You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
861 lines
32 KiB
861 lines
32 KiB
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// TODO(b/129481165): remove the #pragma below and fix conversion issues
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wconversion"
|
|
|
|
//#define LOG_NDEBUG 0
|
|
#undef LOG_TAG
|
|
#define LOG_TAG "BufferLayer"
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
#include "BufferLayer.h"
|
|
|
|
#include <compositionengine/CompositionEngine.h>
|
|
#include <compositionengine/LayerFECompositionState.h>
|
|
#include <compositionengine/OutputLayer.h>
|
|
#include <compositionengine/impl/OutputLayerCompositionState.h>
|
|
#include <cutils/compiler.h>
|
|
#include <cutils/native_handle.h>
|
|
#include <cutils/properties.h>
|
|
#include <gui/BufferItem.h>
|
|
#include <gui/BufferQueue.h>
|
|
#include <gui/GLConsumer.h>
|
|
#include <gui/LayerDebugInfo.h>
|
|
#include <gui/Surface.h>
|
|
#include <renderengine/RenderEngine.h>
|
|
#include <ui/DebugUtils.h>
|
|
#include <utils/Errors.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/NativeHandle.h>
|
|
#include <utils/StopWatch.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <mutex>
|
|
#include <sstream>
|
|
|
|
#include "Colorizer.h"
|
|
#include "DisplayDevice.h"
|
|
#include "FrameTracer/FrameTracer.h"
|
|
#include "LayerRejecter.h"
|
|
#include "TimeStats/TimeStats.h"
|
|
|
|
namespace android {
|
|
|
|
static constexpr float defaultMaxLuminance = 1000.0;
|
|
|
|
BufferLayer::BufferLayer(const LayerCreationArgs& args)
|
|
: Layer(args),
|
|
mTextureName(args.textureName),
|
|
mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
|
|
ALOGV("Creating Layer %s", getDebugName());
|
|
|
|
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
|
|
|
|
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
|
|
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
|
|
}
|
|
|
|
BufferLayer::~BufferLayer() {
|
|
if (!isClone()) {
|
|
// The original layer and the clone layer share the same texture. Therefore, only one of
|
|
// the layers, in this case the original layer, needs to handle the deletion. The original
|
|
// layer and the clone should be removed at the same time so there shouldn't be any issue
|
|
// with the clone layer trying to use the deleted texture.
|
|
mFlinger->deleteTextureAsync(mTextureName);
|
|
}
|
|
const int32_t layerId = getSequence();
|
|
mFlinger->mTimeStats->onDestroy(layerId);
|
|
mFlinger->mFrameTracer->onDestroy(layerId);
|
|
}
|
|
|
|
void BufferLayer::useSurfaceDamage() {
|
|
if (mFlinger->mForceFullDamage) {
|
|
surfaceDamageRegion = Region::INVALID_REGION;
|
|
} else {
|
|
surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
|
|
}
|
|
}
|
|
|
|
void BufferLayer::useEmptyDamage() {
|
|
surfaceDamageRegion.clear();
|
|
}
|
|
|
|
bool BufferLayer::isOpaque(const Layer::State& s) const {
|
|
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
|
|
// layer's opaque flag.
|
|
if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
|
|
return false;
|
|
}
|
|
|
|
// if the layer has the opaque flag, then we're always opaque,
|
|
// otherwise we use the current buffer's format.
|
|
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
|
|
}
|
|
|
|
bool BufferLayer::isVisible() const {
|
|
return !isHiddenByPolicy() && getAlpha() > 0.0f &&
|
|
(mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
|
|
}
|
|
|
|
bool BufferLayer::isFixedSize() const {
|
|
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
|
|
}
|
|
|
|
bool BufferLayer::usesSourceCrop() const {
|
|
return true;
|
|
}
|
|
|
|
static constexpr mat4 inverseOrientation(uint32_t transform) {
|
|
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
|
|
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
|
|
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
|
|
mat4 tr;
|
|
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
|
|
tr = tr * rot90;
|
|
}
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
|
|
tr = tr * flipH;
|
|
}
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
|
|
tr = tr * flipV;
|
|
}
|
|
return inverse(tr);
|
|
}
|
|
|
|
std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
|
|
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
|
|
ATRACE_CALL();
|
|
|
|
std::optional<compositionengine::LayerFE::LayerSettings> result =
|
|
Layer::prepareClientComposition(targetSettings);
|
|
if (!result) {
|
|
return result;
|
|
}
|
|
|
|
if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) {
|
|
// the texture has not been created yet, this Layer has
|
|
// in fact never been drawn into. This happens frequently with
|
|
// SurfaceView because the WindowManager can't know when the client
|
|
// has drawn the first time.
|
|
|
|
// If there is nothing under us, we paint the screen in black, otherwise
|
|
// we just skip this update.
|
|
|
|
// figure out if there is something below us
|
|
Region under;
|
|
bool finished = false;
|
|
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
if (finished || layer == static_cast<BufferLayer const*>(this)) {
|
|
finished = true;
|
|
return;
|
|
}
|
|
|
|
under.orSelf(layer->getScreenBounds());
|
|
});
|
|
// if not everything below us is covered, we plug the holes!
|
|
Region holes(targetSettings.clip.subtract(under));
|
|
if (!holes.isEmpty()) {
|
|
targetSettings.clearRegion.orSelf(holes);
|
|
}
|
|
|
|
if (mSidebandStream != nullptr) {
|
|
// For surfaceview of tv sideband, there is no activeBuffer
|
|
// in bufferqueue, we need return LayerSettings.
|
|
return result;
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
const bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
|
|
((isSecure() || isProtected()) && !targetSettings.isSecure);
|
|
const bool bufferCanBeUsedAsHwTexture =
|
|
mBufferInfo.mBuffer->getBuffer()->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
|
|
compositionengine::LayerFE::LayerSettings& layer = *result;
|
|
if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
|
|
ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
|
|
mName.c_str());
|
|
prepareClearClientComposition(layer, true /* blackout */);
|
|
return layer;
|
|
}
|
|
|
|
const State& s(getDrawingState());
|
|
layer.source.buffer.buffer = mBufferInfo.mBuffer;
|
|
layer.source.buffer.isOpaque = isOpaque(s);
|
|
layer.source.buffer.fence = mBufferInfo.mFence;
|
|
layer.source.buffer.textureName = mTextureName;
|
|
layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
|
|
layer.source.buffer.isY410BT2020 = isHdrY410();
|
|
bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
|
|
bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
|
|
float maxLuminance = 0.f;
|
|
if (hasSmpte2086 && hasCta861_3) {
|
|
maxLuminance = std::min(mBufferInfo.mHdrMetadata.smpte2086.maxLuminance,
|
|
mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel);
|
|
} else if (hasSmpte2086) {
|
|
maxLuminance = mBufferInfo.mHdrMetadata.smpte2086.maxLuminance;
|
|
} else if (hasCta861_3) {
|
|
maxLuminance = mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel;
|
|
} else {
|
|
switch (layer.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
|
|
case HAL_DATASPACE_TRANSFER_ST2084:
|
|
case HAL_DATASPACE_TRANSFER_HLG:
|
|
// Behavior-match previous releases for HDR content
|
|
maxLuminance = defaultMaxLuminance;
|
|
break;
|
|
}
|
|
}
|
|
layer.source.buffer.maxLuminanceNits = maxLuminance;
|
|
layer.frameNumber = mCurrentFrameNumber;
|
|
layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()->getId() : 0;
|
|
|
|
const bool useFiltering =
|
|
targetSettings.needsFiltering || mNeedsFiltering || bufferNeedsFiltering();
|
|
|
|
// Query the texture matrix given our current filtering mode.
|
|
float textureMatrix[16];
|
|
getDrawingTransformMatrix(useFiltering, textureMatrix);
|
|
|
|
if (getTransformToDisplayInverse()) {
|
|
/*
|
|
* the code below applies the primary display's inverse transform to
|
|
* the texture transform
|
|
*/
|
|
uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
|
|
mat4 tr = inverseOrientation(transform);
|
|
|
|
/**
|
|
* TODO(b/36727915): This is basically a hack.
|
|
*
|
|
* Ensure that regardless of the parent transformation,
|
|
* this buffer is always transformed from native display
|
|
* orientation to display orientation. For example, in the case
|
|
* of a camera where the buffer remains in native orientation,
|
|
* we want the pixels to always be upright.
|
|
*/
|
|
sp<Layer> p = mDrawingParent.promote();
|
|
if (p != nullptr) {
|
|
const auto parentTransform = p->getTransform();
|
|
tr = tr * inverseOrientation(parentTransform.getOrientation());
|
|
}
|
|
|
|
// and finally apply it to the original texture matrix
|
|
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
|
|
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
|
|
}
|
|
|
|
const Rect win{getBounds()};
|
|
float bufferWidth = getBufferSize(s).getWidth();
|
|
float bufferHeight = getBufferSize(s).getHeight();
|
|
|
|
// BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
|
|
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
|
|
// ignore them.
|
|
if (!getBufferSize(s).isValid()) {
|
|
bufferWidth = float(win.right) - float(win.left);
|
|
bufferHeight = float(win.bottom) - float(win.top);
|
|
}
|
|
|
|
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
|
|
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
|
|
const float translateY = float(win.top) / bufferHeight;
|
|
const float translateX = float(win.left) / bufferWidth;
|
|
|
|
// Flip y-coordinates because GLConsumer expects OpenGL convention.
|
|
mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
|
|
mat4::translate(vec4(-.5, -.5, 0, 1)) *
|
|
mat4::translate(vec4(translateX, translateY, 0, 1)) *
|
|
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
|
|
|
|
layer.source.buffer.useTextureFiltering = useFiltering;
|
|
layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
|
|
|
|
return layer;
|
|
}
|
|
|
|
bool BufferLayer::isHdrY410() const {
|
|
// pixel format is HDR Y410 masquerading as RGBA_1010102
|
|
return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
|
|
mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
|
|
mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
|
|
}
|
|
|
|
sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
|
|
return asLayerFE();
|
|
}
|
|
|
|
compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
|
|
return mCompositionState.get();
|
|
}
|
|
|
|
const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
|
|
return mCompositionState.get();
|
|
}
|
|
|
|
void BufferLayer::preparePerFrameCompositionState() {
|
|
Layer::preparePerFrameCompositionState();
|
|
|
|
// Sideband layers
|
|
auto* compositionState = editCompositionState();
|
|
if (compositionState->sidebandStream.get()) {
|
|
compositionState->compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
|
|
return;
|
|
} else {
|
|
// Normal buffer layers
|
|
compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
|
|
compositionState->compositionType = mPotentialCursor
|
|
? Hwc2::IComposerClient::Composition::CURSOR
|
|
: Hwc2::IComposerClient::Composition::DEVICE;
|
|
}
|
|
|
|
compositionState->buffer = mBufferInfo.mBuffer->getBuffer();
|
|
compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
|
|
? 0
|
|
: mBufferInfo.mBufferSlot;
|
|
compositionState->acquireFence = mBufferInfo.mFence;
|
|
}
|
|
|
|
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
|
|
if (mBufferInfo.mBuffer != nullptr) {
|
|
Mutex::Autolock lock(mFrameEventHistoryMutex);
|
|
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
|
|
}
|
|
mRefreshPending = false;
|
|
return hasReadyFrame();
|
|
}
|
|
namespace {
|
|
TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
|
|
using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
|
|
using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
|
|
const auto frameRateCompatibility = [frameRate] {
|
|
switch (frameRate.type) {
|
|
case Layer::FrameRateCompatibility::Default:
|
|
return FrameRateCompatibility::Default;
|
|
case Layer::FrameRateCompatibility::ExactOrMultiple:
|
|
return FrameRateCompatibility::ExactOrMultiple;
|
|
default:
|
|
return FrameRateCompatibility::Undefined;
|
|
}
|
|
}();
|
|
|
|
const auto seamlessness = [frameRate] {
|
|
switch (frameRate.seamlessness) {
|
|
case scheduler::Seamlessness::OnlySeamless:
|
|
return Seamlessness::ShouldBeSeamless;
|
|
case scheduler::Seamlessness::SeamedAndSeamless:
|
|
return Seamlessness::NotRequired;
|
|
default:
|
|
return Seamlessness::Undefined;
|
|
}
|
|
}();
|
|
|
|
return TimeStats::SetFrameRateVote{.frameRate = frameRate.rate.getValue(),
|
|
.frameRateCompatibility = frameRateCompatibility,
|
|
.seamlessness = seamlessness};
|
|
}
|
|
} // namespace
|
|
|
|
bool BufferLayer::onPostComposition(const DisplayDevice* display,
|
|
const std::shared_ptr<FenceTime>& glDoneFence,
|
|
const std::shared_ptr<FenceTime>& presentFence,
|
|
const CompositorTiming& compositorTiming) {
|
|
// mFrameLatencyNeeded is true when a new frame was latched for the
|
|
// composition.
|
|
if (!mBufferInfo.mFrameLatencyNeeded) return false;
|
|
|
|
// Update mFrameEventHistory.
|
|
{
|
|
Mutex::Autolock lock(mFrameEventHistoryMutex);
|
|
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
|
|
compositorTiming);
|
|
finalizeFrameEventHistory(glDoneFence, compositorTiming);
|
|
}
|
|
|
|
// Update mFrameTracker.
|
|
nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
|
|
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
|
|
|
|
const int32_t layerId = getSequence();
|
|
mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
|
|
|
|
const auto outputLayer = findOutputLayerForDisplay(display);
|
|
if (outputLayer && outputLayer->requiresClientComposition()) {
|
|
nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
|
|
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
|
|
clientCompositionTimestamp,
|
|
FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
|
|
// Update the SurfaceFrames in the drawing state
|
|
if (mDrawingState.bufferSurfaceFrameTX) {
|
|
mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
|
|
}
|
|
for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
|
|
surfaceFrame->setGpuComposition();
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
|
|
if (frameReadyFence->isValid()) {
|
|
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
|
|
} else {
|
|
// There was no fence for this frame, so assume that it was ready
|
|
// to be presented at the desired present time.
|
|
mFrameTracker.setFrameReadyTime(desiredPresentTime);
|
|
}
|
|
|
|
const Fps refreshRate = mFlinger->mRefreshRateConfigs->getCurrentRefreshRate().getFps();
|
|
const std::optional<Fps> renderRate = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
|
|
if (presentFence->isValid()) {
|
|
mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
|
|
refreshRate, renderRate,
|
|
frameRateToSetFrameRateVotePayload(
|
|
mDrawingState.frameRate),
|
|
getGameMode());
|
|
mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
|
|
presentFence, FrameTracer::FrameEvent::PRESENT_FENCE);
|
|
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
|
|
} else if (!display) {
|
|
// Do nothing.
|
|
} else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
|
|
displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
|
|
// The HWC doesn't support present fences, so use the refresh
|
|
// timestamp instead.
|
|
const nsecs_t actualPresentTime = display->getRefreshTimestamp();
|
|
mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
|
|
refreshRate, renderRate,
|
|
frameRateToSetFrameRateVotePayload(
|
|
mDrawingState.frameRate),
|
|
getGameMode());
|
|
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
|
|
actualPresentTime,
|
|
FrameTracer::FrameEvent::PRESENT_FENCE);
|
|
mFrameTracker.setActualPresentTime(actualPresentTime);
|
|
}
|
|
|
|
mFrameTracker.advanceFrame();
|
|
mBufferInfo.mFrameLatencyNeeded = false;
|
|
return true;
|
|
}
|
|
|
|
void BufferLayer::gatherBufferInfo() {
|
|
mBufferInfo.mPixelFormat =
|
|
!mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getBuffer()->format;
|
|
mBufferInfo.mFrameLatencyNeeded = true;
|
|
}
|
|
|
|
bool BufferLayer::shouldPresentNow(nsecs_t expectedPresentTime) const {
|
|
// If this is not a valid vsync for the layer's uid, return and try again later
|
|
const bool isVsyncValidForUid =
|
|
mFlinger->mScheduler->isVsyncValid(expectedPresentTime, mOwnerUid);
|
|
if (!isVsyncValidForUid) {
|
|
ATRACE_NAME("!isVsyncValidForUid");
|
|
return false;
|
|
}
|
|
|
|
// AutoRefresh layers and sideband streams should always be presented
|
|
if (getSidebandStreamChanged() || getAutoRefresh()) {
|
|
return true;
|
|
}
|
|
|
|
// If this layer doesn't have a frame is shouldn't be presented
|
|
if (!hasFrameUpdate()) {
|
|
return false;
|
|
}
|
|
|
|
// Defer to the derived class to decide whether the next buffer is due for
|
|
// presentation.
|
|
return isBufferDue(expectedPresentTime);
|
|
}
|
|
|
|
bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
|
|
nsecs_t expectedPresentTime) {
|
|
ATRACE_CALL();
|
|
|
|
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
|
|
|
|
if (refreshRequired) {
|
|
return refreshRequired;
|
|
}
|
|
|
|
if (!hasReadyFrame()) {
|
|
return false;
|
|
}
|
|
|
|
// if we've already called updateTexImage() without going through
|
|
// a composition step, we have to skip this layer at this point
|
|
// because we cannot call updateTeximage() without a corresponding
|
|
// compositionComplete() call.
|
|
// we'll trigger an update in onPreComposition().
|
|
if (mRefreshPending) {
|
|
return false;
|
|
}
|
|
|
|
// If the head buffer's acquire fence hasn't signaled yet, return and
|
|
// try again later
|
|
if (!fenceHasSignaled()) {
|
|
ATRACE_NAME("!fenceHasSignaled()");
|
|
mFlinger->signalLayerUpdate();
|
|
return false;
|
|
}
|
|
|
|
// Capture the old state of the layer for comparisons later
|
|
const State& s(getDrawingState());
|
|
const bool oldOpacity = isOpaque(s);
|
|
|
|
BufferInfo oldBufferInfo = mBufferInfo;
|
|
|
|
status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
|
|
if (err != NO_ERROR) {
|
|
return false;
|
|
}
|
|
|
|
err = updateActiveBuffer();
|
|
if (err != NO_ERROR) {
|
|
return false;
|
|
}
|
|
|
|
err = updateFrameNumber(latchTime);
|
|
if (err != NO_ERROR) {
|
|
return false;
|
|
}
|
|
|
|
gatherBufferInfo();
|
|
|
|
mRefreshPending = true;
|
|
if (oldBufferInfo.mBuffer == nullptr) {
|
|
// the first time we receive a buffer, we need to trigger a
|
|
// geometry invalidation.
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
|
|
(mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
|
|
(mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
|
|
(mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
if (oldBufferInfo.mBuffer != nullptr) {
|
|
uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
|
|
uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
|
|
if (bufWidth != uint32_t(oldBufferInfo.mBuffer->getBuffer()->width) ||
|
|
bufHeight != uint32_t(oldBufferInfo.mBuffer->getBuffer()->height)) {
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
}
|
|
|
|
if (oldOpacity != isOpaque(s)) {
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BufferLayer::hasReadyFrame() const {
|
|
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
|
|
}
|
|
|
|
uint32_t BufferLayer::getEffectiveScalingMode() const {
|
|
return mBufferInfo.mScaleMode;
|
|
}
|
|
|
|
bool BufferLayer::isProtected() const {
|
|
return (mBufferInfo.mBuffer != nullptr) &&
|
|
(mBufferInfo.mBuffer->getBuffer()->getUsage() & GRALLOC_USAGE_PROTECTED);
|
|
}
|
|
|
|
// As documented in libhardware header, formats in the range
|
|
// 0x100 - 0x1FF are specific to the HAL implementation, and
|
|
// are known to have no alpha channel
|
|
// TODO: move definition for device-specific range into
|
|
// hardware.h, instead of using hard-coded values here.
|
|
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
|
|
|
|
bool BufferLayer::getOpacityForFormat(uint32_t format) {
|
|
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
|
|
return true;
|
|
}
|
|
switch (format) {
|
|
case HAL_PIXEL_FORMAT_RGBA_8888:
|
|
case HAL_PIXEL_FORMAT_BGRA_8888:
|
|
case HAL_PIXEL_FORMAT_RGBA_FP16:
|
|
case HAL_PIXEL_FORMAT_RGBA_1010102:
|
|
return false;
|
|
}
|
|
// in all other case, we have no blending (also for unknown formats)
|
|
return true;
|
|
}
|
|
|
|
bool BufferLayer::needsFiltering(const DisplayDevice* display) const {
|
|
const auto outputLayer = findOutputLayerForDisplay(display);
|
|
if (outputLayer == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// We need filtering if the sourceCrop rectangle size does not match the
|
|
// displayframe rectangle size (not a 1:1 render)
|
|
const auto& compositionState = outputLayer->getState();
|
|
const auto displayFrame = compositionState.displayFrame;
|
|
const auto sourceCrop = compositionState.sourceCrop;
|
|
return sourceCrop.getHeight() != displayFrame.getHeight() ||
|
|
sourceCrop.getWidth() != displayFrame.getWidth();
|
|
}
|
|
|
|
bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display,
|
|
const ui::Transform& inverseParentTransform) const {
|
|
const auto outputLayer = findOutputLayerForDisplay(display);
|
|
if (outputLayer == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// We need filtering if the sourceCrop rectangle size does not match the
|
|
// viewport rectangle size (not a 1:1 render)
|
|
const auto& compositionState = outputLayer->getState();
|
|
const ui::Transform& displayTransform = display->getTransform();
|
|
const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
|
|
// Undo the transformation of the displayFrame so that we're back into
|
|
// layer-stack space.
|
|
const Rect frame = inverseTransform.transform(compositionState.displayFrame);
|
|
const FloatRect sourceCrop = compositionState.sourceCrop;
|
|
|
|
int32_t frameHeight = frame.getHeight();
|
|
int32_t frameWidth = frame.getWidth();
|
|
// If the display transform had a rotational component then undo the
|
|
// rotation so that the orientation matches the source crop.
|
|
if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
|
|
std::swap(frameHeight, frameWidth);
|
|
}
|
|
return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
|
|
}
|
|
|
|
uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const {
|
|
if (hasFrameUpdate()) {
|
|
return getFrameNumber(expectedPresentTime);
|
|
} else {
|
|
return mCurrentFrameNumber;
|
|
}
|
|
}
|
|
|
|
Rect BufferLayer::getBufferSize(const State& s) const {
|
|
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
|
|
// we cannot determine the buffer size.
|
|
if ((s.sidebandStream != nullptr) ||
|
|
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
|
|
return Rect(getActiveWidth(s), getActiveHeight(s));
|
|
}
|
|
|
|
if (mBufferInfo.mBuffer == nullptr) {
|
|
return Rect::INVALID_RECT;
|
|
}
|
|
|
|
uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
|
|
uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
|
|
|
|
// Undo any transformations on the buffer and return the result.
|
|
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
|
|
std::swap(bufWidth, bufHeight);
|
|
}
|
|
|
|
if (getTransformToDisplayInverse()) {
|
|
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
|
|
if (invTransform & ui::Transform::ROT_90) {
|
|
std::swap(bufWidth, bufHeight);
|
|
}
|
|
}
|
|
|
|
return Rect(bufWidth, bufHeight);
|
|
}
|
|
|
|
FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
|
|
const State& s(getDrawingState());
|
|
|
|
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
|
|
// we cannot determine the buffer size.
|
|
if ((s.sidebandStream != nullptr) ||
|
|
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
|
|
return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
|
|
}
|
|
|
|
if (mBufferInfo.mBuffer == nullptr) {
|
|
return parentBounds;
|
|
}
|
|
|
|
uint32_t bufWidth = mBufferInfo.mBuffer->getBuffer()->getWidth();
|
|
uint32_t bufHeight = mBufferInfo.mBuffer->getBuffer()->getHeight();
|
|
|
|
// Undo any transformations on the buffer and return the result.
|
|
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
|
|
std::swap(bufWidth, bufHeight);
|
|
}
|
|
|
|
if (getTransformToDisplayInverse()) {
|
|
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
|
|
if (invTransform & ui::Transform::ROT_90) {
|
|
std::swap(bufWidth, bufHeight);
|
|
}
|
|
}
|
|
|
|
return FloatRect(0, 0, bufWidth, bufHeight);
|
|
}
|
|
|
|
void BufferLayer::latchAndReleaseBuffer() {
|
|
mRefreshPending = false;
|
|
if (hasReadyFrame()) {
|
|
bool ignored = false;
|
|
latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
|
|
}
|
|
releasePendingBuffer(systemTime());
|
|
}
|
|
|
|
PixelFormat BufferLayer::getPixelFormat() const {
|
|
return mBufferInfo.mPixelFormat;
|
|
}
|
|
|
|
bool BufferLayer::getTransformToDisplayInverse() const {
|
|
return mBufferInfo.mTransformToDisplayInverse;
|
|
}
|
|
|
|
Rect BufferLayer::getBufferCrop() const {
|
|
// this is the crop rectangle that applies to the buffer
|
|
// itself (as opposed to the window)
|
|
if (!mBufferInfo.mCrop.isEmpty()) {
|
|
// if the buffer crop is defined, we use that
|
|
return mBufferInfo.mCrop;
|
|
} else if (mBufferInfo.mBuffer != nullptr) {
|
|
// otherwise we use the whole buffer
|
|
return mBufferInfo.mBuffer->getBuffer()->getBounds();
|
|
} else {
|
|
// if we don't have a buffer yet, we use an empty/invalid crop
|
|
return Rect();
|
|
}
|
|
}
|
|
|
|
uint32_t BufferLayer::getBufferTransform() const {
|
|
return mBufferInfo.mTransform;
|
|
}
|
|
|
|
ui::Dataspace BufferLayer::getDataSpace() const {
|
|
return mBufferInfo.mDataspace;
|
|
}
|
|
|
|
ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
|
|
ui::Dataspace updatedDataspace = dataspace;
|
|
// translate legacy dataspaces to modern dataspaces
|
|
switch (dataspace) {
|
|
case ui::Dataspace::SRGB:
|
|
updatedDataspace = ui::Dataspace::V0_SRGB;
|
|
break;
|
|
case ui::Dataspace::SRGB_LINEAR:
|
|
updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
|
|
break;
|
|
case ui::Dataspace::JFIF:
|
|
updatedDataspace = ui::Dataspace::V0_JFIF;
|
|
break;
|
|
case ui::Dataspace::BT601_625:
|
|
updatedDataspace = ui::Dataspace::V0_BT601_625;
|
|
break;
|
|
case ui::Dataspace::BT601_525:
|
|
updatedDataspace = ui::Dataspace::V0_BT601_525;
|
|
break;
|
|
case ui::Dataspace::BT709:
|
|
updatedDataspace = ui::Dataspace::V0_BT709;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return updatedDataspace;
|
|
}
|
|
|
|
sp<GraphicBuffer> BufferLayer::getBuffer() const {
|
|
return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
|
|
}
|
|
|
|
void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
|
|
GLConsumer::computeTransformMatrix(outMatrix,
|
|
mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()
|
|
: nullptr,
|
|
mBufferInfo.mCrop, mBufferInfo.mTransform, filteringEnabled);
|
|
}
|
|
|
|
void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
|
|
Layer::setInitialValuesForClone(clonedFrom);
|
|
|
|
sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
|
|
mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
|
|
mPotentialCursor = bufferClonedFrom->mPotentialCursor;
|
|
mProtectedByApp = bufferClonedFrom->mProtectedByApp;
|
|
|
|
updateCloneBufferInfo();
|
|
}
|
|
|
|
void BufferLayer::updateCloneBufferInfo() {
|
|
if (!isClone() || !isClonedFromAlive()) {
|
|
return;
|
|
}
|
|
|
|
sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
|
|
mBufferInfo = clonedFrom->mBufferInfo;
|
|
mSidebandStream = clonedFrom->mSidebandStream;
|
|
surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
|
|
mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
|
|
mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
|
|
|
|
// After buffer info is updated, the drawingState from the real layer needs to be copied into
|
|
// the cloned. This is because some properties of drawingState can change when latchBuffer is
|
|
// called. However, copying the drawingState would also overwrite the cloned layer's relatives
|
|
// and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
|
|
// the cloned drawingState again.
|
|
wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
|
|
SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
|
|
wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
|
|
InputWindowInfo tmpInputInfo = mDrawingState.inputInfo;
|
|
|
|
mDrawingState = clonedFrom->mDrawingState;
|
|
|
|
mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
|
|
mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
|
|
mDrawingState.zOrderRelatives = tmpZOrderRelatives;
|
|
mDrawingState.inputInfo = tmpInputInfo;
|
|
}
|
|
|
|
void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
|
|
mTransformHint = getFixedTransformHint();
|
|
if (mTransformHint == ui::Transform::ROT_INVALID) {
|
|
mTransformHint = displayTransformHint;
|
|
}
|
|
}
|
|
|
|
bool BufferLayer::bufferNeedsFiltering() const {
|
|
return isFixedSize();
|
|
}
|
|
|
|
} // namespace android
|
|
|
|
#if defined(__gl_h_)
|
|
#error "don't include gl/gl.h in this file"
|
|
#endif
|
|
|
|
#if defined(__gl2_h_)
|
|
#error "don't include gl2/gl2.h in this file"
|
|
#endif
|
|
|
|
// TODO(b/129481165): remove the #pragma below and fix conversion issues
|
|
#pragma clang diagnostic pop // ignored "-Wconversion"
|