You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2382 lines
90 KiB
2382 lines
90 KiB
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <android-base/strings.h>
|
|
#include <android/content/pm/IPackageManagerNative.h>
|
|
#include <android/util/ProtoOutputStream.h>
|
|
#include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
|
|
#include <binder/ActivityManager.h>
|
|
#include <binder/BinderService.h>
|
|
#include <binder/IServiceManager.h>
|
|
#include <binder/PermissionCache.h>
|
|
#include <binder/PermissionController.h>
|
|
#include <cutils/ashmem.h>
|
|
#include <cutils/misc.h>
|
|
#include <cutils/properties.h>
|
|
#include <hardware/sensors.h>
|
|
#include <hardware_legacy/power.h>
|
|
#include <log/log.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/rand.h>
|
|
#include <sensor/SensorEventQueue.h>
|
|
#include <sensorprivacy/SensorPrivacyManager.h>
|
|
#include <utils/SystemClock.h>
|
|
|
|
#include "BatteryService.h"
|
|
#include "CorrectedGyroSensor.h"
|
|
#include "GravitySensor.h"
|
|
#include "LinearAccelerationSensor.h"
|
|
#include "OrientationSensor.h"
|
|
#include "RotationVectorSensor.h"
|
|
#include "SensorFusion.h"
|
|
#include "SensorInterface.h"
|
|
|
|
#include "SensorService.h"
|
|
#include "SensorDirectConnection.h"
|
|
#include "SensorEventAckReceiver.h"
|
|
#include "SensorEventConnection.h"
|
|
#include "SensorRecord.h"
|
|
#include "SensorRegistrationInfo.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <sched.h>
|
|
#include <stdint.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
#include <ctime>
|
|
#include <future>
|
|
|
|
#include <private/android_filesystem_config.h>
|
|
|
|
using namespace std::chrono_literals;
|
|
|
|
namespace android {
|
|
// ---------------------------------------------------------------------------
|
|
|
|
/*
|
|
* Notes:
|
|
*
|
|
* - what about a gyro-corrected magnetic-field sensor?
|
|
* - run mag sensor from time to time to force calibration
|
|
* - gravity sensor length is wrong (=> drift in linear-acc sensor)
|
|
*
|
|
*/
|
|
|
|
const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
|
|
uint8_t SensorService::sHmacGlobalKey[128] = {};
|
|
bool SensorService::sHmacGlobalKeyIsValid = false;
|
|
std::map<String16, int> SensorService::sPackageTargetVersion;
|
|
Mutex SensorService::sPackageTargetVersionLock;
|
|
String16 SensorService::sSensorInterfaceDescriptorPrefix =
|
|
String16("android.frameworks.sensorservice@");
|
|
AppOpsManager SensorService::sAppOpsManager;
|
|
std::atomic_uint64_t SensorService::curProxCallbackSeq(0);
|
|
std::atomic_uint64_t SensorService::completedCallbackSeq(0);
|
|
|
|
#define SENSOR_SERVICE_DIR "/data/system/sensor_service"
|
|
#define SENSOR_SERVICE_HMAC_KEY_FILE SENSOR_SERVICE_DIR "/hmac_key"
|
|
#define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
|
|
|
|
// Permissions.
|
|
static const String16 sAccessHighSensorSamplingRatePermission(
|
|
"android.permission.HIGH_SAMPLING_RATE_SENSORS");
|
|
static const String16 sDumpPermission("android.permission.DUMP");
|
|
static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
|
|
static const String16 sManageSensorsPermission("android.permission.MANAGE_SENSORS");
|
|
|
|
SensorService::SensorService()
|
|
: mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
|
|
mWakeLockAcquired(false), mProximityActiveCount(0) {
|
|
mUidPolicy = new UidPolicy(this);
|
|
mSensorPrivacyPolicy = new SensorPrivacyPolicy(this);
|
|
}
|
|
|
|
bool SensorService::initializeHmacKey() {
|
|
int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
|
|
if (fd != -1) {
|
|
int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
|
|
close(fd);
|
|
if (result == sizeof(sHmacGlobalKey)) {
|
|
return true;
|
|
}
|
|
ALOGW("Unable to read HMAC key; generating new one.");
|
|
}
|
|
|
|
if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
|
|
ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
|
|
return false;
|
|
}
|
|
|
|
// We need to make sure this is only readable to us.
|
|
bool wroteKey = false;
|
|
mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
|
|
fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
|
|
S_IRUSR|S_IWUSR);
|
|
if (fd != -1) {
|
|
int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
|
|
close(fd);
|
|
wroteKey = (result == sizeof(sHmacGlobalKey));
|
|
}
|
|
if (wroteKey) {
|
|
ALOGI("Generated new HMAC key.");
|
|
} else {
|
|
ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
|
|
"after reboot.");
|
|
}
|
|
// Even if we failed to write the key we return true, because we did
|
|
// initialize the HMAC key.
|
|
return true;
|
|
}
|
|
|
|
// Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
|
|
void SensorService::enableSchedFifoMode() {
|
|
struct sched_param param = {0};
|
|
param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
|
|
if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m) != 0) {
|
|
ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
|
|
}
|
|
}
|
|
|
|
void SensorService::onFirstRef() {
|
|
ALOGD("nuSensorService starting...");
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
|
|
sHmacGlobalKeyIsValid = initializeHmacKey();
|
|
|
|
if (dev.initCheck() == NO_ERROR) {
|
|
sensor_t const* list;
|
|
ssize_t count = dev.getSensorList(&list);
|
|
if (count > 0) {
|
|
ssize_t orientationIndex = -1;
|
|
bool hasGyro = false, hasAccel = false, hasMag = false;
|
|
uint32_t virtualSensorsNeeds =
|
|
(1<<SENSOR_TYPE_GRAVITY) |
|
|
(1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
|
|
(1<<SENSOR_TYPE_ROTATION_VECTOR) |
|
|
(1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
|
|
(1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
|
|
|
|
for (ssize_t i=0 ; i<count ; i++) {
|
|
bool useThisSensor = true;
|
|
|
|
switch (list[i].type) {
|
|
case SENSOR_TYPE_ACCELEROMETER:
|
|
hasAccel = true;
|
|
break;
|
|
case SENSOR_TYPE_MAGNETIC_FIELD:
|
|
hasMag = true;
|
|
break;
|
|
case SENSOR_TYPE_ORIENTATION:
|
|
orientationIndex = i;
|
|
break;
|
|
case SENSOR_TYPE_GYROSCOPE:
|
|
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
|
|
hasGyro = true;
|
|
break;
|
|
case SENSOR_TYPE_GRAVITY:
|
|
case SENSOR_TYPE_LINEAR_ACCELERATION:
|
|
case SENSOR_TYPE_ROTATION_VECTOR:
|
|
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
|
|
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
|
|
if (IGNORE_HARDWARE_FUSION) {
|
|
useThisSensor = false;
|
|
} else {
|
|
virtualSensorsNeeds &= ~(1<<list[i].type);
|
|
}
|
|
break;
|
|
}
|
|
if (useThisSensor) {
|
|
if (list[i].type == SENSOR_TYPE_PROXIMITY) {
|
|
registerSensor(new ProximitySensor(list[i], *this));
|
|
} else {
|
|
registerSensor( new HardwareSensor(list[i]) );
|
|
}
|
|
}
|
|
}
|
|
|
|
// it's safe to instantiate the SensorFusion object here
|
|
// (it wants to be instantiated after h/w sensors have been
|
|
// registered)
|
|
SensorFusion::getInstance();
|
|
|
|
if (hasGyro && hasAccel && hasMag) {
|
|
// Add Android virtual sensors if they're not already
|
|
// available in the HAL
|
|
bool needRotationVector =
|
|
(virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
|
|
|
|
registerSensor(new RotationVectorSensor(), !needRotationVector, true);
|
|
registerSensor(new OrientationSensor(), !needRotationVector, true);
|
|
|
|
// virtual debugging sensors are not for user
|
|
registerSensor( new CorrectedGyroSensor(list, count), true, true);
|
|
registerSensor( new GyroDriftSensor(), true, true);
|
|
}
|
|
|
|
if (hasAccel && hasGyro) {
|
|
bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
|
|
registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
|
|
|
|
bool needLinearAcceleration =
|
|
(virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
|
|
registerSensor(new LinearAccelerationSensor(list, count),
|
|
!needLinearAcceleration, true);
|
|
|
|
bool needGameRotationVector =
|
|
(virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
|
|
registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
|
|
}
|
|
|
|
if (hasAccel && hasMag) {
|
|
bool needGeoMagRotationVector =
|
|
(virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
|
|
registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
|
|
}
|
|
|
|
// Check if the device really supports batching by looking at the FIFO event
|
|
// counts for each sensor.
|
|
bool batchingSupported = false;
|
|
mSensors.forEachSensor(
|
|
[&batchingSupported] (const Sensor& s) -> bool {
|
|
if (s.getFifoMaxEventCount() > 0) {
|
|
batchingSupported = true;
|
|
}
|
|
return !batchingSupported;
|
|
});
|
|
|
|
if (batchingSupported) {
|
|
// Increase socket buffer size to a max of 100 KB for batching capabilities.
|
|
mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
|
|
} else {
|
|
mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
|
|
}
|
|
|
|
// Compare the socketBufferSize value against the system limits and limit
|
|
// it to maxSystemSocketBufferSize if necessary.
|
|
FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
|
|
char line[128];
|
|
if (fp != nullptr && fgets(line, sizeof(line), fp) != nullptr) {
|
|
line[sizeof(line) - 1] = '\0';
|
|
size_t maxSystemSocketBufferSize;
|
|
sscanf(line, "%zu", &maxSystemSocketBufferSize);
|
|
if (mSocketBufferSize > maxSystemSocketBufferSize) {
|
|
mSocketBufferSize = maxSystemSocketBufferSize;
|
|
}
|
|
}
|
|
if (fp) {
|
|
fclose(fp);
|
|
}
|
|
|
|
mWakeLockAcquired = false;
|
|
mLooper = new Looper(false);
|
|
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
|
|
mSensorEventBuffer = new sensors_event_t[minBufferSize];
|
|
mSensorEventScratch = new sensors_event_t[minBufferSize];
|
|
mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
|
|
mCurrentOperatingMode = NORMAL;
|
|
|
|
mNextSensorRegIndex = 0;
|
|
for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
|
|
mLastNSensorRegistrations.push();
|
|
}
|
|
|
|
mInitCheck = NO_ERROR;
|
|
mAckReceiver = new SensorEventAckReceiver(this);
|
|
mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
|
|
run("SensorService", PRIORITY_URGENT_DISPLAY);
|
|
|
|
// priority can only be changed after run
|
|
enableSchedFifoMode();
|
|
|
|
// Start watching UID changes to apply policy.
|
|
mUidPolicy->registerSelf();
|
|
|
|
// Start watching sensor privacy changes
|
|
mSensorPrivacyPolicy->registerSelf();
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorService::onUidStateChanged(uid_t uid, UidState state) {
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
|
|
if (conn->getUid() == uid) {
|
|
dev.setUidStateForConnection(conn.get(), state);
|
|
}
|
|
}
|
|
|
|
for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
|
|
if (conn->getUid() == uid) {
|
|
// Update sensor subscriptions if needed
|
|
bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
|
|
conn->onSensorAccessChanged(hasAccess);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SensorService::hasSensorAccess(uid_t uid, const String16& opPackageName) {
|
|
Mutex::Autolock _l(mLock);
|
|
return hasSensorAccessLocked(uid, opPackageName);
|
|
}
|
|
|
|
bool SensorService::hasSensorAccessLocked(uid_t uid, const String16& opPackageName) {
|
|
return !mSensorPrivacyPolicy->isSensorPrivacyEnabled()
|
|
&& isUidActive(uid) && !isOperationRestrictedLocked(opPackageName);
|
|
}
|
|
|
|
const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
|
|
int handle = s->getSensor().getHandle();
|
|
int type = s->getSensor().getType();
|
|
if (mSensors.add(handle, s, isDebug, isVirtual)){
|
|
mRecentEvent.emplace(handle, new SensorServiceUtil::RecentEventLogger(type));
|
|
return s->getSensor();
|
|
} else {
|
|
return mSensors.getNonSensor();
|
|
}
|
|
}
|
|
|
|
const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
|
|
return registerSensor(s, isDebug);
|
|
}
|
|
|
|
bool SensorService::unregisterDynamicSensorLocked(int handle) {
|
|
bool ret = mSensors.remove(handle);
|
|
|
|
const auto i = mRecentEvent.find(handle);
|
|
if (i != mRecentEvent.end()) {
|
|
delete i->second;
|
|
mRecentEvent.erase(i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
|
|
return registerSensor(s, isDebug, true);
|
|
}
|
|
|
|
SensorService::~SensorService() {
|
|
for (auto && entry : mRecentEvent) {
|
|
delete entry.second;
|
|
}
|
|
mUidPolicy->unregisterSelf();
|
|
mSensorPrivacyPolicy->unregisterSelf();
|
|
for (auto const& [userId, policy] : mMicSensorPrivacyPolicies) {
|
|
policy->unregisterSelf();
|
|
}
|
|
}
|
|
|
|
status_t SensorService::dump(int fd, const Vector<String16>& args) {
|
|
String8 result;
|
|
if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
|
|
result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
|
|
IPCThreadState::self()->getCallingPid(),
|
|
IPCThreadState::self()->getCallingUid());
|
|
} else {
|
|
bool privileged = IPCThreadState::self()->getCallingUid() == 0;
|
|
if (args.size() > 2) {
|
|
return INVALID_OPERATION;
|
|
}
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
if (args.size() == 2 && args[0] == String16("restrict")) {
|
|
// If already in restricted mode. Ignore.
|
|
if (mCurrentOperatingMode == RESTRICTED) {
|
|
return status_t(NO_ERROR);
|
|
}
|
|
// If in any mode other than normal, ignore.
|
|
if (mCurrentOperatingMode != NORMAL) {
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
mCurrentOperatingMode = RESTRICTED;
|
|
// temporarily stop all sensor direct report and disable sensors
|
|
disableAllSensorsLocked(&connLock);
|
|
mWhiteListedPackage.setTo(String8(args[1]));
|
|
return status_t(NO_ERROR);
|
|
} else if (args.size() == 1 && args[0] == String16("enable")) {
|
|
// If currently in restricted mode, reset back to NORMAL mode else ignore.
|
|
if (mCurrentOperatingMode == RESTRICTED) {
|
|
mCurrentOperatingMode = NORMAL;
|
|
// enable sensors and recover all sensor direct report
|
|
enableAllSensorsLocked(&connLock);
|
|
}
|
|
if (mCurrentOperatingMode == DATA_INJECTION) {
|
|
resetToNormalModeLocked();
|
|
}
|
|
mWhiteListedPackage.clear();
|
|
return status_t(NO_ERROR);
|
|
} else if (args.size() == 2 && args[0] == String16("data_injection")) {
|
|
if (mCurrentOperatingMode == NORMAL) {
|
|
dev.disableAllSensors();
|
|
status_t err = dev.setMode(DATA_INJECTION);
|
|
if (err == NO_ERROR) {
|
|
mCurrentOperatingMode = DATA_INJECTION;
|
|
} else {
|
|
// Re-enable sensors.
|
|
dev.enableAllSensors();
|
|
}
|
|
mWhiteListedPackage.setTo(String8(args[1]));
|
|
return NO_ERROR;
|
|
} else if (mCurrentOperatingMode == DATA_INJECTION) {
|
|
// Already in DATA_INJECTION mode. Treat this as a no_op.
|
|
return NO_ERROR;
|
|
} else {
|
|
// Transition to data injection mode supported only from NORMAL mode.
|
|
return INVALID_OPERATION;
|
|
}
|
|
} else if (args.size() == 1 && args[0] == String16("--proto")) {
|
|
return dumpProtoLocked(fd, &connLock);
|
|
} else if (!mSensors.hasAnySensor()) {
|
|
result.append("No Sensors on the device\n");
|
|
result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
|
|
} else {
|
|
// Default dump the sensor list and debugging information.
|
|
//
|
|
timespec curTime;
|
|
clock_gettime(CLOCK_REALTIME, &curTime);
|
|
struct tm* timeinfo = localtime(&(curTime.tv_sec));
|
|
result.appendFormat("Captured at: %02d:%02d:%02d.%03d\n", timeinfo->tm_hour,
|
|
timeinfo->tm_min, timeinfo->tm_sec, (int)ns2ms(curTime.tv_nsec));
|
|
result.append("Sensor Device:\n");
|
|
result.append(SensorDevice::getInstance().dump().c_str());
|
|
|
|
result.append("Sensor List:\n");
|
|
result.append(mSensors.dump().c_str());
|
|
|
|
result.append("Fusion States:\n");
|
|
SensorFusion::getInstance().dump(result);
|
|
|
|
result.append("Recent Sensor events:\n");
|
|
for (auto&& i : mRecentEvent) {
|
|
sp<SensorInterface> s = mSensors.getInterface(i.first);
|
|
if (!i.second->isEmpty()) {
|
|
if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
|
|
i.second->setFormat("normal");
|
|
} else {
|
|
i.second->setFormat("mask_data");
|
|
}
|
|
// if there is events and sensor does not need special permission.
|
|
result.appendFormat("%s: ", s->getSensor().getName().string());
|
|
result.append(i.second->dump().c_str());
|
|
}
|
|
}
|
|
|
|
result.append("Active sensors:\n");
|
|
SensorDevice& dev = SensorDevice::getInstance();
|
|
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
|
|
int handle = mActiveSensors.keyAt(i);
|
|
if (dev.isSensorActive(handle)) {
|
|
result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
|
|
getSensorName(handle).string(),
|
|
handle,
|
|
mActiveSensors.valueAt(i)->getNumConnections());
|
|
}
|
|
}
|
|
|
|
result.appendFormat("Socket Buffer size = %zd events\n",
|
|
mSocketBufferSize/sizeof(sensors_event_t));
|
|
result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
|
|
"not held");
|
|
result.appendFormat("Mode :");
|
|
switch(mCurrentOperatingMode) {
|
|
case NORMAL:
|
|
result.appendFormat(" NORMAL\n");
|
|
break;
|
|
case RESTRICTED:
|
|
result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
|
|
break;
|
|
case DATA_INJECTION:
|
|
result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
|
|
}
|
|
result.appendFormat("Sensor Privacy: %s\n",
|
|
mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
|
|
|
|
const auto& activeConnections = connLock.getActiveConnections();
|
|
result.appendFormat("%zd active connections\n", activeConnections.size());
|
|
for (size_t i=0 ; i < activeConnections.size() ; i++) {
|
|
result.appendFormat("Connection Number: %zu \n", i);
|
|
activeConnections[i]->dump(result);
|
|
}
|
|
|
|
const auto& directConnections = connLock.getDirectConnections();
|
|
result.appendFormat("%zd direct connections\n", directConnections.size());
|
|
for (size_t i = 0 ; i < directConnections.size() ; i++) {
|
|
result.appendFormat("Direct connection %zu:\n", i);
|
|
directConnections[i]->dump(result);
|
|
}
|
|
|
|
result.appendFormat("Previous Registrations:\n");
|
|
// Log in the reverse chronological order.
|
|
int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
|
|
SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
const int startIndex = currentIndex;
|
|
do {
|
|
const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
|
|
if (SensorRegistrationInfo::isSentinel(reg_info)) {
|
|
// Ignore sentinel, proceed to next item.
|
|
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
|
|
SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
continue;
|
|
}
|
|
result.appendFormat("%s\n", reg_info.dump().c_str());
|
|
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
|
|
SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
} while(startIndex != currentIndex);
|
|
}
|
|
}
|
|
write(fd, result.string(), result.size());
|
|
return NO_ERROR;
|
|
}
|
|
|
|
/**
|
|
* Dump debugging information as android.service.SensorServiceProto protobuf message using
|
|
* ProtoOutputStream.
|
|
*
|
|
* See proto definition and some notes about ProtoOutputStream in
|
|
* frameworks/base/core/proto/android/service/sensor_service.proto
|
|
*/
|
|
status_t SensorService::dumpProtoLocked(int fd, ConnectionSafeAutolock* connLock) const {
|
|
using namespace service::SensorServiceProto;
|
|
util::ProtoOutputStream proto;
|
|
proto.write(INIT_STATUS, int(SensorDevice::getInstance().initCheck()));
|
|
if (!mSensors.hasAnySensor()) {
|
|
return proto.flush(fd) ? OK : UNKNOWN_ERROR;
|
|
}
|
|
const bool privileged = IPCThreadState::self()->getCallingUid() == 0;
|
|
|
|
timespec curTime;
|
|
clock_gettime(CLOCK_REALTIME, &curTime);
|
|
proto.write(CURRENT_TIME_MS, curTime.tv_sec * 1000 + ns2ms(curTime.tv_nsec));
|
|
|
|
// Write SensorDeviceProto
|
|
uint64_t token = proto.start(SENSOR_DEVICE);
|
|
SensorDevice::getInstance().dump(&proto);
|
|
proto.end(token);
|
|
|
|
// Write SensorListProto
|
|
token = proto.start(SENSORS);
|
|
mSensors.dump(&proto);
|
|
proto.end(token);
|
|
|
|
// Write SensorFusionProto
|
|
token = proto.start(FUSION_STATE);
|
|
SensorFusion::getInstance().dump(&proto);
|
|
proto.end(token);
|
|
|
|
// Write SensorEventsProto
|
|
token = proto.start(SENSOR_EVENTS);
|
|
for (auto&& i : mRecentEvent) {
|
|
sp<SensorInterface> s = mSensors.getInterface(i.first);
|
|
if (!i.second->isEmpty()) {
|
|
i.second->setFormat(privileged || s->getSensor().getRequiredPermission().isEmpty() ?
|
|
"normal" : "mask_data");
|
|
const uint64_t mToken = proto.start(service::SensorEventsProto::RECENT_EVENTS_LOGS);
|
|
proto.write(service::SensorEventsProto::RecentEventsLog::NAME,
|
|
std::string(s->getSensor().getName().string()));
|
|
i.second->dump(&proto);
|
|
proto.end(mToken);
|
|
}
|
|
}
|
|
proto.end(token);
|
|
|
|
// Write ActiveSensorProto
|
|
SensorDevice& dev = SensorDevice::getInstance();
|
|
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
|
|
int handle = mActiveSensors.keyAt(i);
|
|
if (dev.isSensorActive(handle)) {
|
|
token = proto.start(ACTIVE_SENSORS);
|
|
proto.write(service::ActiveSensorProto::NAME,
|
|
std::string(getSensorName(handle).string()));
|
|
proto.write(service::ActiveSensorProto::HANDLE, handle);
|
|
proto.write(service::ActiveSensorProto::NUM_CONNECTIONS,
|
|
int(mActiveSensors.valueAt(i)->getNumConnections()));
|
|
proto.end(token);
|
|
}
|
|
}
|
|
|
|
proto.write(SOCKET_BUFFER_SIZE, int(mSocketBufferSize));
|
|
proto.write(SOCKET_BUFFER_SIZE_IN_EVENTS, int(mSocketBufferSize / sizeof(sensors_event_t)));
|
|
proto.write(WAKE_LOCK_ACQUIRED, mWakeLockAcquired);
|
|
|
|
switch(mCurrentOperatingMode) {
|
|
case NORMAL:
|
|
proto.write(OPERATING_MODE, OP_MODE_NORMAL);
|
|
break;
|
|
case RESTRICTED:
|
|
proto.write(OPERATING_MODE, OP_MODE_RESTRICTED);
|
|
proto.write(WHITELISTED_PACKAGE, std::string(mWhiteListedPackage.string()));
|
|
break;
|
|
case DATA_INJECTION:
|
|
proto.write(OPERATING_MODE, OP_MODE_DATA_INJECTION);
|
|
proto.write(WHITELISTED_PACKAGE, std::string(mWhiteListedPackage.string()));
|
|
break;
|
|
default:
|
|
proto.write(OPERATING_MODE, OP_MODE_UNKNOWN);
|
|
}
|
|
proto.write(SENSOR_PRIVACY, mSensorPrivacyPolicy->isSensorPrivacyEnabled());
|
|
|
|
// Write repeated SensorEventConnectionProto
|
|
const auto& activeConnections = connLock->getActiveConnections();
|
|
for (size_t i = 0; i < activeConnections.size(); i++) {
|
|
token = proto.start(ACTIVE_CONNECTIONS);
|
|
activeConnections[i]->dump(&proto);
|
|
proto.end(token);
|
|
}
|
|
|
|
// Write repeated SensorDirectConnectionProto
|
|
const auto& directConnections = connLock->getDirectConnections();
|
|
for (size_t i = 0 ; i < directConnections.size() ; i++) {
|
|
token = proto.start(DIRECT_CONNECTIONS);
|
|
directConnections[i]->dump(&proto);
|
|
proto.end(token);
|
|
}
|
|
|
|
// Write repeated SensorRegistrationInfoProto
|
|
const int startIndex = mNextSensorRegIndex;
|
|
int curr = startIndex;
|
|
do {
|
|
const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[curr];
|
|
if (SensorRegistrationInfo::isSentinel(reg_info)) {
|
|
// Ignore sentinel, proceed to next item.
|
|
curr = (curr + 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
continue;
|
|
}
|
|
token = proto.start(PREVIOUS_REGISTRATIONS);
|
|
reg_info.dump(&proto);
|
|
proto.end(token);
|
|
curr = (curr + 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
} while (startIndex != curr);
|
|
|
|
return proto.flush(fd) ? OK : UNKNOWN_ERROR;
|
|
}
|
|
|
|
void SensorService::disableAllSensors() {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
disableAllSensorsLocked(&connLock);
|
|
}
|
|
|
|
void SensorService::disableAllSensorsLocked(ConnectionSafeAutolock* connLock) {
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
for (const sp<SensorDirectConnection>& conn : connLock->getDirectConnections()) {
|
|
bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
|
|
conn->onSensorAccessChanged(hasAccess);
|
|
}
|
|
mSensors.forEachEntry([](const SensorServiceUtil::SensorList::Entry& e) {
|
|
e.si->willDisableAllSensors();
|
|
return true;
|
|
});
|
|
dev.disableAllSensors();
|
|
// Clear all pending flush connections for all active sensors. If one of the active
|
|
// connections has called flush() and the underlying sensor has been disabled before a
|
|
// flush complete event is returned, we need to remove the connection from this queue.
|
|
for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
|
|
mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
|
|
}
|
|
}
|
|
|
|
void SensorService::enableAllSensors() {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
enableAllSensorsLocked(&connLock);
|
|
}
|
|
|
|
void SensorService::enableAllSensorsLocked(ConnectionSafeAutolock* connLock) {
|
|
// sensors should only be enabled if the operating state is not restricted and sensor
|
|
// privacy is not enabled.
|
|
if (mCurrentOperatingMode == RESTRICTED || mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
|
|
ALOGW("Sensors cannot be enabled: mCurrentOperatingMode = %d, sensor privacy = %s",
|
|
mCurrentOperatingMode,
|
|
mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
|
|
return;
|
|
}
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
dev.enableAllSensors();
|
|
mSensors.forEachEntry([](const SensorServiceUtil::SensorList::Entry& e) {
|
|
e.si->didEnableAllSensors();
|
|
return true;
|
|
});
|
|
for (const sp<SensorDirectConnection>& conn : connLock->getDirectConnections()) {
|
|
bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
|
|
conn->onSensorAccessChanged(hasAccess);
|
|
}
|
|
}
|
|
|
|
void SensorService::capRates(userid_t userId) {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
|
|
if (conn->getUserId() == userId) {
|
|
conn->onMicSensorAccessChanged(true);
|
|
}
|
|
}
|
|
|
|
for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
|
|
if (conn->getUserId() == userId) {
|
|
conn->onMicSensorAccessChanged(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorService::uncapRates(userid_t userId) {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
|
|
if (conn->getUserId() == userId) {
|
|
conn->onMicSensorAccessChanged(false);
|
|
}
|
|
}
|
|
|
|
for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
|
|
if (conn->getUserId() == userId) {
|
|
conn->onMicSensorAccessChanged(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// NOTE: This is a remote API - make sure all args are validated
|
|
status_t SensorService::shellCommand(int in, int out, int err, Vector<String16>& args) {
|
|
if (!checkCallingPermission(sManageSensorsPermission, nullptr, nullptr)) {
|
|
return PERMISSION_DENIED;
|
|
}
|
|
if (args.size() == 0) {
|
|
return BAD_INDEX;
|
|
}
|
|
if (in == BAD_TYPE || out == BAD_TYPE || err == BAD_TYPE) {
|
|
return BAD_VALUE;
|
|
}
|
|
if (args[0] == String16("set-uid-state")) {
|
|
return handleSetUidState(args, err);
|
|
} else if (args[0] == String16("reset-uid-state")) {
|
|
return handleResetUidState(args, err);
|
|
} else if (args[0] == String16("get-uid-state")) {
|
|
return handleGetUidState(args, out, err);
|
|
} else if (args.size() == 1 && args[0] == String16("help")) {
|
|
printHelp(out);
|
|
return NO_ERROR;
|
|
}
|
|
printHelp(err);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
static status_t getUidForPackage(String16 packageName, int userId, /*inout*/uid_t& uid, int err) {
|
|
PermissionController pc;
|
|
uid = pc.getPackageUid(packageName, 0);
|
|
if (uid <= 0) {
|
|
ALOGE("Unknown package: '%s'", String8(packageName).string());
|
|
dprintf(err, "Unknown package: '%s'\n", String8(packageName).string());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (userId < 0) {
|
|
ALOGE("Invalid user: %d", userId);
|
|
dprintf(err, "Invalid user: %d\n", userId);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
uid = multiuser_get_uid(userId, uid);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SensorService::handleSetUidState(Vector<String16>& args, int err) {
|
|
// Valid arg.size() is 3 or 5, args.size() is 5 with --user option.
|
|
if (!(args.size() == 3 || args.size() == 5)) {
|
|
printHelp(err);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
bool active = false;
|
|
if (args[2] == String16("active")) {
|
|
active = true;
|
|
} else if ((args[2] != String16("idle"))) {
|
|
ALOGE("Expected active or idle but got: '%s'", String8(args[2]).string());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
int userId = 0;
|
|
if (args.size() == 5 && args[3] == String16("--user")) {
|
|
userId = atoi(String8(args[4]));
|
|
}
|
|
|
|
uid_t uid;
|
|
if (getUidForPackage(args[1], userId, uid, err) != NO_ERROR) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
mUidPolicy->addOverrideUid(uid, active);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SensorService::handleResetUidState(Vector<String16>& args, int err) {
|
|
// Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
|
|
if (!(args.size() == 2 || args.size() == 4)) {
|
|
printHelp(err);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
int userId = 0;
|
|
if (args.size() == 4 && args[2] == String16("--user")) {
|
|
userId = atoi(String8(args[3]));
|
|
}
|
|
|
|
uid_t uid;
|
|
if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
mUidPolicy->removeOverrideUid(uid);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SensorService::handleGetUidState(Vector<String16>& args, int out, int err) {
|
|
// Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
|
|
if (!(args.size() == 2 || args.size() == 4)) {
|
|
printHelp(err);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
int userId = 0;
|
|
if (args.size() == 4 && args[2] == String16("--user")) {
|
|
userId = atoi(String8(args[3]));
|
|
}
|
|
|
|
uid_t uid;
|
|
if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (mUidPolicy->isUidActive(uid)) {
|
|
return dprintf(out, "active\n");
|
|
} else {
|
|
return dprintf(out, "idle\n");
|
|
}
|
|
}
|
|
|
|
status_t SensorService::printHelp(int out) {
|
|
return dprintf(out, "Sensor service commands:\n"
|
|
" get-uid-state <PACKAGE> [--user USER_ID] gets the uid state\n"
|
|
" set-uid-state <PACKAGE> <active|idle> [--user USER_ID] overrides the uid state\n"
|
|
" reset-uid-state <PACKAGE> [--user USER_ID] clears the uid state override\n"
|
|
" help print this message\n");
|
|
}
|
|
|
|
//TODO: move to SensorEventConnection later
|
|
void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
|
|
sensors_event_t const* buffer, const int count) {
|
|
for (int i=0 ; i<count ; i++) {
|
|
int handle = buffer[i].sensor;
|
|
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
|
|
handle = buffer[i].meta_data.sensor;
|
|
}
|
|
if (connection->hasSensor(handle)) {
|
|
sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
|
|
// If this buffer has an event from a one_shot sensor and this connection is registered
|
|
// for this particular one_shot sensor, try cleaning up the connection.
|
|
if (si != nullptr &&
|
|
si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
|
|
si->autoDisable(connection.get(), handle);
|
|
cleanupWithoutDisableLocked(connection, handle);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SensorService::threadLoop() {
|
|
ALOGD("nuSensorService thread starting...");
|
|
|
|
// each virtual sensor could generate an event per "real" event, that's why we need to size
|
|
// numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. in practice, this is too
|
|
// aggressive, but guaranteed to be enough.
|
|
const size_t vcount = mSensors.getVirtualSensors().size();
|
|
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
|
|
const size_t numEventMax = minBufferSize / (1 + vcount);
|
|
|
|
SensorDevice& device(SensorDevice::getInstance());
|
|
|
|
const int halVersion = device.getHalDeviceVersion();
|
|
do {
|
|
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
|
|
if (count < 0) {
|
|
if(count == DEAD_OBJECT && device.isReconnecting()) {
|
|
device.reconnect();
|
|
continue;
|
|
} else {
|
|
ALOGE("sensor poll failed (%s)", strerror(-count));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Reset sensors_event_t.flags to zero for all events in the buffer.
|
|
for (int i = 0; i < count; i++) {
|
|
mSensorEventBuffer[i].flags = 0;
|
|
}
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
|
|
// Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
|
|
// rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
|
|
// sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
|
|
// not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
|
|
// releasing the wakelock.
|
|
uint32_t wakeEvents = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
|
|
wakeEvents++;
|
|
}
|
|
}
|
|
|
|
if (wakeEvents > 0) {
|
|
if (!mWakeLockAcquired) {
|
|
setWakeLockAcquiredLocked(true);
|
|
}
|
|
device.writeWakeLockHandled(wakeEvents);
|
|
}
|
|
recordLastValueLocked(mSensorEventBuffer, count);
|
|
|
|
// handle virtual sensors
|
|
if (count && vcount) {
|
|
sensors_event_t const * const event = mSensorEventBuffer;
|
|
if (!mActiveVirtualSensors.empty()) {
|
|
size_t k = 0;
|
|
SensorFusion& fusion(SensorFusion::getInstance());
|
|
if (fusion.isEnabled()) {
|
|
for (size_t i=0 ; i<size_t(count) ; i++) {
|
|
fusion.process(event[i]);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
|
|
for (int handle : mActiveVirtualSensors) {
|
|
if (count + k >= minBufferSize) {
|
|
ALOGE("buffer too small to hold all events: "
|
|
"count=%zd, k=%zu, size=%zu",
|
|
count, k, minBufferSize);
|
|
break;
|
|
}
|
|
sensors_event_t out;
|
|
sp<SensorInterface> si = mSensors.getInterface(handle);
|
|
if (si == nullptr) {
|
|
ALOGE("handle %d is not an valid virtual sensor", handle);
|
|
continue;
|
|
}
|
|
|
|
if (si->process(&out, event[i])) {
|
|
mSensorEventBuffer[count + k] = out;
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
if (k) {
|
|
// record the last synthesized values
|
|
recordLastValueLocked(&mSensorEventBuffer[count], k);
|
|
count += k;
|
|
// sort the buffer by time-stamps
|
|
sortEventBuffer(mSensorEventBuffer, count);
|
|
}
|
|
}
|
|
}
|
|
|
|
// handle backward compatibility for RotationVector sensor
|
|
if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
|
|
for (int i = 0; i < count; i++) {
|
|
if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
|
|
// All the 4 components of the quaternion should be available
|
|
// No heading accuracy. Set it to -1
|
|
mSensorEventBuffer[i].data[4] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cache the list of active connections, since we use it in multiple places below but won't
|
|
// modify it here
|
|
const std::vector<sp<SensorEventConnection>> activeConnections = connLock.getActiveConnections();
|
|
|
|
for (int i = 0; i < count; ++i) {
|
|
// Map flush_complete_events in the buffer to SensorEventConnections which called flush
|
|
// on the hardware sensor. mapFlushEventsToConnections[i] will be the
|
|
// SensorEventConnection mapped to the corresponding flush_complete_event in
|
|
// mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
|
|
mMapFlushEventsToConnections[i] = nullptr;
|
|
if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
|
|
const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
|
|
SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
|
|
if (rec != nullptr) {
|
|
mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
|
|
rec->removeFirstPendingFlushConnection();
|
|
}
|
|
}
|
|
|
|
// handle dynamic sensor meta events, process registration and unregistration of dynamic
|
|
// sensor based on content of event.
|
|
if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
|
|
if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
|
|
int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
|
|
const sensor_t& dynamicSensor =
|
|
*(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
|
|
ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
|
|
handle, dynamicSensor.type, dynamicSensor.name);
|
|
|
|
if (mSensors.isNewHandle(handle)) {
|
|
const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
|
|
sensor_t s = dynamicSensor;
|
|
// make sure the dynamic sensor flag is set
|
|
s.flags |= DYNAMIC_SENSOR_MASK;
|
|
// force the handle to be consistent
|
|
s.handle = handle;
|
|
|
|
SensorInterface *si = new HardwareSensor(s, uuid);
|
|
|
|
// This will release hold on dynamic sensor meta, so it should be called
|
|
// after Sensor object is created.
|
|
device.handleDynamicSensorConnection(handle, true /*connected*/);
|
|
registerDynamicSensorLocked(si);
|
|
} else {
|
|
ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
|
|
}
|
|
} else {
|
|
int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
|
|
ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
|
|
|
|
device.handleDynamicSensorConnection(handle, false /*connected*/);
|
|
if (!unregisterDynamicSensorLocked(handle)) {
|
|
ALOGE("Dynamic sensor release error.");
|
|
}
|
|
|
|
for (const sp<SensorEventConnection>& connection : activeConnections) {
|
|
connection->removeSensor(handle);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Send our events to clients. Check the state of wake lock for each client and release the
|
|
// lock if none of the clients need it.
|
|
bool needsWakeLock = false;
|
|
for (const sp<SensorEventConnection>& connection : activeConnections) {
|
|
connection->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
|
|
mMapFlushEventsToConnections);
|
|
needsWakeLock |= connection->needsWakeLock();
|
|
// If the connection has one-shot sensors, it may be cleaned up after first trigger.
|
|
// Early check for one-shot sensors.
|
|
if (connection->hasOneShotSensors()) {
|
|
cleanupAutoDisabledSensorLocked(connection, mSensorEventBuffer, count);
|
|
}
|
|
}
|
|
|
|
if (mWakeLockAcquired && !needsWakeLock) {
|
|
setWakeLockAcquiredLocked(false);
|
|
}
|
|
} while (!Thread::exitPending());
|
|
|
|
ALOGW("Exiting SensorService::threadLoop => aborting...");
|
|
abort();
|
|
return false;
|
|
}
|
|
|
|
sp<Looper> SensorService::getLooper() const {
|
|
return mLooper;
|
|
}
|
|
|
|
void SensorService::resetAllWakeLockRefCounts() {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
for (const sp<SensorEventConnection>& connection : connLock.getActiveConnections()) {
|
|
connection->resetWakeLockRefCount();
|
|
}
|
|
setWakeLockAcquiredLocked(false);
|
|
}
|
|
|
|
void SensorService::setWakeLockAcquiredLocked(bool acquire) {
|
|
if (acquire) {
|
|
if (!mWakeLockAcquired) {
|
|
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
|
|
mWakeLockAcquired = true;
|
|
}
|
|
mLooper->wake();
|
|
} else {
|
|
if (mWakeLockAcquired) {
|
|
release_wake_lock(WAKE_LOCK_NAME);
|
|
mWakeLockAcquired = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SensorService::isWakeLockAcquired() {
|
|
Mutex::Autolock _l(mLock);
|
|
return mWakeLockAcquired;
|
|
}
|
|
|
|
bool SensorService::SensorEventAckReceiver::threadLoop() {
|
|
ALOGD("new thread SensorEventAckReceiver");
|
|
sp<Looper> looper = mService->getLooper();
|
|
do {
|
|
bool wakeLockAcquired = mService->isWakeLockAcquired();
|
|
int timeout = -1;
|
|
if (wakeLockAcquired) timeout = 5000;
|
|
int ret = looper->pollOnce(timeout);
|
|
if (ret == ALOOPER_POLL_TIMEOUT) {
|
|
mService->resetAllWakeLockRefCounts();
|
|
}
|
|
} while(!Thread::exitPending());
|
|
return false;
|
|
}
|
|
|
|
void SensorService::recordLastValueLocked(
|
|
const sensors_event_t* buffer, size_t count) {
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (buffer[i].type == SENSOR_TYPE_META_DATA ||
|
|
buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
|
|
buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
|
|
continue;
|
|
}
|
|
|
|
auto logger = mRecentEvent.find(buffer[i].sensor);
|
|
if (logger != mRecentEvent.end()) {
|
|
logger->second->addEvent(buffer[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
|
|
struct compar {
|
|
static int cmp(void const* lhs, void const* rhs) {
|
|
sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
|
|
sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
|
|
return l->timestamp - r->timestamp;
|
|
}
|
|
};
|
|
qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
|
|
}
|
|
|
|
String8 SensorService::getSensorName(int handle) const {
|
|
return mSensors.getName(handle);
|
|
}
|
|
|
|
String8 SensorService::getSensorStringType(int handle) const {
|
|
return mSensors.getStringType(handle);
|
|
}
|
|
|
|
bool SensorService::isVirtualSensor(int handle) const {
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
return sensor != nullptr && sensor->isVirtual();
|
|
}
|
|
|
|
bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
|
|
int handle = event.sensor;
|
|
if (event.type == SENSOR_TYPE_META_DATA) {
|
|
handle = event.meta_data.sensor;
|
|
}
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
|
|
}
|
|
|
|
int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
|
|
if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
|
|
// UUID is not supported for this device.
|
|
return 0;
|
|
}
|
|
if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
|
|
// This sensor can be uniquely identified in the system by
|
|
// the combination of its type and name.
|
|
return -1;
|
|
}
|
|
|
|
// We have a dynamic sensor.
|
|
|
|
if (!sHmacGlobalKeyIsValid) {
|
|
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
|
|
ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
|
|
return 0;
|
|
}
|
|
|
|
// We want each app author/publisher to get a different ID, so that the
|
|
// same dynamic sensor cannot be tracked across apps by multiple
|
|
// authors/publishers. So we use both our UUID and our User ID.
|
|
// Note potential confusion:
|
|
// UUID => Universally Unique Identifier.
|
|
// UID => User Identifier.
|
|
// We refrain from using "uid" except as needed by API to try to
|
|
// keep this distinction clear.
|
|
|
|
auto appUserId = IPCThreadState::self()->getCallingUid();
|
|
uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
|
|
memcpy(uuidAndApp, &uuid, sizeof(uuid));
|
|
memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
|
|
|
|
// Now we use our key on our UUID/app combo to get the hash.
|
|
uint8_t hash[EVP_MAX_MD_SIZE];
|
|
unsigned int hashLen;
|
|
if (HMAC(EVP_sha256(),
|
|
sHmacGlobalKey, sizeof(sHmacGlobalKey),
|
|
uuidAndApp, sizeof(uuidAndApp),
|
|
hash, &hashLen) == nullptr) {
|
|
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
|
|
ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
|
|
return 0;
|
|
}
|
|
|
|
int32_t id = 0;
|
|
if (hashLen < sizeof(id)) {
|
|
// We never expect this case, but out of paranoia, we handle it.
|
|
// Our 'id' length is already quite small, we don't want the
|
|
// effective length of it to be even smaller.
|
|
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
|
|
ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
|
|
return 0;
|
|
}
|
|
|
|
// This is almost certainly less than all of 'hash', but it's as secure
|
|
// as we can be with our current 'id' length.
|
|
memcpy(&id, hash, sizeof(id));
|
|
|
|
// Note at the beginning of the function that we return the values of
|
|
// 0 and -1 to represent special cases. As a result, we can't return
|
|
// those as dynamic sensor IDs. If we happened to hash to one of those
|
|
// values, we change 'id' so we report as a dynamic sensor, and not as
|
|
// one of those special cases.
|
|
if (id == -1) {
|
|
id = -2;
|
|
} else if (id == 0) {
|
|
id = 1;
|
|
}
|
|
return id;
|
|
}
|
|
|
|
void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
|
|
for (auto &sensor : sensorList) {
|
|
int32_t id = getIdFromUuid(sensor.getUuid());
|
|
sensor.setId(id);
|
|
}
|
|
}
|
|
|
|
Vector<Sensor> SensorService::getSensorList(const String16& opPackageName) {
|
|
char value[PROPERTY_VALUE_MAX];
|
|
property_get("debug.sensors", value, "0");
|
|
const Vector<Sensor>& initialSensorList = (atoi(value)) ?
|
|
mSensors.getUserDebugSensors() : mSensors.getUserSensors();
|
|
Vector<Sensor> accessibleSensorList;
|
|
|
|
resetTargetSdkVersionCache(opPackageName);
|
|
bool isCapped = isRateCappedBasedOnPermission(opPackageName);
|
|
for (size_t i = 0; i < initialSensorList.size(); i++) {
|
|
Sensor sensor = initialSensorList[i];
|
|
if (isCapped && isSensorInCappedSet(sensor.getType())) {
|
|
sensor.capMinDelayMicros(SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS / 1000);
|
|
sensor.capHighestDirectReportRateLevel(SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL);
|
|
}
|
|
accessibleSensorList.add(sensor);
|
|
}
|
|
makeUuidsIntoIdsForSensorList(accessibleSensorList);
|
|
return accessibleSensorList;
|
|
}
|
|
|
|
Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
|
|
Vector<Sensor> accessibleSensorList;
|
|
mSensors.forEachSensor(
|
|
[&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
|
|
if (sensor.isDynamicSensor()) {
|
|
if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
|
|
accessibleSensorList.add(sensor);
|
|
} else {
|
|
ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
|
|
sensor.getName().string(),
|
|
sensor.getRequiredPermission().string(),
|
|
sensor.getRequiredAppOp());
|
|
}
|
|
}
|
|
return true;
|
|
});
|
|
makeUuidsIntoIdsForSensorList(accessibleSensorList);
|
|
return accessibleSensorList;
|
|
}
|
|
|
|
sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
|
|
int requestedMode, const String16& opPackageName, const String16& attributionTag) {
|
|
// Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
|
|
if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
|
|
return nullptr;
|
|
}
|
|
resetTargetSdkVersionCache(opPackageName);
|
|
|
|
Mutex::Autolock _l(mLock);
|
|
// To create a client in DATA_INJECTION mode to inject data, SensorService should already be
|
|
// operating in DI mode.
|
|
if (requestedMode == DATA_INJECTION) {
|
|
if (mCurrentOperatingMode != DATA_INJECTION) return nullptr;
|
|
if (!isWhiteListedPackage(packageName)) return nullptr;
|
|
}
|
|
|
|
uid_t uid = IPCThreadState::self()->getCallingUid();
|
|
pid_t pid = IPCThreadState::self()->getCallingPid();
|
|
|
|
String8 connPackageName =
|
|
(packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
|
|
String16 connOpPackageName =
|
|
(opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
|
|
sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
|
|
requestedMode == DATA_INJECTION, connOpPackageName, attributionTag));
|
|
if (requestedMode == DATA_INJECTION) {
|
|
mConnectionHolder.addEventConnectionIfNotPresent(result);
|
|
// Add the associated file descriptor to the Looper for polling whenever there is data to
|
|
// be injected.
|
|
result->updateLooperRegistration(mLooper);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int SensorService::isDataInjectionEnabled() {
|
|
Mutex::Autolock _l(mLock);
|
|
return (mCurrentOperatingMode == DATA_INJECTION);
|
|
}
|
|
|
|
sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
|
|
const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
|
|
const native_handle *resource) {
|
|
resetTargetSdkVersionCache(opPackageName);
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
|
|
// No new direct connections are allowed when sensor privacy is enabled
|
|
if (mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
|
|
ALOGE("Cannot create new direct connections when sensor privacy is enabled");
|
|
return nullptr;
|
|
}
|
|
|
|
struct sensors_direct_mem_t mem = {
|
|
.type = type,
|
|
.format = format,
|
|
.size = size,
|
|
.handle = resource,
|
|
};
|
|
uid_t uid = IPCThreadState::self()->getCallingUid();
|
|
|
|
if (mem.handle == nullptr) {
|
|
ALOGE("Failed to clone resource handle");
|
|
return nullptr;
|
|
}
|
|
|
|
// check format
|
|
if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
|
|
ALOGE("Direct channel format %d is unsupported!", format);
|
|
return nullptr;
|
|
}
|
|
|
|
// check for duplication
|
|
for (const sp<SensorDirectConnection>& connection : connLock.getDirectConnections()) {
|
|
if (connection->isEquivalent(&mem)) {
|
|
ALOGE("Duplicate create channel request for the same share memory");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// check specific to memory type
|
|
switch(type) {
|
|
case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
|
|
if (resource->numFds < 1) {
|
|
ALOGE("Ashmem direct channel requires a memory region to be supplied");
|
|
android_errorWriteLog(0x534e4554, "70986337"); // SafetyNet
|
|
return nullptr;
|
|
}
|
|
int fd = resource->data[0];
|
|
if (!ashmem_valid(fd)) {
|
|
ALOGE("Supplied Ashmem memory region is invalid");
|
|
return nullptr;
|
|
}
|
|
|
|
int size2 = ashmem_get_size_region(fd);
|
|
// check size consistency
|
|
if (size2 < static_cast<int64_t>(size)) {
|
|
ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
|
|
size, size2);
|
|
return nullptr;
|
|
}
|
|
break;
|
|
}
|
|
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
|
|
// no specific checks for gralloc
|
|
break;
|
|
default:
|
|
ALOGE("Unknown direct connection memory type %d", type);
|
|
return nullptr;
|
|
}
|
|
|
|
native_handle_t *clone = native_handle_clone(resource);
|
|
if (!clone) {
|
|
return nullptr;
|
|
}
|
|
|
|
sp<SensorDirectConnection> conn;
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
int channelHandle = dev.registerDirectChannel(&mem);
|
|
|
|
if (channelHandle <= 0) {
|
|
ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
|
|
} else {
|
|
mem.handle = clone;
|
|
conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
|
|
}
|
|
|
|
if (conn == nullptr) {
|
|
native_handle_close(clone);
|
|
native_handle_delete(clone);
|
|
} else {
|
|
// add to list of direct connections
|
|
// sensor service should never hold pointer or sp of SensorDirectConnection object.
|
|
mConnectionHolder.addDirectConnection(conn);
|
|
}
|
|
return conn;
|
|
}
|
|
|
|
int SensorService::setOperationParameter(
|
|
int32_t handle, int32_t type,
|
|
const Vector<float> &floats, const Vector<int32_t> &ints) {
|
|
Mutex::Autolock _l(mLock);
|
|
|
|
if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
|
|
return PERMISSION_DENIED;
|
|
}
|
|
|
|
bool isFloat = true;
|
|
bool isCustom = false;
|
|
size_t expectSize = INT32_MAX;
|
|
switch (type) {
|
|
case AINFO_LOCAL_GEOMAGNETIC_FIELD:
|
|
isFloat = true;
|
|
expectSize = 3;
|
|
break;
|
|
case AINFO_LOCAL_GRAVITY:
|
|
isFloat = true;
|
|
expectSize = 1;
|
|
break;
|
|
case AINFO_DOCK_STATE:
|
|
case AINFO_HIGH_PERFORMANCE_MODE:
|
|
case AINFO_MAGNETIC_FIELD_CALIBRATION:
|
|
isFloat = false;
|
|
expectSize = 1;
|
|
break;
|
|
default:
|
|
// CUSTOM events must only contain float data; it may have variable size
|
|
if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
|
|
ints.size() ||
|
|
sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
|
|
handle < 0) {
|
|
return BAD_VALUE;
|
|
}
|
|
isFloat = true;
|
|
isCustom = true;
|
|
expectSize = floats.size();
|
|
break;
|
|
}
|
|
|
|
if (!isCustom && handle != -1) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
// three events: first one is begin tag, last one is end tag, the one in the middle
|
|
// is the payload.
|
|
sensors_event_t event[3];
|
|
int64_t timestamp = elapsedRealtimeNano();
|
|
for (sensors_event_t* i = event; i < event + 3; i++) {
|
|
*i = (sensors_event_t) {
|
|
.version = sizeof(sensors_event_t),
|
|
.sensor = handle,
|
|
.type = SENSOR_TYPE_ADDITIONAL_INFO,
|
|
.timestamp = timestamp++,
|
|
.additional_info = (additional_info_event_t) {
|
|
.serial = 0
|
|
}
|
|
};
|
|
}
|
|
|
|
event[0].additional_info.type = AINFO_BEGIN;
|
|
event[1].additional_info.type = type;
|
|
event[2].additional_info.type = AINFO_END;
|
|
|
|
if (isFloat) {
|
|
if (floats.size() != expectSize) {
|
|
return BAD_VALUE;
|
|
}
|
|
for (size_t i = 0; i < expectSize; ++i) {
|
|
event[1].additional_info.data_float[i] = floats[i];
|
|
}
|
|
} else {
|
|
if (ints.size() != expectSize) {
|
|
return BAD_VALUE;
|
|
}
|
|
for (size_t i = 0; i < expectSize; ++i) {
|
|
event[1].additional_info.data_int32[i] = ints[i];
|
|
}
|
|
}
|
|
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
for (sensors_event_t* i = event; i < event + 3; i++) {
|
|
int ret = dev.injectSensorData(i);
|
|
if (ret != NO_ERROR) {
|
|
return ret;
|
|
}
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SensorService::resetToNormalMode() {
|
|
Mutex::Autolock _l(mLock);
|
|
return resetToNormalModeLocked();
|
|
}
|
|
|
|
status_t SensorService::resetToNormalModeLocked() {
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
status_t err = dev.setMode(NORMAL);
|
|
if (err == NO_ERROR) {
|
|
mCurrentOperatingMode = NORMAL;
|
|
dev.enableAllSensors();
|
|
mSensors.forEachEntry([](const SensorServiceUtil::SensorList::Entry& e) {
|
|
e.si->didEnableAllSensors();
|
|
return true;
|
|
});
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void SensorService::cleanupConnection(SensorEventConnection* c) {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
const wp<SensorEventConnection> connection(c);
|
|
size_t size = mActiveSensors.size();
|
|
ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
|
|
for (size_t i=0 ; i<size ; ) {
|
|
int handle = mActiveSensors.keyAt(i);
|
|
if (c->hasSensor(handle)) {
|
|
ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
if (sensor != nullptr) {
|
|
sensor->activate(c, false);
|
|
} else {
|
|
ALOGE("sensor interface of handle=0x%08x is null!", handle);
|
|
}
|
|
c->removeSensor(handle);
|
|
}
|
|
SensorRecord* rec = mActiveSensors.valueAt(i);
|
|
ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
|
|
ALOGD_IF(DEBUG_CONNECTIONS,
|
|
"removing connection %p for sensor[%zu].handle=0x%08x",
|
|
c, i, handle);
|
|
|
|
if (rec && rec->removeConnection(connection)) {
|
|
ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
|
|
mActiveSensors.removeItemsAt(i, 1);
|
|
mActiveVirtualSensors.erase(handle);
|
|
delete rec;
|
|
size--;
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
c->updateLooperRegistration(mLooper);
|
|
mConnectionHolder.removeEventConnection(connection);
|
|
BatteryService::cleanup(c->getUid());
|
|
if (c->needsWakeLock()) {
|
|
checkWakeLockStateLocked(&connLock);
|
|
}
|
|
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
dev.notifyConnectionDestroyed(c);
|
|
}
|
|
|
|
void SensorService::cleanupConnection(SensorDirectConnection* c) {
|
|
Mutex::Autolock _l(mLock);
|
|
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
dev.unregisterDirectChannel(c->getHalChannelHandle());
|
|
mConnectionHolder.removeDirectConnection(c);
|
|
}
|
|
|
|
void SensorService::onProximityActiveLocked(bool isActive) {
|
|
int prevCount = mProximityActiveCount;
|
|
bool activeStateChanged = false;
|
|
if (isActive) {
|
|
mProximityActiveCount++;
|
|
activeStateChanged = prevCount == 0;
|
|
} else {
|
|
mProximityActiveCount--;
|
|
if (mProximityActiveCount < 0) {
|
|
ALOGE("Proximity active count is negative (%d)!", mProximityActiveCount);
|
|
}
|
|
activeStateChanged = prevCount > 0 && mProximityActiveCount <= 0;
|
|
}
|
|
|
|
if (activeStateChanged) {
|
|
notifyProximityStateLocked(mProximityActiveListeners);
|
|
}
|
|
}
|
|
|
|
void SensorService::notifyProximityStateLocked(
|
|
const std::vector<sp<ProximityActiveListener>>& listeners) {
|
|
const bool isActive = mProximityActiveCount > 0;
|
|
const uint64_t mySeq = ++curProxCallbackSeq;
|
|
std::thread t([isActive, mySeq, listenersCopy = listeners]() {
|
|
while (completedCallbackSeq.load() != mySeq - 1)
|
|
std::this_thread::sleep_for(1ms);
|
|
for (auto& listener : listenersCopy)
|
|
listener->onProximityActive(isActive);
|
|
completedCallbackSeq++;
|
|
});
|
|
t.detach();
|
|
}
|
|
|
|
status_t SensorService::addProximityActiveListener(const sp<ProximityActiveListener>& callback) {
|
|
if (callback == nullptr) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
Mutex::Autolock _l(mLock);
|
|
|
|
// Check if the callback was already added.
|
|
for (const auto& cb : mProximityActiveListeners) {
|
|
if (cb == callback) {
|
|
return ALREADY_EXISTS;
|
|
}
|
|
}
|
|
|
|
mProximityActiveListeners.push_back(callback);
|
|
std::vector<sp<ProximityActiveListener>> listener(1, callback);
|
|
notifyProximityStateLocked(listener);
|
|
return OK;
|
|
}
|
|
|
|
status_t SensorService::removeProximityActiveListener(
|
|
const sp<ProximityActiveListener>& callback) {
|
|
if (callback == nullptr) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
Mutex::Autolock _l(mLock);
|
|
|
|
for (auto iter = mProximityActiveListeners.begin();
|
|
iter != mProximityActiveListeners.end();
|
|
++iter) {
|
|
if (*iter == callback) {
|
|
mProximityActiveListeners.erase(iter);
|
|
return OK;
|
|
}
|
|
}
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
|
|
return mSensors.getInterface(handle);
|
|
}
|
|
|
|
status_t SensorService::enable(const sp<SensorEventConnection>& connection,
|
|
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
|
|
const String16& opPackageName) {
|
|
if (mInitCheck != NO_ERROR)
|
|
return mInitCheck;
|
|
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
if (sensor == nullptr ||
|
|
!canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
if (mCurrentOperatingMode != NORMAL
|
|
&& !isWhiteListedPackage(connection->getPackageName())) {
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
SensorRecord* rec = mActiveSensors.valueFor(handle);
|
|
if (rec == nullptr) {
|
|
rec = new SensorRecord(connection);
|
|
mActiveSensors.add(handle, rec);
|
|
if (sensor->isVirtual()) {
|
|
mActiveVirtualSensors.emplace(handle);
|
|
}
|
|
|
|
// There was no SensorRecord for this sensor which means it was previously disabled. Mark
|
|
// the recent event as stale to ensure that the previous event is not sent to a client. This
|
|
// ensures on-change events that were generated during a previous sensor activation are not
|
|
// erroneously sent to newly connected clients, especially if a second client registers for
|
|
// an on-change sensor before the first client receives the updated event. Once an updated
|
|
// event is received, the recent events will be marked as current, and any new clients will
|
|
// immediately receive the most recent event.
|
|
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
|
|
auto logger = mRecentEvent.find(handle);
|
|
if (logger != mRecentEvent.end()) {
|
|
logger->second->setLastEventStale();
|
|
}
|
|
}
|
|
} else {
|
|
if (rec->addConnection(connection)) {
|
|
// this sensor is already activated, but we are adding a connection that uses it.
|
|
// Immediately send down the last known value of the requested sensor if it's not a
|
|
// "continuous" sensor.
|
|
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
|
|
// NOTE: The wake_up flag of this event may get set to
|
|
// WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
|
|
|
|
auto logger = mRecentEvent.find(handle);
|
|
if (logger != mRecentEvent.end()) {
|
|
sensors_event_t event;
|
|
// Verify that the last sensor event was generated from the current activation
|
|
// of the sensor. If not, it is possible for an on-change sensor to receive a
|
|
// sensor event that is stale if two clients re-activate the sensor
|
|
// simultaneously.
|
|
if(logger->second->populateLastEventIfCurrent(&event)) {
|
|
event.sensor = handle;
|
|
if (event.version == sizeof(sensors_event_t)) {
|
|
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
|
|
setWakeLockAcquiredLocked(true);
|
|
}
|
|
connection->sendEvents(&event, 1, nullptr);
|
|
if (!connection->needsWakeLock() && mWakeLockAcquired) {
|
|
checkWakeLockStateLocked(&connLock);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (connection->addSensor(handle)) {
|
|
BatteryService::enableSensor(connection->getUid(), handle);
|
|
// the sensor was added (which means it wasn't already there)
|
|
// so, see if this connection becomes active
|
|
mConnectionHolder.addEventConnectionIfNotPresent(connection);
|
|
} else {
|
|
ALOGW("sensor %08x already enabled in connection %p (ignoring)",
|
|
handle, connection.get());
|
|
}
|
|
|
|
// Check maximum delay for the sensor.
|
|
nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
|
|
if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
|
|
samplingPeriodNs = maxDelayNs;
|
|
}
|
|
|
|
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
|
|
if (samplingPeriodNs < minDelayNs) {
|
|
samplingPeriodNs = minDelayNs;
|
|
}
|
|
|
|
ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
|
|
"rate=%" PRId64 " timeout== %" PRId64"",
|
|
handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
|
|
|
|
status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
|
|
maxBatchReportLatencyNs);
|
|
|
|
// Call flush() before calling activate() on the sensor. Wait for a first
|
|
// flush complete event before sending events on this connection. Ignore
|
|
// one-shot sensors which don't support flush(). Ignore on-change sensors
|
|
// to maintain the on-change logic (any on-change events except the initial
|
|
// one should be trigger by a change in value). Also if this sensor isn't
|
|
// already active, don't call flush().
|
|
if (err == NO_ERROR &&
|
|
sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
|
|
rec->getNumConnections() > 1) {
|
|
connection->setFirstFlushPending(handle, true);
|
|
status_t err_flush = sensor->flush(connection.get(), handle);
|
|
// Flush may return error if the underlying h/w sensor uses an older HAL.
|
|
if (err_flush == NO_ERROR) {
|
|
rec->addPendingFlushConnection(connection.get());
|
|
} else {
|
|
connection->setFirstFlushPending(handle, false);
|
|
}
|
|
}
|
|
|
|
if (err == NO_ERROR) {
|
|
ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
|
|
err = sensor->activate(connection.get(), true);
|
|
}
|
|
|
|
if (err == NO_ERROR) {
|
|
connection->updateLooperRegistration(mLooper);
|
|
|
|
if (sensor->getSensor().getRequiredPermission().size() > 0 &&
|
|
sensor->getSensor().getRequiredAppOp() >= 0) {
|
|
connection->mHandleToAppOp[handle] = sensor->getSensor().getRequiredAppOp();
|
|
}
|
|
|
|
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
|
|
SensorRegistrationInfo(handle, connection->getPackageName(),
|
|
samplingPeriodNs, maxBatchReportLatencyNs, true);
|
|
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
}
|
|
|
|
if (err != NO_ERROR) {
|
|
// batch/activate has failed, reset our state.
|
|
cleanupWithoutDisableLocked(connection, handle);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
|
|
if (mInitCheck != NO_ERROR)
|
|
return mInitCheck;
|
|
|
|
Mutex::Autolock _l(mLock);
|
|
status_t err = cleanupWithoutDisableLocked(connection, handle);
|
|
if (err == NO_ERROR) {
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
|
|
|
|
}
|
|
if (err == NO_ERROR) {
|
|
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
|
|
SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
|
|
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
status_t SensorService::cleanupWithoutDisable(
|
|
const sp<SensorEventConnection>& connection, int handle) {
|
|
Mutex::Autolock _l(mLock);
|
|
return cleanupWithoutDisableLocked(connection, handle);
|
|
}
|
|
|
|
status_t SensorService::cleanupWithoutDisableLocked(
|
|
const sp<SensorEventConnection>& connection, int handle) {
|
|
SensorRecord* rec = mActiveSensors.valueFor(handle);
|
|
if (rec) {
|
|
// see if this connection becomes inactive
|
|
if (connection->removeSensor(handle)) {
|
|
BatteryService::disableSensor(connection->getUid(), handle);
|
|
}
|
|
if (connection->hasAnySensor() == false) {
|
|
connection->updateLooperRegistration(mLooper);
|
|
mConnectionHolder.removeEventConnection(connection);
|
|
}
|
|
// see if this sensor becomes inactive
|
|
if (rec->removeConnection(connection)) {
|
|
mActiveSensors.removeItem(handle);
|
|
mActiveVirtualSensors.erase(handle);
|
|
delete rec;
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
|
|
int handle, nsecs_t ns, const String16& opPackageName) {
|
|
if (mInitCheck != NO_ERROR)
|
|
return mInitCheck;
|
|
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
if (sensor == nullptr ||
|
|
!canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (ns < 0)
|
|
return BAD_VALUE;
|
|
|
|
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
|
|
if (ns < minDelayNs) {
|
|
ns = minDelayNs;
|
|
}
|
|
|
|
return sensor->setDelay(connection.get(), handle, ns);
|
|
}
|
|
|
|
status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
|
|
const String16& opPackageName) {
|
|
if (mInitCheck != NO_ERROR) return mInitCheck;
|
|
SensorDevice& dev(SensorDevice::getInstance());
|
|
const int halVersion = dev.getHalDeviceVersion();
|
|
status_t err(NO_ERROR);
|
|
Mutex::Autolock _l(mLock);
|
|
// Loop through all sensors for this connection and call flush on each of them.
|
|
for (int handle : connection->getActiveSensorHandles()) {
|
|
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
|
|
if (sensor == nullptr) {
|
|
continue;
|
|
}
|
|
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
|
|
ALOGE("flush called on a one-shot sensor");
|
|
err = INVALID_OPERATION;
|
|
continue;
|
|
}
|
|
if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
|
|
// For older devices just increment pending flush count which will send a trivial
|
|
// flush complete event.
|
|
if (!connection->incrementPendingFlushCountIfHasAccess(handle)) {
|
|
ALOGE("flush called on an inaccessible sensor");
|
|
err = INVALID_OPERATION;
|
|
}
|
|
} else {
|
|
if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
|
|
err = INVALID_OPERATION;
|
|
continue;
|
|
}
|
|
status_t err_flush = sensor->flush(connection.get(), handle);
|
|
if (err_flush == NO_ERROR) {
|
|
SensorRecord* rec = mActiveSensors.valueFor(handle);
|
|
if (rec != nullptr) rec->addPendingFlushConnection(connection);
|
|
}
|
|
err = (err_flush != NO_ERROR) ? err_flush : err;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
|
|
const String16& opPackageName) {
|
|
// Check if a permission is required for this sensor
|
|
if (sensor.getRequiredPermission().length() <= 0) {
|
|
return true;
|
|
}
|
|
|
|
const int32_t opCode = sensor.getRequiredAppOp();
|
|
int targetSdkVersion = getTargetSdkVersion(opPackageName);
|
|
|
|
bool canAccess = false;
|
|
if (targetSdkVersion > 0 && targetSdkVersion <= __ANDROID_API_P__ &&
|
|
(sensor.getType() == SENSOR_TYPE_STEP_COUNTER ||
|
|
sensor.getType() == SENSOR_TYPE_STEP_DETECTOR)) {
|
|
// Allow access to step sensors if the application targets pre-Q, which is before the
|
|
// requirement to hold the AR permission to access Step Counter and Step Detector events
|
|
// was introduced.
|
|
canAccess = true;
|
|
} else if (hasPermissionForSensor(sensor)) {
|
|
// Ensure that the AppOp is allowed, or that there is no necessary app op for the sensor
|
|
if (opCode >= 0) {
|
|
const int32_t appOpMode = sAppOpsManager.checkOp(opCode,
|
|
IPCThreadState::self()->getCallingUid(), opPackageName);
|
|
canAccess = (appOpMode == AppOpsManager::MODE_ALLOWED);
|
|
} else {
|
|
canAccess = true;
|
|
}
|
|
}
|
|
|
|
if (!canAccess) {
|
|
ALOGE("%s %s a sensor (%s) without holding %s", String8(opPackageName).string(),
|
|
operation, sensor.getName().string(), sensor.getRequiredPermission().string());
|
|
}
|
|
|
|
return canAccess;
|
|
}
|
|
|
|
bool SensorService::hasPermissionForSensor(const Sensor& sensor) {
|
|
bool hasPermission = false;
|
|
const String8& requiredPermission = sensor.getRequiredPermission();
|
|
|
|
// Runtime permissions can't use the cache as they may change.
|
|
if (sensor.isRequiredPermissionRuntime()) {
|
|
hasPermission = checkPermission(String16(requiredPermission),
|
|
IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
|
|
} else {
|
|
hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
|
|
}
|
|
return hasPermission;
|
|
}
|
|
|
|
int SensorService::getTargetSdkVersion(const String16& opPackageName) {
|
|
// Don't query the SDK version for the ISensorManager descriptor as it doesn't have one. This
|
|
// descriptor tends to be used for VNDK clients, but can technically be set by anyone so don't
|
|
// give it elevated privileges.
|
|
if (opPackageName.startsWith(sSensorInterfaceDescriptorPrefix)) {
|
|
return -1;
|
|
}
|
|
|
|
Mutex::Autolock packageLock(sPackageTargetVersionLock);
|
|
int targetSdkVersion = -1;
|
|
auto entry = sPackageTargetVersion.find(opPackageName);
|
|
if (entry != sPackageTargetVersion.end()) {
|
|
targetSdkVersion = entry->second;
|
|
} else {
|
|
sp<IBinder> binder = defaultServiceManager()->getService(String16("package_native"));
|
|
if (binder != nullptr) {
|
|
sp<content::pm::IPackageManagerNative> packageManager =
|
|
interface_cast<content::pm::IPackageManagerNative>(binder);
|
|
if (packageManager != nullptr) {
|
|
binder::Status status = packageManager->getTargetSdkVersionForPackage(
|
|
opPackageName, &targetSdkVersion);
|
|
if (!status.isOk()) {
|
|
targetSdkVersion = -1;
|
|
}
|
|
}
|
|
}
|
|
sPackageTargetVersion[opPackageName] = targetSdkVersion;
|
|
}
|
|
return targetSdkVersion;
|
|
}
|
|
|
|
void SensorService::resetTargetSdkVersionCache(const String16& opPackageName) {
|
|
Mutex::Autolock packageLock(sPackageTargetVersionLock);
|
|
auto iter = sPackageTargetVersion.find(opPackageName);
|
|
if (iter != sPackageTargetVersion.end()) {
|
|
sPackageTargetVersion.erase(iter);
|
|
}
|
|
}
|
|
|
|
void SensorService::checkWakeLockState() {
|
|
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
|
|
checkWakeLockStateLocked(&connLock);
|
|
}
|
|
|
|
void SensorService::checkWakeLockStateLocked(ConnectionSafeAutolock* connLock) {
|
|
if (!mWakeLockAcquired) {
|
|
return;
|
|
}
|
|
bool releaseLock = true;
|
|
for (const sp<SensorEventConnection>& connection : connLock->getActiveConnections()) {
|
|
if (connection->needsWakeLock()) {
|
|
releaseLock = false;
|
|
break;
|
|
}
|
|
}
|
|
if (releaseLock) {
|
|
setWakeLockAcquiredLocked(false);
|
|
}
|
|
}
|
|
|
|
void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
|
|
Mutex::Autolock _l(mLock);
|
|
connection->writeToSocketFromCache();
|
|
if (connection->needsWakeLock()) {
|
|
setWakeLockAcquiredLocked(true);
|
|
}
|
|
}
|
|
|
|
bool SensorService::isWhiteListedPackage(const String8& packageName) {
|
|
return (packageName.contains(mWhiteListedPackage.string()));
|
|
}
|
|
|
|
bool SensorService::isOperationRestrictedLocked(const String16& opPackageName) {
|
|
if (mCurrentOperatingMode == RESTRICTED) {
|
|
String8 package(opPackageName);
|
|
return !isWhiteListedPackage(package);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SensorService::UidPolicy::registerSelf() {
|
|
ActivityManager am;
|
|
am.registerUidObserver(this, ActivityManager::UID_OBSERVER_GONE
|
|
| ActivityManager::UID_OBSERVER_IDLE
|
|
| ActivityManager::UID_OBSERVER_ACTIVE,
|
|
ActivityManager::PROCESS_STATE_UNKNOWN,
|
|
String16("android"));
|
|
}
|
|
|
|
void SensorService::UidPolicy::unregisterSelf() {
|
|
ActivityManager am;
|
|
am.unregisterUidObserver(this);
|
|
}
|
|
|
|
void SensorService::UidPolicy::onUidGone(__unused uid_t uid, __unused bool disabled) {
|
|
onUidIdle(uid, disabled);
|
|
}
|
|
|
|
void SensorService::UidPolicy::onUidActive(uid_t uid) {
|
|
{
|
|
Mutex::Autolock _l(mUidLock);
|
|
mActiveUids.insert(uid);
|
|
}
|
|
sp<SensorService> service = mService.promote();
|
|
if (service != nullptr) {
|
|
service->onUidStateChanged(uid, UID_STATE_ACTIVE);
|
|
}
|
|
}
|
|
|
|
void SensorService::UidPolicy::onUidIdle(uid_t uid, __unused bool disabled) {
|
|
bool deleted = false;
|
|
{
|
|
Mutex::Autolock _l(mUidLock);
|
|
if (mActiveUids.erase(uid) > 0) {
|
|
deleted = true;
|
|
}
|
|
}
|
|
if (deleted) {
|
|
sp<SensorService> service = mService.promote();
|
|
if (service != nullptr) {
|
|
service->onUidStateChanged(uid, UID_STATE_IDLE);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SensorService::UidPolicy::addOverrideUid(uid_t uid, bool active) {
|
|
updateOverrideUid(uid, active, true);
|
|
}
|
|
|
|
void SensorService::UidPolicy::removeOverrideUid(uid_t uid) {
|
|
updateOverrideUid(uid, false, false);
|
|
}
|
|
|
|
void SensorService::UidPolicy::updateOverrideUid(uid_t uid, bool active, bool insert) {
|
|
bool wasActive = false;
|
|
bool isActive = false;
|
|
{
|
|
Mutex::Autolock _l(mUidLock);
|
|
wasActive = isUidActiveLocked(uid);
|
|
mOverrideUids.erase(uid);
|
|
if (insert) {
|
|
mOverrideUids.insert(std::pair<uid_t, bool>(uid, active));
|
|
}
|
|
isActive = isUidActiveLocked(uid);
|
|
}
|
|
if (wasActive != isActive) {
|
|
sp<SensorService> service = mService.promote();
|
|
if (service != nullptr) {
|
|
service->onUidStateChanged(uid, isActive ? UID_STATE_ACTIVE : UID_STATE_IDLE);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SensorService::UidPolicy::isUidActive(uid_t uid) {
|
|
// Non-app UIDs are considered always active
|
|
if (uid < FIRST_APPLICATION_UID) {
|
|
return true;
|
|
}
|
|
Mutex::Autolock _l(mUidLock);
|
|
return isUidActiveLocked(uid);
|
|
}
|
|
|
|
bool SensorService::UidPolicy::isUidActiveLocked(uid_t uid) {
|
|
// Non-app UIDs are considered always active
|
|
if (uid < FIRST_APPLICATION_UID) {
|
|
return true;
|
|
}
|
|
auto it = mOverrideUids.find(uid);
|
|
if (it != mOverrideUids.end()) {
|
|
return it->second;
|
|
}
|
|
return mActiveUids.find(uid) != mActiveUids.end();
|
|
}
|
|
|
|
bool SensorService::isUidActive(uid_t uid) {
|
|
return mUidPolicy->isUidActive(uid);
|
|
}
|
|
|
|
bool SensorService::isRateCappedBasedOnPermission(const String16& opPackageName) {
|
|
int targetSdk = getTargetSdkVersion(opPackageName);
|
|
bool hasSamplingRatePermission = checkPermission(sAccessHighSensorSamplingRatePermission,
|
|
IPCThreadState::self()->getCallingPid(),
|
|
IPCThreadState::self()->getCallingUid());
|
|
if (targetSdk < __ANDROID_API_S__ ||
|
|
(targetSdk >= __ANDROID_API_S__ && hasSamplingRatePermission)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Checks if a sensor should be capped according to HIGH_SAMPLING_RATE_SENSORS
|
|
* permission.
|
|
*
|
|
* This needs to be kept in sync with the list defined on the Java side
|
|
* in frameworks/base/core/java/android/hardware/SystemSensorManager.java
|
|
*/
|
|
bool SensorService::isSensorInCappedSet(int sensorType) {
|
|
return (sensorType == SENSOR_TYPE_ACCELEROMETER
|
|
|| sensorType == SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED
|
|
|| sensorType == SENSOR_TYPE_GYROSCOPE
|
|
|| sensorType == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED
|
|
|| sensorType == SENSOR_TYPE_MAGNETIC_FIELD
|
|
|| sensorType == SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED);
|
|
}
|
|
|
|
status_t SensorService::adjustSamplingPeriodBasedOnMicAndPermission(nsecs_t* requestedPeriodNs,
|
|
const String16& opPackageName) {
|
|
uid_t uid = IPCThreadState::self()->getCallingUid();
|
|
bool shouldCapBasedOnPermission = isRateCappedBasedOnPermission(opPackageName);
|
|
if (*requestedPeriodNs >= SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) {
|
|
return OK;
|
|
}
|
|
if (shouldCapBasedOnPermission) {
|
|
*requestedPeriodNs = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS;
|
|
if (isPackageDebuggable(opPackageName)) {
|
|
return PERMISSION_DENIED;
|
|
}
|
|
return OK;
|
|
}
|
|
if (isMicSensorPrivacyEnabledForUid(uid)) {
|
|
*requestedPeriodNs = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS;
|
|
return OK;
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
status_t SensorService::adjustRateLevelBasedOnMicAndPermission(int* requestedRateLevel,
|
|
const String16& opPackageName) {
|
|
uid_t uid = IPCThreadState::self()->getCallingUid();
|
|
bool shouldCapBasedOnPermission = isRateCappedBasedOnPermission(opPackageName);
|
|
|
|
if (*requestedRateLevel <= SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL) {
|
|
return OK;
|
|
}
|
|
if (shouldCapBasedOnPermission) {
|
|
*requestedRateLevel = SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL;
|
|
if (isPackageDebuggable(opPackageName)) {
|
|
return PERMISSION_DENIED;
|
|
}
|
|
return OK;
|
|
}
|
|
if (isMicSensorPrivacyEnabledForUid(uid)) {
|
|
*requestedRateLevel = SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL;
|
|
return OK;
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
void SensorService::SensorPrivacyPolicy::registerSelf() {
|
|
AutoCallerClear acc;
|
|
SensorPrivacyManager spm;
|
|
mSensorPrivacyEnabled = spm.isSensorPrivacyEnabled();
|
|
spm.addSensorPrivacyListener(this);
|
|
}
|
|
|
|
void SensorService::SensorPrivacyPolicy::unregisterSelf() {
|
|
AutoCallerClear acc;
|
|
SensorPrivacyManager spm;
|
|
if (mIsIndividualMic) {
|
|
spm.removeIndividualSensorPrivacyListener(
|
|
SensorPrivacyManager::INDIVIDUAL_SENSOR_MICROPHONE, this);
|
|
} else {
|
|
spm.removeSensorPrivacyListener(this);
|
|
}
|
|
}
|
|
|
|
bool SensorService::SensorPrivacyPolicy::isSensorPrivacyEnabled() {
|
|
return mSensorPrivacyEnabled;
|
|
}
|
|
|
|
binder::Status SensorService::SensorPrivacyPolicy::onSensorPrivacyChanged(bool enabled) {
|
|
mSensorPrivacyEnabled = enabled;
|
|
sp<SensorService> service = mService.promote();
|
|
|
|
if (service != nullptr) {
|
|
if (mIsIndividualMic) {
|
|
if (enabled) {
|
|
service->capRates(mUserId);
|
|
} else {
|
|
service->uncapRates(mUserId);
|
|
}
|
|
} else {
|
|
if (enabled) {
|
|
service->disableAllSensors();
|
|
} else {
|
|
service->enableAllSensors();
|
|
}
|
|
}
|
|
}
|
|
return binder::Status::ok();
|
|
}
|
|
|
|
status_t SensorService::SensorPrivacyPolicy::registerSelfForIndividual(int userId) {
|
|
Mutex::Autolock _l(mSensorPrivacyLock);
|
|
AutoCallerClear acc;
|
|
SensorPrivacyManager spm;
|
|
status_t err = spm.addIndividualSensorPrivacyListener(userId,
|
|
SensorPrivacyManager::INDIVIDUAL_SENSOR_MICROPHONE, this);
|
|
|
|
if (err != OK) {
|
|
ALOGE("Cannot register a mic listener.");
|
|
return err;
|
|
}
|
|
mSensorPrivacyEnabled = spm.isIndividualSensorPrivacyEnabled(userId,
|
|
SensorPrivacyManager::INDIVIDUAL_SENSOR_MICROPHONE);
|
|
|
|
mIsIndividualMic = true;
|
|
mUserId = userId;
|
|
return OK;
|
|
}
|
|
|
|
bool SensorService::isMicSensorPrivacyEnabledForUid(uid_t uid) {
|
|
userid_t userId = multiuser_get_user_id(uid);
|
|
if (mMicSensorPrivacyPolicies.find(userId) == mMicSensorPrivacyPolicies.end()) {
|
|
sp<SensorPrivacyPolicy> userPolicy = new SensorPrivacyPolicy(this);
|
|
if (userPolicy->registerSelfForIndividual(userId) != OK) {
|
|
return false;
|
|
}
|
|
mMicSensorPrivacyPolicies[userId] = userPolicy;
|
|
}
|
|
return mMicSensorPrivacyPolicies[userId]->isSensorPrivacyEnabled();
|
|
}
|
|
|
|
SensorService::ConnectionSafeAutolock::ConnectionSafeAutolock(
|
|
SensorService::SensorConnectionHolder& holder, Mutex& mutex)
|
|
: mConnectionHolder(holder), mAutolock(mutex) {}
|
|
|
|
template<typename ConnectionType>
|
|
const std::vector<sp<ConnectionType>>& SensorService::ConnectionSafeAutolock::getConnectionsHelper(
|
|
const SortedVector<wp<ConnectionType>>& connectionList,
|
|
std::vector<std::vector<sp<ConnectionType>>>* referenceHolder) {
|
|
referenceHolder->emplace_back();
|
|
std::vector<sp<ConnectionType>>& connections = referenceHolder->back();
|
|
for (const wp<ConnectionType>& weakConnection : connectionList){
|
|
sp<ConnectionType> connection = weakConnection.promote();
|
|
if (connection != nullptr) {
|
|
connections.push_back(std::move(connection));
|
|
}
|
|
}
|
|
return connections;
|
|
}
|
|
|
|
const std::vector<sp<SensorService::SensorEventConnection>>&
|
|
SensorService::ConnectionSafeAutolock::getActiveConnections() {
|
|
return getConnectionsHelper(mConnectionHolder.mActiveConnections,
|
|
&mReferencedActiveConnections);
|
|
}
|
|
|
|
const std::vector<sp<SensorService::SensorDirectConnection>>&
|
|
SensorService::ConnectionSafeAutolock::getDirectConnections() {
|
|
return getConnectionsHelper(mConnectionHolder.mDirectConnections,
|
|
&mReferencedDirectConnections);
|
|
}
|
|
|
|
void SensorService::SensorConnectionHolder::addEventConnectionIfNotPresent(
|
|
const sp<SensorService::SensorEventConnection>& connection) {
|
|
if (mActiveConnections.indexOf(connection) < 0) {
|
|
mActiveConnections.add(connection);
|
|
}
|
|
}
|
|
|
|
void SensorService::SensorConnectionHolder::removeEventConnection(
|
|
const wp<SensorService::SensorEventConnection>& connection) {
|
|
mActiveConnections.remove(connection);
|
|
}
|
|
|
|
void SensorService::SensorConnectionHolder::addDirectConnection(
|
|
const sp<SensorService::SensorDirectConnection>& connection) {
|
|
mDirectConnections.add(connection);
|
|
}
|
|
|
|
void SensorService::SensorConnectionHolder::removeDirectConnection(
|
|
const wp<SensorService::SensorDirectConnection>& connection) {
|
|
mDirectConnections.remove(connection);
|
|
}
|
|
|
|
SensorService::ConnectionSafeAutolock SensorService::SensorConnectionHolder::lock(Mutex& mutex) {
|
|
return ConnectionSafeAutolock(*this, mutex);
|
|
}
|
|
|
|
bool SensorService::isPackageDebuggable(const String16& opPackageName) {
|
|
bool debugMode = false;
|
|
sp<IBinder> binder = defaultServiceManager()->getService(String16("package_native"));
|
|
if (binder != nullptr) {
|
|
sp<content::pm::IPackageManagerNative> packageManager =
|
|
interface_cast<content::pm::IPackageManagerNative>(binder);
|
|
if (packageManager != nullptr) {
|
|
binder::Status status = packageManager->isPackageDebuggable(
|
|
opPackageName, &debugMode);
|
|
}
|
|
}
|
|
return debugMode;
|
|
}
|
|
} // namespace android
|