You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
793 lines
23 KiB
793 lines
23 KiB
/* San Angeles Observation OpenGL ES version example
|
|
* Copyright 2004-2005 Jetro Lauha
|
|
* All rights reserved.
|
|
* Web: http://iki.fi/jetro/
|
|
*
|
|
* This source is free software; you can redistribute it and/or
|
|
* modify it under the terms of EITHER:
|
|
* (1) The GNU Lesser General Public License as published by the Free
|
|
* Software Foundation; either version 2.1 of the License, or (at
|
|
* your option) any later version. The text of the GNU Lesser
|
|
* General Public License is included with this source in the
|
|
* file LICENSE-LGPL.txt.
|
|
* (2) The BSD-style license that is included with this source in
|
|
* the file LICENSE-BSD.txt.
|
|
*
|
|
* This source is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
|
* LICENSE-LGPL.txt and LICENSE-BSD.txt for more details.
|
|
*
|
|
* $Id: demo.c,v 1.10 2005/02/08 20:54:39 tonic Exp $
|
|
* $Revision: 1.10 $
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <assert.h>
|
|
|
|
#include <GLES/gl.h>
|
|
|
|
#include "app.h"
|
|
#include "shapes.h"
|
|
#include "cams.h"
|
|
|
|
|
|
// Total run length is 20 * camera track base unit length (see cams.h).
|
|
#define RUN_LENGTH (20 * CAMTRACK_LEN)
|
|
#undef PI
|
|
#define PI 3.1415926535897932f
|
|
#define RANDOM_UINT_MAX 65535
|
|
|
|
|
|
static unsigned long sRandomSeed = 0;
|
|
|
|
static void seedRandom(unsigned long seed)
|
|
{
|
|
sRandomSeed = seed;
|
|
}
|
|
|
|
static unsigned long randomUInt()
|
|
{
|
|
sRandomSeed = sRandomSeed * 0x343fd + 0x269ec3;
|
|
return sRandomSeed >> 16;
|
|
}
|
|
|
|
|
|
// Capped conversion from float to fixed.
|
|
static long floatToFixed(float value)
|
|
{
|
|
if (value < -32768) value = -32768;
|
|
if (value > 32767) value = 32767;
|
|
return (long)(value * 65536);
|
|
}
|
|
|
|
#define FIXED(value) floatToFixed(value)
|
|
|
|
|
|
// Definition of one GL object in this demo.
|
|
typedef struct {
|
|
/* Vertex array and color array are enabled for all objects, so their
|
|
* pointers must always be valid and non-NULL. Normal array is not
|
|
* used by the ground plane, so when its pointer is NULL then normal
|
|
* array usage is disabled.
|
|
*
|
|
* Vertex array is supposed to use GL_FIXED datatype and stride 0
|
|
* (i.e. tightly packed array). Color array is supposed to have 4
|
|
* components per color with GL_UNSIGNED_BYTE datatype and stride 0.
|
|
* Normal array is supposed to use GL_FIXED datatype and stride 0.
|
|
*/
|
|
GLfixed *vertexArray;
|
|
GLubyte *colorArray;
|
|
GLfixed *normalArray;
|
|
GLint vertexComponents;
|
|
GLsizei count;
|
|
} GLOBJECT;
|
|
|
|
|
|
static long sStartTick = 0;
|
|
static long sTick = 0;
|
|
|
|
static int sCurrentCamTrack = 0;
|
|
static long sCurrentCamTrackStartTick = 0;
|
|
static long sNextCamTrackStartTick = 0x7fffffff;
|
|
|
|
static GLOBJECT *sSuperShapeObjects[SUPERSHAPE_COUNT] = { NULL };
|
|
static GLOBJECT *sGroundPlane = NULL;
|
|
|
|
|
|
typedef struct {
|
|
float x, y, z;
|
|
} VECTOR3;
|
|
|
|
|
|
static void freeGLObject(GLOBJECT *object)
|
|
{
|
|
if (object == NULL)
|
|
return;
|
|
free(object->normalArray);
|
|
free(object->colorArray);
|
|
free(object->vertexArray);
|
|
free(object);
|
|
}
|
|
|
|
|
|
static GLOBJECT * newGLObject(long vertices, int vertexComponents,
|
|
int useNormalArray)
|
|
{
|
|
GLOBJECT *result;
|
|
result = (GLOBJECT *)malloc(sizeof(GLOBJECT));
|
|
if (result == NULL)
|
|
return NULL;
|
|
result->count = vertices;
|
|
result->vertexComponents = vertexComponents;
|
|
result->vertexArray = (GLfixed *)malloc(vertices * vertexComponents *
|
|
sizeof(GLfixed));
|
|
result->colorArray = (GLubyte *)malloc(vertices * 4 * sizeof(GLubyte));
|
|
if (useNormalArray)
|
|
{
|
|
result->normalArray = (GLfixed *)malloc(vertices * 3 *
|
|
sizeof(GLfixed));
|
|
}
|
|
else
|
|
result->normalArray = NULL;
|
|
if (result->vertexArray == NULL ||
|
|
result->colorArray == NULL ||
|
|
(useNormalArray && result->normalArray == NULL))
|
|
{
|
|
freeGLObject(result);
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static void drawGLObject(GLOBJECT *object)
|
|
{
|
|
assert(object != NULL);
|
|
|
|
glVertexPointer(object->vertexComponents, GL_FIXED,
|
|
0, object->vertexArray);
|
|
glColorPointer(4, GL_UNSIGNED_BYTE, 0, object->colorArray);
|
|
|
|
// Already done in initialization:
|
|
//glEnableClientState(GL_VERTEX_ARRAY);
|
|
//glEnableClientState(GL_COLOR_ARRAY);
|
|
|
|
if (object->normalArray)
|
|
{
|
|
glNormalPointer(GL_FIXED, 0, object->normalArray);
|
|
glEnableClientState(GL_NORMAL_ARRAY);
|
|
}
|
|
else
|
|
glDisableClientState(GL_NORMAL_ARRAY);
|
|
glDrawArrays(GL_TRIANGLES, 0, object->count);
|
|
}
|
|
|
|
|
|
static void vector3Sub(VECTOR3 *dest, VECTOR3 *v1, VECTOR3 *v2)
|
|
{
|
|
dest->x = v1->x - v2->x;
|
|
dest->y = v1->y - v2->y;
|
|
dest->z = v1->z - v2->z;
|
|
}
|
|
|
|
|
|
static void superShapeMap(VECTOR3 *point, float r1, float r2, float t, float p)
|
|
{
|
|
// sphere-mapping of supershape parameters
|
|
point->x = (float)(cos(t) * cos(p) / r1 / r2);
|
|
point->y = (float)(sin(t) * cos(p) / r1 / r2);
|
|
point->z = (float)(sin(p) / r2);
|
|
}
|
|
|
|
|
|
static float ssFunc(const float t, const float *p)
|
|
{
|
|
return (float)(pow(pow(fabs(cos(p[0] * t / 4)) / p[1], p[4]) +
|
|
pow(fabs(sin(p[0] * t / 4)) / p[2], p[5]), 1 / p[3]));
|
|
}
|
|
|
|
|
|
// Creates and returns a supershape object.
|
|
// Based on Paul Bourke's POV-Ray implementation.
|
|
// http://astronomy.swin.edu.au/~pbourke/povray/supershape/
|
|
static GLOBJECT * createSuperShape(const float *params)
|
|
{
|
|
const int resol1 = (int)params[SUPERSHAPE_PARAMS - 3];
|
|
const int resol2 = (int)params[SUPERSHAPE_PARAMS - 2];
|
|
// latitude 0 to pi/2 for no mirrored bottom
|
|
// (latitudeBegin==0 for -pi/2 to pi/2 originally)
|
|
const int latitudeBegin = resol2 / 4;
|
|
const int latitudeEnd = resol2 / 2; // non-inclusive
|
|
const int longitudeCount = resol1;
|
|
const int latitudeCount = latitudeEnd - latitudeBegin;
|
|
const long triangleCount = longitudeCount * latitudeCount * 2;
|
|
const long vertices = triangleCount * 3;
|
|
GLOBJECT *result;
|
|
float baseColor[3];
|
|
int a, longitude, latitude;
|
|
long currentVertex, currentQuad;
|
|
|
|
result = newGLObject(vertices, 3, 1);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
for (a = 0; a < 3; ++a)
|
|
baseColor[a] = ((randomUInt() % 155) + 100) / 255.f;
|
|
|
|
currentQuad = 0;
|
|
currentVertex = 0;
|
|
|
|
// longitude -pi to pi
|
|
for (longitude = 0; longitude < longitudeCount; ++longitude)
|
|
{
|
|
|
|
// latitude 0 to pi/2
|
|
for (latitude = latitudeBegin; latitude < latitudeEnd; ++latitude)
|
|
{
|
|
float t1 = -PI + longitude * 2 * PI / resol1;
|
|
float t2 = -PI + (longitude + 1) * 2 * PI / resol1;
|
|
float p1 = -PI / 2 + latitude * 2 * PI / resol2;
|
|
float p2 = -PI / 2 + (latitude + 1) * 2 * PI / resol2;
|
|
float r0, r1, r2, r3;
|
|
|
|
r0 = ssFunc(t1, params);
|
|
r1 = ssFunc(p1, ¶ms[6]);
|
|
r2 = ssFunc(t2, params);
|
|
r3 = ssFunc(p2, ¶ms[6]);
|
|
|
|
if (r0 != 0 && r1 != 0 && r2 != 0 && r3 != 0)
|
|
{
|
|
VECTOR3 pa, pb, pc, pd;
|
|
VECTOR3 v1, v2, n;
|
|
float ca;
|
|
int i;
|
|
//float lenSq, invLenSq;
|
|
|
|
superShapeMap(&pa, r0, r1, t1, p1);
|
|
superShapeMap(&pb, r2, r1, t2, p1);
|
|
superShapeMap(&pc, r2, r3, t2, p2);
|
|
superShapeMap(&pd, r0, r3, t1, p2);
|
|
|
|
// kludge to set lower edge of the object to fixed level
|
|
if (latitude == latitudeBegin + 1)
|
|
pa.z = pb.z = 0;
|
|
|
|
vector3Sub(&v1, &pb, &pa);
|
|
vector3Sub(&v2, &pd, &pa);
|
|
|
|
// Calculate normal with cross product.
|
|
/* i j k i j
|
|
* v1.x v1.y v1.z | v1.x v1.y
|
|
* v2.x v2.y v2.z | v2.x v2.y
|
|
*/
|
|
|
|
n.x = v1.y * v2.z - v1.z * v2.y;
|
|
n.y = v1.z * v2.x - v1.x * v2.z;
|
|
n.z = v1.x * v2.y - v1.y * v2.x;
|
|
|
|
/* Pre-normalization of the normals is disabled here because
|
|
* they will be normalized anyway later due to automatic
|
|
* normalization (GL_NORMALIZE). It is enabled because the
|
|
* objects are scaled with glScale.
|
|
*/
|
|
/*
|
|
lenSq = n.x * n.x + n.y * n.y + n.z * n.z;
|
|
invLenSq = (float)(1 / sqrt(lenSq));
|
|
n.x *= invLenSq;
|
|
n.y *= invLenSq;
|
|
n.z *= invLenSq;
|
|
*/
|
|
|
|
ca = pa.z + 0.5f;
|
|
|
|
for (i = currentVertex * 3;
|
|
i < (currentVertex + 6) * 3;
|
|
i += 3)
|
|
{
|
|
result->normalArray[i] = FIXED(n.x);
|
|
result->normalArray[i + 1] = FIXED(n.y);
|
|
result->normalArray[i + 2] = FIXED(n.z);
|
|
}
|
|
for (i = currentVertex * 4;
|
|
i < (currentVertex + 6) * 4;
|
|
i += 4)
|
|
{
|
|
int a, color[3];
|
|
for (a = 0; a < 3; ++a)
|
|
{
|
|
color[a] = (int)(ca * baseColor[a] * 255);
|
|
if (color[a] > 255) color[a] = 255;
|
|
}
|
|
result->colorArray[i] = (GLubyte)color[0];
|
|
result->colorArray[i + 1] = (GLubyte)color[1];
|
|
result->colorArray[i + 2] = (GLubyte)color[2];
|
|
result->colorArray[i + 3] = 0;
|
|
}
|
|
result->vertexArray[currentVertex * 3] = FIXED(pa.x);
|
|
result->vertexArray[currentVertex * 3 + 1] = FIXED(pa.y);
|
|
result->vertexArray[currentVertex * 3 + 2] = FIXED(pa.z);
|
|
++currentVertex;
|
|
result->vertexArray[currentVertex * 3] = FIXED(pb.x);
|
|
result->vertexArray[currentVertex * 3 + 1] = FIXED(pb.y);
|
|
result->vertexArray[currentVertex * 3 + 2] = FIXED(pb.z);
|
|
++currentVertex;
|
|
result->vertexArray[currentVertex * 3] = FIXED(pd.x);
|
|
result->vertexArray[currentVertex * 3 + 1] = FIXED(pd.y);
|
|
result->vertexArray[currentVertex * 3 + 2] = FIXED(pd.z);
|
|
++currentVertex;
|
|
result->vertexArray[currentVertex * 3] = FIXED(pb.x);
|
|
result->vertexArray[currentVertex * 3 + 1] = FIXED(pb.y);
|
|
result->vertexArray[currentVertex * 3 + 2] = FIXED(pb.z);
|
|
++currentVertex;
|
|
result->vertexArray[currentVertex * 3] = FIXED(pc.x);
|
|
result->vertexArray[currentVertex * 3 + 1] = FIXED(pc.y);
|
|
result->vertexArray[currentVertex * 3 + 2] = FIXED(pc.z);
|
|
++currentVertex;
|
|
result->vertexArray[currentVertex * 3] = FIXED(pd.x);
|
|
result->vertexArray[currentVertex * 3 + 1] = FIXED(pd.y);
|
|
result->vertexArray[currentVertex * 3 + 2] = FIXED(pd.z);
|
|
++currentVertex;
|
|
} // r0 && r1 && r2 && r3
|
|
++currentQuad;
|
|
} // latitude
|
|
} // longitude
|
|
|
|
// Set number of vertices in object to the actual amount created.
|
|
result->count = currentVertex;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static GLOBJECT * createGroundPlane()
|
|
{
|
|
const int scale = 4;
|
|
const int yBegin = -15, yEnd = 15; // ends are non-inclusive
|
|
const int xBegin = -15, xEnd = 15;
|
|
const long triangleCount = (yEnd - yBegin) * (xEnd - xBegin) * 2;
|
|
const long vertices = triangleCount * 3;
|
|
GLOBJECT *result;
|
|
int x, y;
|
|
long currentVertex, currentQuad;
|
|
|
|
result = newGLObject(vertices, 2, 0);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
currentQuad = 0;
|
|
currentVertex = 0;
|
|
|
|
for (y = yBegin; y < yEnd; ++y)
|
|
{
|
|
for (x = xBegin; x < xEnd; ++x)
|
|
{
|
|
GLubyte color;
|
|
int i, a;
|
|
color = (GLubyte)((randomUInt() & 0x5f) + 81); // 101 1111
|
|
for (i = currentVertex * 4; i < (currentVertex + 6) * 4; i += 4)
|
|
{
|
|
result->colorArray[i] = color;
|
|
result->colorArray[i + 1] = color;
|
|
result->colorArray[i + 2] = color;
|
|
result->colorArray[i + 3] = 0;
|
|
}
|
|
|
|
// Axis bits for quad triangles:
|
|
// x: 011100 (0x1c), y: 110001 (0x31) (clockwise)
|
|
// x: 001110 (0x0e), y: 100011 (0x23) (counter-clockwise)
|
|
for (a = 0; a < 6; ++a)
|
|
{
|
|
const int xm = x + ((0x1c >> a) & 1);
|
|
const int ym = y + ((0x31 >> a) & 1);
|
|
const float m = (float)(cos(xm * 2) * sin(ym * 4) * 0.75f);
|
|
result->vertexArray[currentVertex * 2] =
|
|
FIXED(xm * scale + m);
|
|
result->vertexArray[currentVertex * 2 + 1] =
|
|
FIXED(ym * scale + m);
|
|
++currentVertex;
|
|
}
|
|
++currentQuad;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static void drawGroundPlane()
|
|
{
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glEnable(GL_BLEND);
|
|
glBlendFunc(GL_ZERO, GL_SRC_COLOR);
|
|
glDisable(GL_LIGHTING);
|
|
|
|
drawGLObject(sGroundPlane);
|
|
|
|
glEnable(GL_LIGHTING);
|
|
glDisable(GL_BLEND);
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
|
|
|
|
static void drawFadeQuad()
|
|
{
|
|
static const GLfixed quadVertices[] = {
|
|
-0x10000, -0x10000,
|
|
0x10000, -0x10000,
|
|
-0x10000, 0x10000,
|
|
0x10000, -0x10000,
|
|
0x10000, 0x10000,
|
|
-0x10000, 0x10000
|
|
};
|
|
|
|
const int beginFade = sTick - sCurrentCamTrackStartTick;
|
|
const int endFade = sNextCamTrackStartTick - sTick;
|
|
const int minFade = beginFade < endFade ? beginFade : endFade;
|
|
|
|
if (minFade < 1024)
|
|
{
|
|
const GLfixed fadeColor = minFade << 6;
|
|
glColor4x(fadeColor, fadeColor, fadeColor, 0);
|
|
|
|
glDisable(GL_DEPTH_TEST);
|
|
glEnable(GL_BLEND);
|
|
glBlendFunc(GL_ZERO, GL_SRC_COLOR);
|
|
glDisable(GL_LIGHTING);
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
glLoadIdentity();
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
glLoadIdentity();
|
|
|
|
glDisableClientState(GL_COLOR_ARRAY);
|
|
glDisableClientState(GL_NORMAL_ARRAY);
|
|
glVertexPointer(2, GL_FIXED, 0, quadVertices);
|
|
glDrawArrays(GL_TRIANGLES, 0, 6);
|
|
|
|
glEnableClientState(GL_COLOR_ARRAY);
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
|
|
glEnable(GL_LIGHTING);
|
|
glDisable(GL_BLEND);
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
}
|
|
|
|
|
|
// Called from the app framework.
|
|
void appInit()
|
|
{
|
|
unsigned int a;
|
|
|
|
glEnable(GL_NORMALIZE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glShadeModel(GL_FLAT);
|
|
|
|
glEnable(GL_LIGHTING);
|
|
glEnable(GL_LIGHT0);
|
|
glEnable(GL_LIGHT1);
|
|
glEnable(GL_LIGHT2);
|
|
|
|
glEnableClientState(GL_VERTEX_ARRAY);
|
|
glEnableClientState(GL_COLOR_ARRAY);
|
|
|
|
seedRandom(15);
|
|
|
|
for (a = 0; a < SUPERSHAPE_COUNT; ++a)
|
|
{
|
|
sSuperShapeObjects[a] = createSuperShape(sSuperShapeParams[a]);
|
|
assert(sSuperShapeObjects[a] != NULL);
|
|
}
|
|
sGroundPlane = createGroundPlane();
|
|
assert(sGroundPlane != NULL);
|
|
}
|
|
|
|
|
|
// Called from the app framework.
|
|
void appDeinit()
|
|
{
|
|
unsigned int a;
|
|
for (a = 0; a < SUPERSHAPE_COUNT; ++a)
|
|
freeGLObject(sSuperShapeObjects[a]);
|
|
freeGLObject(sGroundPlane);
|
|
}
|
|
|
|
|
|
static void gluPerspective(GLfloat fovy, GLfloat aspect,
|
|
GLfloat zNear, GLfloat zFar)
|
|
{
|
|
GLfloat xmin, xmax, ymin, ymax;
|
|
|
|
ymax = zNear * (GLfloat)tan(fovy * PI / 360);
|
|
ymin = -ymax;
|
|
xmin = ymin * aspect;
|
|
xmax = ymax * aspect;
|
|
|
|
glFrustumx((GLfixed)(xmin * 65536), (GLfixed)(xmax * 65536),
|
|
(GLfixed)(ymin * 65536), (GLfixed)(ymax * 65536),
|
|
(GLfixed)(zNear * 65536), (GLfixed)(zFar * 65536));
|
|
}
|
|
|
|
|
|
static void prepareFrame(int width, int height)
|
|
{
|
|
glViewport(0, 0, width, height);
|
|
|
|
glClearColorx((GLfixed)(0.1f * 65536),
|
|
(GLfixed)(0.2f * 65536),
|
|
(GLfixed)(0.3f * 65536), 0x10000);
|
|
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
glLoadIdentity();
|
|
gluPerspective(45, (float)width / height, 0.5f, 150);
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
|
|
glLoadIdentity();
|
|
}
|
|
|
|
|
|
static void configureLightAndMaterial()
|
|
{
|
|
static GLfixed light0Position[] = { -0x40000, 0x10000, 0x10000, 0 };
|
|
static GLfixed light0Diffuse[] = { 0x10000, 0x6666, 0, 0x10000 };
|
|
static GLfixed light1Position[] = { 0x10000, -0x20000, -0x10000, 0 };
|
|
static GLfixed light1Diffuse[] = { 0x11eb, 0x23d7, 0x5999, 0x10000 };
|
|
static GLfixed light2Position[] = { -0x10000, 0, -0x40000, 0 };
|
|
static GLfixed light2Diffuse[] = { 0x11eb, 0x2b85, 0x23d7, 0x10000 };
|
|
static GLfixed materialSpecular[] = { 0x10000, 0x10000, 0x10000, 0x10000 };
|
|
|
|
glLightxv(GL_LIGHT0, GL_POSITION, light0Position);
|
|
glLightxv(GL_LIGHT0, GL_DIFFUSE, light0Diffuse);
|
|
glLightxv(GL_LIGHT1, GL_POSITION, light1Position);
|
|
glLightxv(GL_LIGHT1, GL_DIFFUSE, light1Diffuse);
|
|
glLightxv(GL_LIGHT2, GL_POSITION, light2Position);
|
|
glLightxv(GL_LIGHT2, GL_DIFFUSE, light2Diffuse);
|
|
glMaterialxv(GL_FRONT_AND_BACK, GL_SPECULAR, materialSpecular);
|
|
|
|
glMaterialx(GL_FRONT_AND_BACK, GL_SHININESS, 60 << 16);
|
|
glEnable(GL_COLOR_MATERIAL);
|
|
}
|
|
|
|
|
|
static void drawModels(float zScale)
|
|
{
|
|
const int translationScale = 9;
|
|
int x, y;
|
|
|
|
seedRandom(9);
|
|
|
|
glScalex(1 << 16, 1 << 16, (GLfixed)(zScale * 65536));
|
|
|
|
for (y = -5; y <= 5; ++y)
|
|
{
|
|
for (x = -5; x <= 5; ++x)
|
|
{
|
|
float buildingScale;
|
|
GLfixed fixedScale;
|
|
|
|
int curShape = randomUInt() % SUPERSHAPE_COUNT;
|
|
buildingScale = sSuperShapeParams[curShape][SUPERSHAPE_PARAMS - 1];
|
|
fixedScale = (GLfixed)(buildingScale * 65536);
|
|
|
|
glPushMatrix();
|
|
glTranslatex((x * translationScale) * 65536,
|
|
(y * translationScale) * 65536,
|
|
0);
|
|
glRotatex((GLfixed)((randomUInt() % 360) << 16), 0, 0, 1 << 16);
|
|
glScalex(fixedScale, fixedScale, fixedScale);
|
|
|
|
drawGLObject(sSuperShapeObjects[curShape]);
|
|
glPopMatrix();
|
|
}
|
|
}
|
|
|
|
for (x = -2; x <= 2; ++x)
|
|
{
|
|
const int shipScale100 = translationScale * 500;
|
|
const int offs100 = x * shipScale100 + (sTick % shipScale100);
|
|
float offs = offs100 * 0.01f;
|
|
GLfixed fixedOffs = (GLfixed)(offs * 65536);
|
|
glPushMatrix();
|
|
glTranslatex(fixedOffs, -4 * 65536, 2 << 16);
|
|
drawGLObject(sSuperShapeObjects[SUPERSHAPE_COUNT - 1]);
|
|
glPopMatrix();
|
|
glPushMatrix();
|
|
glTranslatex(-4 * 65536, fixedOffs, 4 << 16);
|
|
glRotatex(90 << 16, 0, 0, 1 << 16);
|
|
drawGLObject(sSuperShapeObjects[SUPERSHAPE_COUNT - 1]);
|
|
glPopMatrix();
|
|
}
|
|
}
|
|
|
|
|
|
/* Following gluLookAt implementation is adapted from the
|
|
* Mesa 3D Graphics library. http://www.mesa3d.org
|
|
*/
|
|
static void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez,
|
|
GLfloat centerx, GLfloat centery, GLfloat centerz,
|
|
GLfloat upx, GLfloat upy, GLfloat upz)
|
|
{
|
|
GLfloat m[16];
|
|
GLfloat x[3], y[3], z[3];
|
|
GLfloat mag;
|
|
|
|
/* Make rotation matrix */
|
|
|
|
/* Z vector */
|
|
z[0] = eyex - centerx;
|
|
z[1] = eyey - centery;
|
|
z[2] = eyez - centerz;
|
|
mag = (float)sqrt(z[0] * z[0] + z[1] * z[1] + z[2] * z[2]);
|
|
if (mag) { /* mpichler, 19950515 */
|
|
z[0] /= mag;
|
|
z[1] /= mag;
|
|
z[2] /= mag;
|
|
}
|
|
|
|
/* Y vector */
|
|
y[0] = upx;
|
|
y[1] = upy;
|
|
y[2] = upz;
|
|
|
|
/* X vector = Y cross Z */
|
|
x[0] = y[1] * z[2] - y[2] * z[1];
|
|
x[1] = -y[0] * z[2] + y[2] * z[0];
|
|
x[2] = y[0] * z[1] - y[1] * z[0];
|
|
|
|
/* Recompute Y = Z cross X */
|
|
y[0] = z[1] * x[2] - z[2] * x[1];
|
|
y[1] = -z[0] * x[2] + z[2] * x[0];
|
|
y[2] = z[0] * x[1] - z[1] * x[0];
|
|
|
|
/* mpichler, 19950515 */
|
|
/* cross product gives area of parallelogram, which is < 1.0 for
|
|
* non-perpendicular unit-length vectors; so normalize x, y here
|
|
*/
|
|
|
|
mag = (float)sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
|
|
if (mag) {
|
|
x[0] /= mag;
|
|
x[1] /= mag;
|
|
x[2] /= mag;
|
|
}
|
|
|
|
mag = (float)sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]);
|
|
if (mag) {
|
|
y[0] /= mag;
|
|
y[1] /= mag;
|
|
y[2] /= mag;
|
|
}
|
|
|
|
#define M(row,col) m[(col)*4+(row)]
|
|
M(0, 0) = x[0];
|
|
M(0, 1) = x[1];
|
|
M(0, 2) = x[2];
|
|
M(0, 3) = 0.0;
|
|
M(1, 0) = y[0];
|
|
M(1, 1) = y[1];
|
|
M(1, 2) = y[2];
|
|
M(1, 3) = 0.0;
|
|
M(2, 0) = z[0];
|
|
M(2, 1) = z[1];
|
|
M(2, 2) = z[2];
|
|
M(2, 3) = 0.0;
|
|
M(3, 0) = 0.0;
|
|
M(3, 1) = 0.0;
|
|
M(3, 2) = 0.0;
|
|
M(3, 3) = 1.0;
|
|
#undef M
|
|
{
|
|
int a;
|
|
GLfixed fixedM[16];
|
|
for (a = 0; a < 16; ++a)
|
|
fixedM[a] = (GLfixed)(m[a] * 65536);
|
|
glMultMatrixx(fixedM);
|
|
}
|
|
|
|
/* Translate Eye to Origin */
|
|
glTranslatex((GLfixed)(-eyex * 65536),
|
|
(GLfixed)(-eyey * 65536),
|
|
(GLfixed)(-eyez * 65536));
|
|
}
|
|
|
|
|
|
static void camTrack()
|
|
{
|
|
float lerp[5];
|
|
float eX, eY, eZ, cX, cY, cZ;
|
|
float trackPos;
|
|
CAMTRACK *cam;
|
|
long currentCamTick;
|
|
int a;
|
|
|
|
if (sNextCamTrackStartTick <= sTick)
|
|
{
|
|
++sCurrentCamTrack;
|
|
sCurrentCamTrackStartTick = sNextCamTrackStartTick;
|
|
}
|
|
sNextCamTrackStartTick = sCurrentCamTrackStartTick +
|
|
sCamTracks[sCurrentCamTrack].len * CAMTRACK_LEN;
|
|
|
|
cam = &sCamTracks[sCurrentCamTrack];
|
|
currentCamTick = sTick - sCurrentCamTrackStartTick;
|
|
trackPos = (float)currentCamTick / (CAMTRACK_LEN * cam->len);
|
|
|
|
for (a = 0; a < 5; ++a)
|
|
lerp[a] = (cam->src[a] + cam->dest[a] * trackPos) * 0.01f;
|
|
|
|
if (cam->dist)
|
|
{
|
|
float dist = cam->dist * 0.1f;
|
|
cX = lerp[0];
|
|
cY = lerp[1];
|
|
cZ = lerp[2];
|
|
eX = cX - (float)cos(lerp[3]) * dist;
|
|
eY = cY - (float)sin(lerp[3]) * dist;
|
|
eZ = cZ - lerp[4];
|
|
}
|
|
else
|
|
{
|
|
eX = lerp[0];
|
|
eY = lerp[1];
|
|
eZ = lerp[2];
|
|
cX = eX + (float)cos(lerp[3]);
|
|
cY = eY + (float)sin(lerp[3]);
|
|
cZ = eZ + lerp[4];
|
|
}
|
|
gluLookAt(eX, eY, eZ, cX, cY, cZ, 0, 0, 1);
|
|
}
|
|
|
|
|
|
// Called from the app framework.
|
|
/* The tick is current time in milliseconds, width and height
|
|
* are the image dimensions to be rendered.
|
|
*/
|
|
void appRender(long tick, int width, int height)
|
|
{
|
|
if (sStartTick == 0)
|
|
sStartTick = tick;
|
|
if (!gAppAlive)
|
|
return;
|
|
|
|
// Actual tick value is "blurred" a little bit.
|
|
sTick = (sTick + tick - sStartTick) >> 1;
|
|
|
|
// Terminate application after running through the demonstration once.
|
|
if (sTick >= RUN_LENGTH)
|
|
{
|
|
gAppAlive = 0;
|
|
return;
|
|
}
|
|
|
|
// Prepare OpenGL ES for rendering of the frame.
|
|
prepareFrame(width, height);
|
|
|
|
// Update the camera position and set the lookat.
|
|
camTrack();
|
|
|
|
// Configure environment.
|
|
configureLightAndMaterial();
|
|
|
|
// Draw the reflection by drawing models with negated Z-axis.
|
|
glPushMatrix();
|
|
drawModels(-1);
|
|
glPopMatrix();
|
|
|
|
// Blend the ground plane to the window.
|
|
drawGroundPlane();
|
|
|
|
// Draw all the models normally.
|
|
drawModels(1);
|
|
|
|
// Draw fade quad over whole window (when changing cameras).
|
|
drawFadeQuad();
|
|
}
|