You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

263 lines
11 KiB

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsCubicIntersectionTestData.h"
#include "PathOpsQuadIntersectionTestData.h"
#include "PathOpsTestCommon.h"
#include "SkIntersections.h"
#include "SkPathOpsRect.h"
#include "SkReduceOrder.h"
#include "Test.h"
#if 0 // disable test until stroke reduction is supported
static bool controls_inside(const SkDCubic& cubic) {
return between(cubic[0].fX, cubic[1].fX, cubic[3].fX)
&& between(cubic[0].fX, cubic[2].fX, cubic[3].fX)
&& between(cubic[0].fY, cubic[1].fY, cubic[3].fY)
&& between(cubic[0].fY, cubic[2].fY, cubic[3].fY);
}
static bool tiny(const SkDCubic& cubic) {
int index, minX, maxX, minY, maxY;
minX = maxX = minY = maxY = 0;
for (index = 1; index < 4; ++index) {
if (cubic[minX].fX > cubic[index].fX) {
minX = index;
}
if (cubic[minY].fY > cubic[index].fY) {
minY = index;
}
if (cubic[maxX].fX < cubic[index].fX) {
maxX = index;
}
if (cubic[maxY].fY < cubic[index].fY) {
maxY = index;
}
}
return approximately_equal(cubic[maxX].fX, cubic[minX].fX)
&& approximately_equal(cubic[maxY].fY, cubic[minY].fY);
}
static void find_tight_bounds(const SkDCubic& cubic, SkDRect& bounds) {
SkDCubicPair cubicPair = cubic.chopAt(0.5);
if (!tiny(cubicPair.first()) && !controls_inside(cubicPair.first())) {
find_tight_bounds(cubicPair.first(), bounds);
} else {
bounds.add(cubicPair.first()[0]);
bounds.add(cubicPair.first()[3]);
}
if (!tiny(cubicPair.second()) && !controls_inside(cubicPair.second())) {
find_tight_bounds(cubicPair.second(), bounds);
} else {
bounds.add(cubicPair.second()[0]);
bounds.add(cubicPair.second()[3]);
}
}
#endif
DEF_TEST(PathOpsReduceOrderCubic, reporter) {
size_t index;
SkReduceOrder reducer;
int order;
enum {
RunAll,
RunPointDegenerates,
RunNotPointDegenerates,
RunLines,
RunNotLines,
RunModEpsilonLines,
RunLessEpsilonLines,
RunNegEpsilonLines,
RunQuadraticLines,
RunQuadraticPoints,
RunQuadraticModLines,
RunComputedLines,
RunNone
} run = RunAll;
int firstTestIndex = 0;
#if 0
run = RunComputedLines;
firstTestIndex = 18;
#endif
int firstPointDegeneratesTest = run == RunAll ? 0 : run == RunPointDegenerates
? firstTestIndex : SK_MaxS32;
int firstNotPointDegeneratesTest = run == RunAll ? 0 : run == RunNotPointDegenerates
? firstTestIndex : SK_MaxS32;
int firstLinesTest = run == RunAll ? 0 : run == RunLines ? firstTestIndex : SK_MaxS32;
int firstNotLinesTest = run == RunAll ? 0 : run == RunNotLines ? firstTestIndex : SK_MaxS32;
int firstModEpsilonTest = run == RunAll ? 0 : run == RunModEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstLessEpsilonTest = run == RunAll ? 0 : run == RunLessEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstNegEpsilonTest = run == RunAll ? 0 : run == RunNegEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstQuadraticPointTest = run == RunAll ? 0 : run == RunQuadraticPoints
? firstTestIndex : SK_MaxS32;
int firstQuadraticLineTest = run == RunAll ? 0 : run == RunQuadraticLines
? firstTestIndex : SK_MaxS32;
int firstQuadraticModLineTest = run == RunAll ? 0 : run == RunQuadraticModLines
? firstTestIndex : SK_MaxS32;
#if 0
int firstComputedLinesTest = run == RunAll ? 0 : run == RunComputedLines
? firstTestIndex : SK_MaxS32;
#endif
for (index = firstPointDegeneratesTest; index < pointDegenerates_count; ++index) {
const CubicPts& c = pointDegenerates[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 1) {
SkDebugf("[%d] pointDegenerates order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstNotPointDegeneratesTest; index < notPointDegenerates_count; ++index) {
const CubicPts& c = notPointDegenerates[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order == 1) {
SkDebugf("[%d] notPointDegenerates order=%d\n", static_cast<int>(index), order);
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstLinesTest; index < lines_count; ++index) {
const CubicPts& c = lines[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] lines order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstNotLinesTest; index < notLines_count; ++index) {
const CubicPts& c = notLines[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order == 2) {
SkDebugf("[%d] notLines order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstModEpsilonTest; index < modEpsilonLines_count; ++index) {
const CubicPts& c = modEpsilonLines[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order == 2) {
SkDebugf("[%d] line mod by epsilon order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstLessEpsilonTest; index < lessEpsilonLines_count; ++index) {
const CubicPts& c = lessEpsilonLines[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] line less by epsilon/2 order=%d\n", static_cast<int>(index), order);
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstNegEpsilonTest; index < negEpsilonLines_count; ++index) {
const CubicPts& c = negEpsilonLines[index];
SkDCubic cubic;
cubic.debugSet(c.fPts);
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] line neg by epsilon/2 order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstQuadraticPointTest; index < quadraticPoints_count; ++index) {
const QuadPts& q = quadraticPoints[index];
SkDQuad quad;
quad.debugSet(q.fPts);
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.debugToCubic();
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 1) {
SkDebugf("[%d] point quad order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstQuadraticLineTest; index < quadraticLines_count; ++index) {
const QuadPts& q = quadraticLines[index];
SkDQuad quad;
quad.debugSet(q.fPts);
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.debugToCubic();
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] line quad order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstQuadraticModLineTest; index < quadraticModEpsilonLines_count; ++index) {
const QuadPts& q = quadraticModEpsilonLines[index];
SkDQuad quad;
quad.debugSet(q.fPts);
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.debugToCubic();
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 3) {
SkDebugf("[%d] line mod quad order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
#if 0 // disable test until stroke reduction is supported
// test if computed line end points are valid
for (index = firstComputedLinesTest; index < lines_count; ++index) {
const SkDCubic& cubic = lines[index];
SkASSERT(ValidCubic(cubic));
bool controlsInside = controls_inside(cubic);
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics,
SkReduceOrder::kStroke_Style);
if (order == 2 && reducer.fLine[0] == reducer.fLine[1]) {
SkDebugf("[%d] line computed ends match order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
if (controlsInside) {
if ( (reducer.fLine[0].fX != cubic[0].fX && reducer.fLine[0].fX != cubic[3].fX)
|| (reducer.fLine[0].fY != cubic[0].fY && reducer.fLine[0].fY != cubic[3].fY)
|| (reducer.fLine[1].fX != cubic[0].fX && reducer.fLine[1].fX != cubic[3].fX)
|| (reducer.fLine[1].fY != cubic[0].fY && reducer.fLine[1].fY != cubic[3].fY)) {
SkDebugf("[%d] line computed ends order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
} else {
// binary search for extrema, compare against actual results
// while a control point is outside of bounding box formed by end points, split
SkDRect bounds = {DBL_MAX, DBL_MAX, -DBL_MAX, -DBL_MAX};
find_tight_bounds(cubic, bounds);
if ( (!AlmostEqualUlps(reducer.fLine[0].fX, bounds.fLeft)
&& !AlmostEqualUlps(reducer.fLine[0].fX, bounds.fRight))
|| (!AlmostEqualUlps(reducer.fLine[0].fY, bounds.fTop)
&& !AlmostEqualUlps(reducer.fLine[0].fY, bounds.fBottom))
|| (!AlmostEqualUlps(reducer.fLine[1].fX, bounds.fLeft)
&& !AlmostEqualUlps(reducer.fLine[1].fX, bounds.fRight))
|| (!AlmostEqualUlps(reducer.fLine[1].fY, bounds.fTop)
&& !AlmostEqualUlps(reducer.fLine[1].fY, bounds.fBottom))) {
SkDebugf("[%d] line computed tight bounds order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
}
#endif
}