You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
395 lines
14 KiB
395 lines
14 KiB
/*
|
|
* Copyright 2020 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <ftl/array_traits.h>
|
|
#include <ftl/initializer_list.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace android::ftl {
|
|
|
|
constexpr struct IteratorRangeTag {
|
|
} kIteratorRange;
|
|
|
|
// Fixed-capacity, statically allocated counterpart of std::vector. Like std::array, StaticVector
|
|
// allocates contiguous storage for N elements of type T at compile time, but stores at most (rather
|
|
// than exactly) N elements. Unlike std::array, its default constructor does not require T to have a
|
|
// default constructor, since elements are constructed in place as the vector grows. Operations that
|
|
// insert an element (emplace_back, push_back, etc.) fail when the vector is full. The API otherwise
|
|
// adheres to standard containers, except the unstable_erase operation that does not preserve order,
|
|
// and the replace operation that destructively emplaces.
|
|
//
|
|
// StaticVector<T, 1> is analogous to an iterable std::optional.
|
|
// StaticVector<T, 0> is an error.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// ftl::StaticVector<char, 3> vector;
|
|
// assert(vector.empty());
|
|
//
|
|
// vector = {'a', 'b'};
|
|
// assert(vector.size() == 2u);
|
|
//
|
|
// vector.push_back('c');
|
|
// assert(vector.full());
|
|
//
|
|
// assert(!vector.push_back('d'));
|
|
// assert(vector.size() == 3u);
|
|
//
|
|
// vector.unstable_erase(vector.begin());
|
|
// assert(vector == (ftl::StaticVector{'c', 'b'}));
|
|
//
|
|
// vector.pop_back();
|
|
// assert(vector.back() == 'c');
|
|
//
|
|
// const char array[] = "hi";
|
|
// vector = ftl::StaticVector(array);
|
|
// assert(vector == (ftl::StaticVector{'h', 'i', '\0'}));
|
|
//
|
|
// ftl::StaticVector strings = ftl::init::list<std::string>("abc")("123456", 3u)(3u, '?');
|
|
// assert(strings.size() == 3u);
|
|
// assert(strings[0] == "abc");
|
|
// assert(strings[1] == "123");
|
|
// assert(strings[2] == "???");
|
|
//
|
|
template <typename T, std::size_t N>
|
|
class StaticVector final : ArrayTraits<T>,
|
|
ArrayIterators<StaticVector<T, N>, T>,
|
|
ArrayComparators<StaticVector> {
|
|
static_assert(N > 0);
|
|
|
|
using ArrayTraits<T>::construct_at;
|
|
|
|
using Iter = ArrayIterators<StaticVector, T>;
|
|
friend Iter;
|
|
|
|
// There is ambiguity when constructing from two iterator-like elements like pointers:
|
|
// they could be an iterator range, or arguments for in-place construction. Assume the
|
|
// latter unless they are input iterators and cannot be used to construct elements. If
|
|
// the former is intended, the caller can pass an IteratorRangeTag to disambiguate.
|
|
template <typename I, typename Traits = std::iterator_traits<I>>
|
|
using is_input_iterator =
|
|
std::conjunction<std::is_base_of<std::input_iterator_tag, typename Traits::iterator_category>,
|
|
std::negation<std::is_constructible<T, I>>>;
|
|
|
|
public:
|
|
FTL_ARRAY_TRAIT(T, value_type);
|
|
FTL_ARRAY_TRAIT(T, size_type);
|
|
FTL_ARRAY_TRAIT(T, difference_type);
|
|
|
|
FTL_ARRAY_TRAIT(T, pointer);
|
|
FTL_ARRAY_TRAIT(T, reference);
|
|
FTL_ARRAY_TRAIT(T, iterator);
|
|
FTL_ARRAY_TRAIT(T, reverse_iterator);
|
|
|
|
FTL_ARRAY_TRAIT(T, const_pointer);
|
|
FTL_ARRAY_TRAIT(T, const_reference);
|
|
FTL_ARRAY_TRAIT(T, const_iterator);
|
|
FTL_ARRAY_TRAIT(T, const_reverse_iterator);
|
|
|
|
// Creates an empty vector.
|
|
StaticVector() = default;
|
|
|
|
// Copies and moves a vector, respectively.
|
|
StaticVector(const StaticVector& other)
|
|
: StaticVector(kIteratorRange, other.begin(), other.end()) {}
|
|
|
|
StaticVector(StaticVector&& other) { swap<true>(other); }
|
|
|
|
// Copies at most N elements from a smaller convertible vector.
|
|
template <typename U, std::size_t M, typename = std::enable_if_t<M <= N>>
|
|
StaticVector(const StaticVector<U, M>& other)
|
|
: StaticVector(kIteratorRange, other.begin(), other.end()) {}
|
|
|
|
// Copies at most N elements from an array.
|
|
template <typename U, std::size_t M>
|
|
explicit StaticVector(U (&array)[M])
|
|
: StaticVector(kIteratorRange, std::begin(array), std::end(array)) {}
|
|
|
|
// Copies at most N elements from the range [first, last).
|
|
//
|
|
// IteratorRangeTag disambiguates with initialization from two iterator-like elements.
|
|
//
|
|
template <typename Iterator, typename = std::enable_if_t<is_input_iterator<Iterator>{}>>
|
|
StaticVector(Iterator first, Iterator last) : StaticVector(kIteratorRange, first, last) {
|
|
using V = typename std::iterator_traits<Iterator>::value_type;
|
|
static_assert(std::is_constructible_v<value_type, V>, "Incompatible iterator range");
|
|
}
|
|
|
|
template <typename Iterator>
|
|
StaticVector(IteratorRangeTag, Iterator first, Iterator last)
|
|
: size_(std::min(max_size(), static_cast<size_type>(std::distance(first, last)))) {
|
|
std::uninitialized_copy(first, first + size_, begin());
|
|
}
|
|
|
|
// Constructs at most N elements. The template arguments T and N are inferred using the
|
|
// deduction guide defined below. Note that T is determined from the first element, and
|
|
// subsequent elements must have convertible types:
|
|
//
|
|
// ftl::StaticVector vector = {1, 2, 3};
|
|
// static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<int, 3>>);
|
|
//
|
|
// const auto copy = "quince"s;
|
|
// auto move = "tart"s;
|
|
// ftl::StaticVector vector = {copy, std::move(move)};
|
|
//
|
|
// static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 2>>);
|
|
//
|
|
template <typename E, typename... Es,
|
|
typename = std::enable_if_t<std::is_constructible_v<value_type, E>>>
|
|
StaticVector(E&& element, Es&&... elements)
|
|
: StaticVector(std::index_sequence<0>{}, std::forward<E>(element),
|
|
std::forward<Es>(elements)...) {
|
|
static_assert(sizeof...(elements) < N, "Too many elements");
|
|
}
|
|
|
|
// Constructs at most N elements in place by forwarding per-element constructor arguments. The
|
|
// template arguments T and N are inferred using the deduction guide defined below. The syntax
|
|
// for listing arguments is as follows:
|
|
//
|
|
// ftl::StaticVector vector = ftl::init::list<std::string>("abc")()(3u, '?');
|
|
//
|
|
// static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 3>>);
|
|
// assert(vector.full());
|
|
// assert(vector[0] == "abc");
|
|
// assert(vector[1].empty());
|
|
// assert(vector[2] == "???");
|
|
//
|
|
template <typename U, std::size_t Size, std::size_t... Sizes, typename... Types>
|
|
StaticVector(InitializerList<U, std::index_sequence<Size, Sizes...>, Types...>&& list)
|
|
: StaticVector(std::index_sequence<0, 0, Size>{}, std::make_index_sequence<Size>{},
|
|
std::index_sequence<Sizes...>{}, list.tuple) {}
|
|
|
|
~StaticVector() { std::destroy(begin(), end()); }
|
|
|
|
StaticVector& operator=(const StaticVector& other) {
|
|
StaticVector copy(other);
|
|
swap(copy);
|
|
return *this;
|
|
}
|
|
|
|
StaticVector& operator=(StaticVector&& other) {
|
|
std::destroy(begin(), end());
|
|
size_ = 0;
|
|
swap<true>(other);
|
|
return *this;
|
|
}
|
|
|
|
// IsEmpty enables a fast path when the vector is known to be empty at compile time.
|
|
template <bool IsEmpty = false>
|
|
void swap(StaticVector&);
|
|
|
|
static constexpr size_type max_size() { return N; }
|
|
size_type size() const { return size_; }
|
|
|
|
bool empty() const { return size() == 0; }
|
|
bool full() const { return size() == max_size(); }
|
|
|
|
iterator begin() { return std::launder(reinterpret_cast<pointer>(data_)); }
|
|
iterator end() { return begin() + size(); }
|
|
|
|
using Iter::begin;
|
|
using Iter::end;
|
|
|
|
using Iter::cbegin;
|
|
using Iter::cend;
|
|
|
|
using Iter::rbegin;
|
|
using Iter::rend;
|
|
|
|
using Iter::crbegin;
|
|
using Iter::crend;
|
|
|
|
using Iter::last;
|
|
|
|
using Iter::back;
|
|
using Iter::front;
|
|
|
|
using Iter::operator[];
|
|
|
|
// Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
|
|
// replacing at end() is erroneous.
|
|
//
|
|
// The element is emplaced via move constructor, so type T does not need to define copy/move
|
|
// assignment, e.g. its data members may be const.
|
|
//
|
|
// The arguments may directly or indirectly refer to the element being replaced.
|
|
//
|
|
// Iterators to the replaced element point to its replacement, and others remain valid.
|
|
//
|
|
template <typename... Args>
|
|
reference replace(const_iterator it, Args&&... args) {
|
|
value_type element{std::forward<Args>(args)...};
|
|
std::destroy_at(it);
|
|
// This is only safe because exceptions are disabled.
|
|
return *construct_at(it, std::move(element));
|
|
}
|
|
|
|
// Appends an element, and returns an iterator to it. If the vector is full, the element is not
|
|
// inserted, and the end() iterator is returned.
|
|
//
|
|
// On success, the end() iterator is invalidated.
|
|
//
|
|
template <typename... Args>
|
|
iterator emplace_back(Args&&... args) {
|
|
if (full()) return end();
|
|
const iterator it = construct_at(end(), std::forward<Args>(args)...);
|
|
++size_;
|
|
return it;
|
|
}
|
|
|
|
// Appends an element unless the vector is full, and returns whether the element was inserted.
|
|
//
|
|
// On success, the end() iterator is invalidated.
|
|
//
|
|
bool push_back(const value_type& v) {
|
|
// Two statements for sequence point.
|
|
const iterator it = emplace_back(v);
|
|
return it != end();
|
|
}
|
|
|
|
bool push_back(value_type&& v) {
|
|
// Two statements for sequence point.
|
|
const iterator it = emplace_back(std::move(v));
|
|
return it != end();
|
|
}
|
|
|
|
// Removes the last element. The vector must not be empty, or the call is erroneous.
|
|
//
|
|
// The last() and end() iterators are invalidated.
|
|
//
|
|
void pop_back() { unstable_erase(last()); }
|
|
|
|
// Erases an element, but does not preserve order. Rather than shifting subsequent elements,
|
|
// this moves the last element to the slot of the erased element.
|
|
//
|
|
// The last() and end() iterators, as well as those to the erased element, are invalidated.
|
|
//
|
|
void unstable_erase(const_iterator it) {
|
|
std::destroy_at(it);
|
|
if (it != last()) {
|
|
// Move last element and destroy its source for destructor side effects. This is only
|
|
// safe because exceptions are disabled.
|
|
construct_at(it, std::move(back()));
|
|
std::destroy_at(last());
|
|
}
|
|
--size_;
|
|
}
|
|
|
|
private:
|
|
// Recursion for variadic constructor.
|
|
template <std::size_t I, typename E, typename... Es>
|
|
StaticVector(std::index_sequence<I>, E&& element, Es&&... elements)
|
|
: StaticVector(std::index_sequence<I + 1>{}, std::forward<Es>(elements)...) {
|
|
construct_at(begin() + I, std::forward<E>(element));
|
|
}
|
|
|
|
// Base case for variadic constructor.
|
|
template <std::size_t I>
|
|
explicit StaticVector(std::index_sequence<I>) : size_(I) {}
|
|
|
|
// Recursion for in-place constructor.
|
|
//
|
|
// Construct element I by extracting its arguments from the InitializerList tuple. ArgIndex
|
|
// is the position of its first argument in Args, and ArgCount is the number of arguments.
|
|
// The Indices sequence corresponds to [0, ArgCount).
|
|
//
|
|
// The Sizes sequence lists the argument counts for elements after I, so Size is the ArgCount
|
|
// for the next element. The recursion stops when Sizes is empty for the last element.
|
|
//
|
|
template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices,
|
|
std::size_t Size, std::size_t... Sizes, typename... Args>
|
|
StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>,
|
|
std::index_sequence<Size, Sizes...>, std::tuple<Args...>& tuple)
|
|
: StaticVector(std::index_sequence<I + 1, ArgIndex + ArgCount, Size>{},
|
|
std::make_index_sequence<Size>{}, std::index_sequence<Sizes...>{}, tuple) {
|
|
construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...);
|
|
}
|
|
|
|
// Base case for in-place constructor.
|
|
template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices,
|
|
typename... Args>
|
|
StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>,
|
|
std::index_sequence<>, std::tuple<Args...>& tuple)
|
|
: size_(I + 1) {
|
|
construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...);
|
|
}
|
|
|
|
size_type size_ = 0;
|
|
std::aligned_storage_t<sizeof(value_type), alignof(value_type)> data_[N];
|
|
};
|
|
|
|
// Deduction guide for array constructor.
|
|
template <typename T, std::size_t N>
|
|
StaticVector(T (&)[N]) -> StaticVector<std::remove_cv_t<T>, N>;
|
|
|
|
// Deduction guide for variadic constructor.
|
|
template <typename T, typename... Us, typename V = std::decay_t<T>,
|
|
typename = std::enable_if_t<(std::is_constructible_v<V, Us> && ...)>>
|
|
StaticVector(T&&, Us&&...) -> StaticVector<V, 1 + sizeof...(Us)>;
|
|
|
|
// Deduction guide for in-place constructor.
|
|
template <typename T, std::size_t... Sizes, typename... Types>
|
|
StaticVector(InitializerList<T, std::index_sequence<Sizes...>, Types...>&&)
|
|
-> StaticVector<T, sizeof...(Sizes)>;
|
|
|
|
template <typename T, std::size_t N>
|
|
template <bool IsEmpty>
|
|
void StaticVector<T, N>::swap(StaticVector& other) {
|
|
auto [to, from] = std::make_pair(this, &other);
|
|
if (from == this) return;
|
|
|
|
// Assume this vector has fewer elements, so the excess of the other vector will be moved to it.
|
|
auto [min, max] = std::make_pair(size(), other.size());
|
|
|
|
// No elements to swap if moving into an empty vector.
|
|
if constexpr (IsEmpty) {
|
|
assert(min == 0);
|
|
} else {
|
|
if (min > max) {
|
|
std::swap(from, to);
|
|
std::swap(min, max);
|
|
}
|
|
|
|
// Swap elements [0, min).
|
|
std::swap_ranges(begin(), begin() + min, other.begin());
|
|
|
|
// No elements to move if sizes are equal.
|
|
if (min == max) return;
|
|
}
|
|
|
|
// Move elements [min, max) and destroy their source for destructor side effects.
|
|
const auto [first, last] = std::make_pair(from->begin() + min, from->begin() + max);
|
|
std::uninitialized_move(first, last, to->begin() + min);
|
|
std::destroy(first, last);
|
|
|
|
std::swap(size_, other.size_);
|
|
}
|
|
|
|
template <typename T, std::size_t N>
|
|
inline void swap(StaticVector<T, N>& lhs, StaticVector<T, N>& rhs) {
|
|
lhs.swap(rhs);
|
|
}
|
|
|
|
} // namespace android::ftl
|