || failed(createPipelineLayout()) ||
// Each descriptor set must be allocated from a descriptor pool.
failed(createComputePipeline()) || failed(createDescriptorPool()) ||
failed(allocateDescriptorSets()) || failed(setWriteDescriptors()) ||
// Create command buffer.
failed(createCommandPool()) || failed(createQueryPool()) ||
failed(createComputeCommandBuffer())) {
return failure();
}
// Get working queue.
vkGetDeviceQueue(device, queueFamilyIndex, 0, &queue);
if (failed(copyResource(/*deviceToHost=*/false)))
return failure();
auto submitStart = std::chrono::high_resolution_clock::now();
// Submit command buffer into the queue.
if (failed(submitCommandBuffersToQueue()))
return failure();
auto submitEnd = std::chrono::high_resolution_clock::now();
RETURN_ON_VULKAN_ERROR(vkQueueWaitIdle(queue), "vkQueueWaitIdle");
auto execEnd = std::chrono::high_resolution_clock::now();
auto submitDuration = std::chrono::duration_cast<std::chrono::microseconds>(
submitEnd - submitStart);
auto execDuration = std::chrono::duration_cast<std::chrono::microseconds>(
execEnd - submitEnd);
if (queryPool != VK_NULL_HANDLE) {
uint64_t timestamps[2];
RETURN_ON_VULKAN_ERROR(
vkGetQueryPoolResults(
device, queryPool, /*firstQuery=*/0, /*queryCount=*/2,
/*dataSize=*/sizeof(timestamps),
/*pData=*/reinterpret_cast<void *>(timestamps),
/*stride=*/sizeof(uint64_t),
VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT),
"vkGetQueryPoolResults");
float microsec = (timestamps[1] - timestamps[0]) * timestampPeriod / 1000;
std::cout << "Compute shader execution time: " << std::setprecision(3)
<< microsec << "us\n";
}
std::cout << "Command buffer submit time: " << submitDuration.count()
<< "us\nWait idle time: " << execDuration.count() << "us\n";
return success();
}
LogicalResult VulkanRuntime::createInstance() {
VkApplicationInfo applicationInfo = {};
applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
applicationInfo.pNext = nullptr;
applicationInfo.pApplicationName = "MLIR Vulkan runtime";
applicationInfo.applicationVersion = 0;
applicationInfo.pEngineName = "mlir";
applicationInfo.engineVersion = 0;
applicationInfo.apiVersion = VK_MAKE_VERSION(1, 0, 0);
VkInstanceCreateInfo instanceCreateInfo = {};
instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceCreateInfo.pNext = nullptr;
instanceCreateInfo.flags = 0;
instanceCreateInfo.pApplicationInfo = &applicationInfo;
instanceCreateInfo.enabledLayerCount = 0;
instanceCreateInfo.ppEnabledLayerNames = 0;
instanceCreateInfo.enabledExtensionCount = 0;
instanceCreateInfo.ppEnabledExtensionNames = 0;
RETURN_ON_VULKAN_ERROR(vkCreateInstance(&instanceCreateInfo, 0, &instance),
"vkCreateInstance");
return success();
}
LogicalResult VulkanRuntime::createDevice() {
uint32_t physicalDeviceCount = 0;
RETURN_ON_VULKAN_ERROR(
vkEnumeratePhysicalDevices(instance, &physicalDeviceCount, 0),
"vkEnumeratePhysicalDevices");
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
RETURN_ON_VULKAN_ERROR(vkEnumeratePhysicalDevices(instance,
&physicalDeviceCount,
physicalDevices.data()),
"vkEnumeratePhysicalDevices");
RETURN_ON_VULKAN_ERROR(physicalDeviceCount ? VK_SUCCESS : VK_INCOMPLETE,
"physicalDeviceCount");
// TODO: find the best device.
physicalDevice = physicalDevices.front();
if (failed(getBestComputeQueue()))
return failure();
const float queuePriority = 1.0f;
VkDeviceQueueCreateInfo deviceQueueCreateInfo = {};
deviceQueueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
deviceQueueCreateInfo.pNext = nullptr;
deviceQueueCreateInfo.flags = 0;
deviceQueueCreateInfo.queueFamilyIndex = queueFamilyIndex;
deviceQueueCreateInfo.queueCount = 1;
deviceQueueCreateInfo.pQueuePriorities = &queuePriority;
// Structure specifying parameters of a newly created device.
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.pNext = nullptr;
deviceCreateInfo.flags = 0;
deviceCreateInfo.queueCreateInfoCount = 1;
deviceCreateInfo.pQueueCreateInfos = &deviceQueueCreateInfo;
deviceCreateInfo.enabledLayerCount = 0;
deviceCreateInfo.ppEnabledLayerNames = nullptr;
deviceCreateInfo.enabledExtensionCount = 0;
deviceCreateInfo.ppEnabledExtensionNames = nullptr;
deviceCreateInfo.pEnabledFeatures = nullptr;
RETURN_ON_VULKAN_ERROR(
vkCreateDevice(physicalDevice, &deviceCreateInfo, 0, &device),
"vkCreateDevice");
VkPhysicalDeviceMemoryProperties properties = {};
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &properties);
// Try to find memory type with following properties:
// VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit specifies that memory allocated
// with this type can be mapped for host access using vkMapMemory;
// VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit specifies that the host cache
// management commands vkFlushMappedMemoryRanges and
// vkInvalidateMappedMemoryRanges are not needed to flush host writes to the
// device or make device writes visible to the host, respectively.
for (uint32_t i = 0, e = properties.memoryTypeCount; i < e; ++i) {
if ((VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT &
properties.memoryTypes[i].propertyFlags) &&
(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT &
properties.memoryTypes[i].propertyFlags) &&
(memorySize <=
properties.memoryHeaps[properties.memoryTypes[i].heapIndex].size)) {
hostMemoryTypeIndex = i;
break;
}
}
// Find memory type memory type with VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT to be
// used on the device. This will allow better performance access for GPU with
// on device memory.
for (uint32_t i = 0, e = properties.memoryTypeCount; i < e; ++i) {
if ((VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT &
properties.memoryTypes[i].propertyFlags) &&
(memorySize <=
properties.memoryHeaps[properties.memoryTypes[i].heapIndex].size)) {
deviceMemoryTypeIndex = i;
break;
}
}
RETURN_ON_VULKAN_ERROR((hostMemoryTypeIndex == VK_MAX_MEMORY_TYPES ||
deviceMemoryTypeIndex == VK_MAX_MEMORY_TYPES)
? VK_INCOMPLETE
: VK_SUCCESS,
"invalid memoryTypeIndex");
return success();
}
LogicalResult VulkanRuntime::getBestComputeQueue() {
uint32_t queueFamilyPropertiesCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice,
&queueFamilyPropertiesCount, 0);
std::vector<VkQueueFamilyProperties> familyProperties(
queueFamilyPropertiesCount);
vkGetPhysicalDeviceQueueFamilyProperties(
physicalDevice, &queueFamilyPropertiesCount, familyProperties.data());
// VK_QUEUE_COMPUTE_BIT specifies that queues in this queue family support
// compute operations. Try to find a compute-only queue first if possible.
for (uint32_t i = 0; i < queueFamilyPropertiesCount; ++i) {
auto flags = familyProperties[i].queueFlags;
if ((flags & VK_QUEUE_COMPUTE_BIT) && !(flags & VK_QUEUE_GRAPHICS_BIT)) {
queueFamilyIndex = i;
queueFamilyProperties = familyProperties[i];
return success();
}
}
// Otherwise use a queue that can also support graphics.
for (uint32_t i = 0; i < queueFamilyPropertiesCount; ++i) {
auto flags = familyProperties[i].queueFlags;
if ((flags & VK_QUEUE_COMPUTE_BIT)) {
queueFamilyIndex = i;
queueFamilyProperties = familyProperties[i];
return success();
}
}
std::cerr << "cannot find valid queue";
return failure();
}
LogicalResult VulkanRuntime::createMemoryBuffers() {
// For each descriptor set.
for (const auto &resourceDataMapPair : resourceData) {
std::vector<VulkanDeviceMemoryBuffer> deviceMemoryBuffers;
const auto descriptorSetIndex = resourceDataMapPair.first;
const auto &resourceDataMap = resourceDataMapPair.second;
// For each descriptor binding.
for (const auto &resourceDataBindingPair : resourceDataMap) {
// Create device memory buffer.
VulkanDeviceMemoryBuffer memoryBuffer;
memoryBuffer.bindingIndex = resourceDataBindingPair.first;
VkDescriptorType descriptorType = {};
VkBufferUsageFlagBits bufferUsage = {};
// Check that descriptor set has storage class map.
const auto resourceStorageClassMapIt =
resourceStorageClassData.find(descriptorSetIndex);
if (resourceStorageClassMapIt == resourceStorageClassData.end()) {
std::cerr
<< "cannot find storage class for resource in descriptor set: "
<< descriptorSetIndex;
return failure();
}
// Check that specific descriptor binding has storage class.
const auto &resourceStorageClassMap = resourceStorageClassMapIt->second;
const auto resourceStorageClassIt =
resourceStorageClassMap.find(resourceDataBindingPair.first);
if (resourceStorageClassIt == resourceStorageClassMap.end()) {
std::cerr
<< "cannot find storage class for resource with descriptor index: "
<< resourceDataBindingPair.first;
return failure();
}
const auto resourceStorageClassBinding = resourceStorageClassIt->second;
if (failed(mapStorageClassToDescriptorType(resourceStorageClassBinding,
descriptorType)) ||
failed(mapStorageClassToBufferUsageFlag(resourceStorageClassBinding,
bufferUsage))) {
std::cerr << "storage class for resource with descriptor binding: "
<< resourceDataBindingPair.first
<< " in the descriptor set: " << descriptorSetIndex
<< " is not supported ";
return failure();
}
// Set descriptor type for the specific device memory buffer.
memoryBuffer.descriptorType = descriptorType;
const auto bufferSize = resourceDataBindingPair.second.size;
memoryBuffer.bufferSize = bufferSize;
// Specify memory allocation info.
VkMemoryAllocateInfo memoryAllocateInfo = {};
memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAllocateInfo.pNext = nullptr;
memoryAllocateInfo.allocationSize = bufferSize;
memoryAllocateInfo.memoryTypeIndex = hostMemoryTypeIndex;
// Allocate device memory.
RETURN_ON_VULKAN_ERROR(vkAllocateMemory(device, &memoryAllocateInfo, 0,
&memoryBuffer.hostMemory),
"vkAllocateMemory");
memoryAllocateInfo.memoryTypeIndex = deviceMemoryTypeIndex;
RETURN_ON_VULKAN_ERROR(vkAllocateMemory(device, &memoryAllocateInfo, 0,
&memoryBuffer.deviceMemory),
"vkAllocateMemory");
void *payload;
RETURN_ON_VULKAN_ERROR(vkMapMemory(device, memoryBuffer.hostMemory, 0,
bufferSize, 0,
reinterpret_cast<void **>(&payload)),
"vkMapMemory");
// Copy host memory into the mapped area.
std::memcpy(payload, resourceDataBindingPair.second.ptr, bufferSize);
vkUnmapMemory(device, memoryBuffer.hostMemory);
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.pNext = nullptr;
bufferCreateInfo.flags = 0;
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = bufferUsage | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufferCreateInfo.queueFamilyIndexCount = 1;
bufferCreateInfo.pQueueFamilyIndices = &queueFamilyIndex;
RETURN_ON_VULKAN_ERROR(vkCreateBuffer(device, &bufferCreateInfo, 0,
&memoryBuffer.hostBuffer),
"vkCreateBuffer");
RETURN_ON_VULKAN_ERROR(vkCreateBuffer(device, &bufferCreateInfo, 0,
&memoryBuffer.deviceBuffer),
"vkCreateBuffer");
// Bind buffer and device memory.
RETURN_ON_VULKAN_ERROR(vkBindBufferMemory(device, memoryBuffer.hostBuffer,
memoryBuffer.hostMemory, 0),
"vkBindBufferMemory");
RETURN_ON_VULKAN_ERROR(vkBindBufferMemory(device,
memoryBuffer.deviceBuffer,
memoryBuffer.deviceMemory, 0),
"vkBindBufferMemory");
// Update buffer info.
memoryBuffer.bufferInfo.buffer = memoryBuffer.deviceBuffer;
memoryBuffer.bufferInfo.offset = 0;
memoryBuffer.bufferInfo.range = VK_WHOLE_SIZE;
deviceMemoryBuffers.push_back(memoryBuffer);
}
// Associate device memory buffers with a descriptor set.
deviceMemoryBufferMap[descriptorSetIndex] = deviceMemoryBuffers;
}
return success();
}
LogicalResult VulkanRuntime::copyResource(bool deviceToHost) {
VkCommandBufferAllocateInfo commandBufferAllocateInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
NULL,
commandPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1,
};
VkCommandBuffer commandBuffer;
RETURN_ON_VULKAN_ERROR(vkAllocateCommandBuffers(device,
&commandBufferAllocateInfo,
&commandBuffer),
"vkAllocateCommandBuffers");
VkCommandBufferBeginInfo commandBufferBeginInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
NULL,
0,
NULL,
};
RETURN_ON_VULKAN_ERROR(
vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo),
"vkBeginCommandBuffer");
for (const auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
std::vector<VkDescriptorSetLayoutBinding> descriptorSetLayoutBindings;
const auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
for (const auto &memBuffer : deviceMemoryBuffers) {
VkBufferCopy copy = {0, 0, memBuffer.bufferSize};
if (deviceToHost)
vkCmdCopyBuffer(commandBuffer, memBuffer.deviceBuffer,
memBuffer.hostBuffer, 1, &copy);
else
vkCmdCopyBuffer(commandBuffer, memBuffer.hostBuffer,
memBuffer.deviceBuffer, 1, &copy);
}
}
RETURN_ON_VULKAN_ERROR(vkEndCommandBuffer(commandBuffer),
"vkEndCommandBuffer");
VkSubmitInfo submitInfo = {
VK_STRUCTURE_TYPE_SUBMIT_INFO,
NULL,
0,
NULL,
NULL,
1,
&commandBuffer,
0,
NULL,
};
submitInfo.pCommandBuffers = &commandBuffer;
RETURN_ON_VULKAN_ERROR(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE),
"vkQueueSubmit");
RETURN_ON_VULKAN_ERROR(vkQueueWaitIdle(queue), "vkQueueWaitIdle");
vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
return success();
}
LogicalResult VulkanRuntime::createShaderModule() {
VkShaderModuleCreateInfo shaderModuleCreateInfo = {};
shaderModuleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCreateInfo.pNext = nullptr;
shaderModuleCreateInfo.flags = 0;
// Set size in bytes.
shaderModuleCreateInfo.codeSize = binarySize;
// Set pointer to the binary shader.
shaderModuleCreateInfo.pCode = reinterpret_cast<uint32_t *>(binary);
RETURN_ON_VULKAN_ERROR(
vkCreateShaderModule(device, &shaderModuleCreateInfo, 0, &shaderModule),
"vkCreateShaderModule");
return success();
}
void VulkanRuntime::initDescriptorSetLayoutBindingMap() {
for (const auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
std::vector<VkDescriptorSetLayoutBinding> descriptorSetLayoutBindings;
const auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
const auto descriptorSetIndex = deviceMemoryBufferMapPair.first;
// Create a layout binding for each descriptor.
for (const auto &memBuffer : deviceMemoryBuffers) {
VkDescriptorSetLayoutBinding descriptorSetLayoutBinding = {};
descriptorSetLayoutBinding.binding = memBuffer.bindingIndex;
descriptorSetLayoutBinding.descriptorType = memBuffer.descriptorType;
descriptorSetLayoutBinding.descriptorCount = 1;
descriptorSetLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
descriptorSetLayoutBinding.pImmutableSamplers = 0;
descriptorSetLayoutBindings.push_back(descriptorSetLayoutBinding);
}
descriptorSetLayoutBindingMap[descriptorSetIndex] =
descriptorSetLayoutBindings;
}
}
LogicalResult VulkanRuntime::createDescriptorSetLayout() {
for (const auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
const auto descriptorSetIndex = deviceMemoryBufferMapPair.first;
const auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
// Each descriptor in a descriptor set must be the same type.
VkDescriptorType descriptorType =
deviceMemoryBuffers.front().descriptorType;
const uint32_t descriptorSize = deviceMemoryBuffers.size();
const auto descriptorSetLayoutBindingIt =
descriptorSetLayoutBindingMap.find(descriptorSetIndex);
if (descriptorSetLayoutBindingIt == descriptorSetLayoutBindingMap.end()) {
std::cerr << "cannot find layout bindings for the set with number: "
<< descriptorSetIndex;
return failure();
}
const auto &descriptorSetLayoutBindings =
descriptorSetLayoutBindingIt->second;
// Create descriptor set layout.
VkDescriptorSetLayout descriptorSetLayout = {};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo = {};
descriptorSetLayoutCreateInfo.sType =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorSetLayoutCreateInfo.pNext = nullptr;
descriptorSetLayoutCreateInfo.flags = 0;
// Amount of descriptor bindings in a layout set.
descriptorSetLayoutCreateInfo.bindingCount =
descriptorSetLayoutBindings.size();
descriptorSetLayoutCreateInfo.pBindings =
descriptorSetLayoutBindings.data();
RETURN_ON_VULKAN_ERROR(
vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCreateInfo, 0,
&descriptorSetLayout),
"vkCreateDescriptorSetLayout");
descriptorSetLayouts.push_back(descriptorSetLayout);
descriptorSetInfoPool.push_back(
{descriptorSetIndex, descriptorSize, descriptorType});
}
return success();
}
LogicalResult VulkanRuntime::createPipelineLayout() {
// Associate descriptor sets with a pipeline layout.
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = {};
pipelineLayoutCreateInfo.sType =
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCreateInfo.pNext = nullptr;
pipelineLayoutCreateInfo.flags = 0;
pipelineLayoutCreateInfo.setLayoutCount = descriptorSetLayouts.size();
pipelineLayoutCreateInfo.pSetLayouts = descriptorSetLayouts.data();
pipelineLayoutCreateInfo.pushConstantRangeCount = 0;
pipelineLayoutCreateInfo.pPushConstantRanges = 0;
RETURN_ON_VULKAN_ERROR(vkCreatePipelineLayout(device,
&pipelineLayoutCreateInfo, 0,
&pipelineLayout),
"vkCreatePipelineLayout");
return success();
}
LogicalResult VulkanRuntime::createComputePipeline() {
VkPipelineShaderStageCreateInfo stageInfo = {};
stageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stageInfo.pNext = nullptr;
stageInfo.flags = 0;
stageInfo.stage = VK_SHADER_STAGE_COMPUTE_BIT;
stageInfo.module = shaderModule;
// Set entry point.
stageInfo.pName = entryPoint;
stageInfo.pSpecializationInfo = 0;
VkComputePipelineCreateInfo computePipelineCreateInfo = {};
computePipelineCreateInfo.sType =
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
computePipelineCreateInfo.pNext = nullptr;
computePipelineCreateInfo.flags = 0;
computePipelineCreateInfo.stage = stageInfo;
computePipelineCreateInfo.layout = pipelineLayout;
computePipelineCreateInfo.basePipelineHandle = 0;
computePipelineCreateInfo.basePipelineIndex = 0;
RETURN_ON_VULKAN_ERROR(vkCreateComputePipelines(device, 0, 1,
&computePipelineCreateInfo, 0,
&pipeline),
"vkCreateComputePipelines");
return success();
}
LogicalResult VulkanRuntime::createDescriptorPool() {
std::vector<VkDescriptorPoolSize> descriptorPoolSizes;
for (const auto &descriptorSetInfo : descriptorSetInfoPool) {
// For each descriptor set populate descriptor pool size.
VkDescriptorPoolSize descriptorPoolSize = {};
descriptorPoolSize.type = descriptorSetInfo.descriptorType;
descriptorPoolSize.descriptorCount = descriptorSetInfo.descriptorSize;
descriptorPoolSizes.push_back(descriptorPoolSize);
}
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = {};
descriptorPoolCreateInfo.sType =
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCreateInfo.pNext = nullptr;
descriptorPoolCreateInfo.flags = 0;
descriptorPoolCreateInfo.maxSets = descriptorPoolSizes.size();
descriptorPoolCreateInfo.poolSizeCount = descriptorPoolSizes.size();
descriptorPoolCreateInfo.pPoolSizes = descriptorPoolSizes.data();
RETURN_ON_VULKAN_ERROR(vkCreateDescriptorPool(device,
&descriptorPoolCreateInfo, 0,
&descriptorPool),
"vkCreateDescriptorPool");
return success();
}
LogicalResult VulkanRuntime::allocateDescriptorSets() {
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = {};
// Size of descriptor sets and descriptor layout sets is the same.
descriptorSets.resize(descriptorSetLayouts.size());
descriptorSetAllocateInfo.sType =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descriptorSetAllocateInfo.pNext = nullptr;
descriptorSetAllocateInfo.descriptorPool = descriptorPool;
descriptorSetAllocateInfo.descriptorSetCount = descriptorSetLayouts.size();
descriptorSetAllocateInfo.pSetLayouts = descriptorSetLayouts.data();
RETURN_ON_VULKAN_ERROR(vkAllocateDescriptorSets(device,
&descriptorSetAllocateInfo,
descriptorSets.data()),
"vkAllocateDescriptorSets");
return success();
}
LogicalResult VulkanRuntime::setWriteDescriptors() {
if (descriptorSets.size() != descriptorSetInfoPool.size()) {
std::cerr << "Each descriptor set must have descriptor set information";
return failure();
}
// For each descriptor set.
auto descriptorSetIt = descriptorSets.begin();
// Each descriptor set is associated with descriptor set info.
for (const auto &descriptorSetInfo : descriptorSetInfoPool) {
// For each device memory buffer in the descriptor set.
const auto &deviceMemoryBuffers =
deviceMemoryBufferMap[descriptorSetInfo.descriptorSet];
for (const auto &memoryBuffer : deviceMemoryBuffers) {
// Structure describing descriptor sets to write to.
VkWriteDescriptorSet wSet = {};
wSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wSet.pNext = nullptr;
// Descriptor set.
wSet.dstSet = *descriptorSetIt;
wSet.dstBinding = memoryBuffer.bindingIndex;
wSet.dstArrayElement = 0;
wSet.descriptorCount = 1;
wSet.descriptorType = memoryBuffer.descriptorType;
wSet.pImageInfo = nullptr;
wSet.pBufferInfo = &memoryBuffer.bufferInfo;
wSet.pTexelBufferView = nullptr;
vkUpdateDescriptorSets(device, 1, &wSet, 0, nullptr);
}
// Increment descriptor set iterator.
++descriptorSetIt;
}
return success();
}
LogicalResult VulkanRuntime::createCommandPool() {
VkCommandPoolCreateInfo commandPoolCreateInfo = {};
commandPoolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolCreateInfo.pNext = nullptr;
commandPoolCreateInfo.flags = 0;
commandPoolCreateInfo.queueFamilyIndex = queueFamilyIndex;
RETURN_ON_VULKAN_ERROR(vkCreateCommandPool(device, &commandPoolCreateInfo,
/*pAllocator=*/nullptr,
&commandPool),
"vkCreateCommandPool");
return success();
}
LogicalResult VulkanRuntime::createQueryPool() {
// Return directly if timestamp query is not supported.
if (queueFamilyProperties.timestampValidBits == 0)
return success();
// Get timestamp period for this physical device.
VkPhysicalDeviceProperties deviceProperties = {};
vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
timestampPeriod = deviceProperties.limits.timestampPeriod;
// Create query pool.
VkQueryPoolCreateInfo queryPoolCreateInfo = {};
queryPoolCreateInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
queryPoolCreateInfo.pNext = nullptr;
queryPoolCreateInfo.flags = 0;
queryPoolCreateInfo.queryType = VK_QUERY_TYPE_TIMESTAMP;
queryPoolCreateInfo.queryCount = 2;
queryPoolCreateInfo.pipelineStatistics = 0;
RETURN_ON_VULKAN_ERROR(vkCreateQueryPool(device, &queryPoolCreateInfo,
/*pAllocator=*/nullptr, &queryPool),
"vkCreateQueryPool");
return success();
}
LogicalResult VulkanRuntime::createComputeCommandBuffer() {
VkCommandBufferAllocateInfo commandBufferAllocateInfo = {};
commandBufferAllocateInfo.sType =
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBufferAllocateInfo.pNext = nullptr;
commandBufferAllocateInfo.commandPool = commandPool;
commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBufferAllocateInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer;
RETURN_ON_VULKAN_ERROR(vkAllocateCommandBuffers(device,
&commandBufferAllocateInfo,
&commandBuffer),
"vkAllocateCommandBuffers");
VkCommandBufferBeginInfo commandBufferBeginInfo = {};
commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
commandBufferBeginInfo.pNext = nullptr;
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
commandBufferBeginInfo.pInheritanceInfo = nullptr;
// Commands begin.
RETURN_ON_VULKAN_ERROR(
vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo),
"vkBeginCommandBuffer");
if (queryPool != VK_NULL_HANDLE)
vkCmdResetQueryPool(commandBuffer, queryPool, 0, 2);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE,
pipelineLayout, 0, descriptorSets.size(),
descriptorSets.data(), 0, 0);
// Get a timestamp before invoking the compute shader.
if (queryPool != VK_NULL_HANDLE)
vkCmdWriteTimestamp(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
queryPool, 0);
vkCmdDispatch(commandBuffer, numWorkGroups.x, numWorkGroups.y,
numWorkGroups.z);
// Get another timestamp after invoking the compute shader.
if (queryPool != VK_NULL_HANDLE)
vkCmdWriteTimestamp(commandBuffer, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
queryPool, 1);
// Commands end.
RETURN_ON_VULKAN_ERROR(vkEndCommandBuffer(commandBuffer),
"vkEndCommandBuffer");
commandBuffers.push_back(commandBuffer);
return success();
}
LogicalResult VulkanRuntime::submitCommandBuffersToQueue() {
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = nullptr;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = 0;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = commandBuffers.size();
submitInfo.pCommandBuffers = commandBuffers.data();
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
RETURN_ON_VULKAN_ERROR(vkQueueSubmit(queue, 1, &submitInfo, 0),
"vkQueueSubmit");
return success();
}
LogicalResult VulkanRuntime::updateHostMemoryBuffers() {
// First copy back the data to the staging buffer.
copyResource(/*deviceToHost=*/true);
// For each descriptor set.
for (auto &resourceDataMapPair : resourceData) {
auto &resourceDataMap = resourceDataMapPair.second;
auto &deviceMemoryBuffers =
deviceMemoryBufferMap[resourceDataMapPair.first];
// For each device memory buffer in the set.
for (auto &deviceMemoryBuffer : deviceMemoryBuffers) {
if (resourceDataMap.count(deviceMemoryBuffer.bindingIndex)) {
void *payload;
auto &hostMemoryBuffer =
resourceDataMap[deviceMemoryBuffer.bindingIndex];
RETURN_ON_VULKAN_ERROR(vkMapMemory(device,
deviceMemoryBuffer.hostMemory, 0,
hostMemoryBuffer.size, 0,
reinterpret_cast<void **>(&payload)),
"vkMapMemory");
std::memcpy(hostMemoryBuffer.ptr, payload, hostMemoryBuffer.size);
vkUnmapMemory(device, deviceMemoryBuffer.hostMemory);
}
}
}
return success();
}