You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
920 lines
35 KiB
920 lines
35 KiB
/*
|
|
* Copyright 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#undef LOG_TAG
|
|
#define LOG_TAG "Scheduler"
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
#include "Scheduler.h"
|
|
|
|
#include <android-base/properties.h>
|
|
#include <android-base/stringprintf.h>
|
|
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
|
|
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
|
|
#include <configstore/Utils.h>
|
|
#include <input/InputWindow.h>
|
|
#include <system/window.h>
|
|
#include <ui/DisplayStatInfo.h>
|
|
#include <utils/Timers.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <FrameTimeline/FrameTimeline.h>
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <numeric>
|
|
|
|
#include "../Layer.h"
|
|
#include "DispSyncSource.h"
|
|
#include "EventThread.h"
|
|
#include "InjectVSyncSource.h"
|
|
#include "OneShotTimer.h"
|
|
#include "SchedulerUtils.h"
|
|
#include "SurfaceFlingerProperties.h"
|
|
#include "Timer.h"
|
|
#include "VSyncDispatchTimerQueue.h"
|
|
#include "VSyncPredictor.h"
|
|
#include "VSyncReactor.h"
|
|
#include "VsyncController.h"
|
|
|
|
#define RETURN_IF_INVALID_HANDLE(handle, ...) \
|
|
do { \
|
|
if (mConnections.count(handle) == 0) { \
|
|
ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
|
|
return __VA_ARGS__; \
|
|
} \
|
|
} while (false)
|
|
|
|
using namespace std::string_literals;
|
|
|
|
namespace android {
|
|
|
|
namespace {
|
|
|
|
std::unique_ptr<scheduler::VSyncTracker> createVSyncTracker() {
|
|
// TODO(b/144707443): Tune constants.
|
|
constexpr int kDefaultRate = 60;
|
|
constexpr auto initialPeriod = std::chrono::duration<nsecs_t, std::ratio<1, kDefaultRate>>(1);
|
|
constexpr nsecs_t idealPeriod =
|
|
std::chrono::duration_cast<std::chrono::nanoseconds>(initialPeriod).count();
|
|
constexpr size_t vsyncTimestampHistorySize = 20;
|
|
constexpr size_t minimumSamplesForPrediction = 6;
|
|
constexpr uint32_t discardOutlierPercent = 20;
|
|
return std::make_unique<scheduler::VSyncPredictor>(idealPeriod, vsyncTimestampHistorySize,
|
|
minimumSamplesForPrediction,
|
|
discardOutlierPercent);
|
|
}
|
|
|
|
std::unique_ptr<scheduler::VSyncDispatch> createVSyncDispatch(scheduler::VSyncTracker& tracker) {
|
|
// TODO(b/144707443): Tune constants.
|
|
constexpr std::chrono::nanoseconds vsyncMoveThreshold = 3ms;
|
|
constexpr std::chrono::nanoseconds timerSlack = 500us;
|
|
return std::make_unique<
|
|
scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), tracker,
|
|
timerSlack.count(), vsyncMoveThreshold.count());
|
|
}
|
|
|
|
const char* toContentDetectionString(bool useContentDetection) {
|
|
return useContentDetection ? "on" : "off";
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class PredictedVsyncTracer {
|
|
public:
|
|
PredictedVsyncTracer(scheduler::VSyncDispatch& dispatch)
|
|
: mRegistration(dispatch, std::bind(&PredictedVsyncTracer::callback, this),
|
|
"PredictedVsyncTracer") {
|
|
scheduleRegistration();
|
|
}
|
|
|
|
private:
|
|
TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0};
|
|
scheduler::VSyncCallbackRegistration mRegistration;
|
|
|
|
void scheduleRegistration() { mRegistration.schedule({0, 0, 0}); }
|
|
|
|
void callback() {
|
|
mParity = !mParity;
|
|
scheduleRegistration();
|
|
}
|
|
};
|
|
|
|
Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback)
|
|
: Scheduler(configs, callback,
|
|
{.supportKernelTimer = sysprop::support_kernel_idle_timer(false),
|
|
.useContentDetection = sysprop::use_content_detection_for_refresh_rate(false)}) {
|
|
}
|
|
|
|
Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback,
|
|
Options options)
|
|
: Scheduler(createVsyncSchedule(options.supportKernelTimer), configs, callback,
|
|
createLayerHistory(configs), options) {
|
|
using namespace sysprop;
|
|
|
|
const int setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms"s, 0);
|
|
|
|
if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) {
|
|
const auto callback = mOptions.supportKernelTimer ? &Scheduler::kernelIdleTimerCallback
|
|
: &Scheduler::idleTimerCallback;
|
|
mIdleTimer.emplace(
|
|
"IdleTimer", std::chrono::milliseconds(millis),
|
|
[this, callback] { std::invoke(callback, this, TimerState::Reset); },
|
|
[this, callback] { std::invoke(callback, this, TimerState::Expired); });
|
|
mIdleTimer->start();
|
|
}
|
|
|
|
if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
|
|
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
|
|
mTouchTimer.emplace(
|
|
"TouchTimer", std::chrono::milliseconds(millis),
|
|
[this] { touchTimerCallback(TimerState::Reset); },
|
|
[this] { touchTimerCallback(TimerState::Expired); });
|
|
mTouchTimer->start();
|
|
}
|
|
|
|
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
|
|
mDisplayPowerTimer.emplace(
|
|
"DisplayPowerTimer", std::chrono::milliseconds(millis),
|
|
[this] { displayPowerTimerCallback(TimerState::Reset); },
|
|
[this] { displayPowerTimerCallback(TimerState::Expired); });
|
|
mDisplayPowerTimer->start();
|
|
}
|
|
}
|
|
|
|
Scheduler::Scheduler(VsyncSchedule schedule, const scheduler::RefreshRateConfigs& configs,
|
|
ISchedulerCallback& schedulerCallback,
|
|
std::unique_ptr<LayerHistory> layerHistory, Options options)
|
|
: mOptions(options),
|
|
mVsyncSchedule(std::move(schedule)),
|
|
mLayerHistory(std::move(layerHistory)),
|
|
mSchedulerCallback(schedulerCallback),
|
|
mRefreshRateConfigs(configs),
|
|
mPredictedVsyncTracer(
|
|
base::GetBoolProperty("debug.sf.show_predicted_vsync", false)
|
|
? std::make_unique<PredictedVsyncTracer>(*mVsyncSchedule.dispatch)
|
|
: nullptr) {
|
|
mSchedulerCallback.setVsyncEnabled(false);
|
|
}
|
|
|
|
Scheduler::~Scheduler() {
|
|
// Ensure the OneShotTimer threads are joined before we start destroying state.
|
|
mDisplayPowerTimer.reset();
|
|
mTouchTimer.reset();
|
|
mIdleTimer.reset();
|
|
}
|
|
|
|
Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) {
|
|
auto clock = std::make_unique<scheduler::SystemClock>();
|
|
auto tracker = createVSyncTracker();
|
|
auto dispatch = createVSyncDispatch(*tracker);
|
|
|
|
// TODO(b/144707443): Tune constants.
|
|
constexpr size_t pendingFenceLimit = 20;
|
|
auto controller =
|
|
std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit,
|
|
supportKernelTimer);
|
|
return {std::move(controller), std::move(tracker), std::move(dispatch)};
|
|
}
|
|
|
|
std::unique_ptr<LayerHistory> Scheduler::createLayerHistory(
|
|
const scheduler::RefreshRateConfigs& configs) {
|
|
return std::make_unique<scheduler::LayerHistory>(configs);
|
|
}
|
|
|
|
std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(
|
|
const char* name, std::chrono::nanoseconds workDuration,
|
|
std::chrono::nanoseconds readyDuration, bool traceVsync) {
|
|
return std::make_unique<scheduler::DispSyncSource>(*mVsyncSchedule.dispatch, workDuration,
|
|
readyDuration, traceVsync, name);
|
|
}
|
|
|
|
std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
|
|
if (!mRefreshRateConfigs.supportsFrameRateOverride()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::lock_guard lock(mFrameRateOverridesMutex);
|
|
{
|
|
const auto iter = mFrameRateOverridesFromBackdoor.find(uid);
|
|
if (iter != mFrameRateOverridesFromBackdoor.end()) {
|
|
return std::make_optional<Fps>(iter->second);
|
|
}
|
|
}
|
|
|
|
{
|
|
const auto iter = mFrameRateOverridesByContent.find(uid);
|
|
if (iter != mFrameRateOverridesByContent.end()) {
|
|
return std::make_optional<Fps>(iter->second);
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const {
|
|
const auto frameRate = getFrameRateOverride(uid);
|
|
if (!frameRate.has_value()) {
|
|
return true;
|
|
}
|
|
|
|
return mVsyncSchedule.tracker->isVSyncInPhase(expectedVsyncTimestamp, *frameRate);
|
|
}
|
|
|
|
impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const {
|
|
if (!mRefreshRateConfigs.supportsFrameRateOverride()) {
|
|
return {};
|
|
}
|
|
|
|
return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) {
|
|
return !isVsyncValid(expectedVsyncTimestamp, uid);
|
|
};
|
|
}
|
|
|
|
impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const {
|
|
return [this](uid_t uid) {
|
|
nsecs_t basePeriod = mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod();
|
|
const auto frameRate = getFrameRateOverride(uid);
|
|
if (!frameRate.has_value()) {
|
|
return basePeriod;
|
|
}
|
|
|
|
const auto divider = scheduler::RefreshRateConfigs::getFrameRateDivider(
|
|
mRefreshRateConfigs.getCurrentRefreshRate().getFps(), *frameRate);
|
|
if (divider <= 1) {
|
|
return basePeriod;
|
|
}
|
|
return basePeriod * divider;
|
|
};
|
|
}
|
|
|
|
Scheduler::ConnectionHandle Scheduler::createConnection(
|
|
const char* connectionName, frametimeline::TokenManager* tokenManager,
|
|
std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration,
|
|
impl::EventThread::InterceptVSyncsCallback interceptCallback) {
|
|
auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration);
|
|
auto throttleVsync = makeThrottleVsyncCallback();
|
|
auto getVsyncPeriod = makeGetVsyncPeriodFunction();
|
|
auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager,
|
|
std::move(interceptCallback),
|
|
std::move(throttleVsync),
|
|
std::move(getVsyncPeriod));
|
|
return createConnection(std::move(eventThread));
|
|
}
|
|
|
|
Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
|
|
const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
|
|
ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
|
|
|
|
auto connection = createConnectionInternal(eventThread.get());
|
|
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
|
|
return handle;
|
|
}
|
|
|
|
sp<EventThreadConnection> Scheduler::createConnectionInternal(
|
|
EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
|
|
return eventThread->createEventConnection([&] { resync(); }, eventRegistration);
|
|
}
|
|
|
|
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
|
|
ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle, nullptr);
|
|
return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration);
|
|
}
|
|
|
|
sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle, nullptr);
|
|
return mConnections[handle].connection;
|
|
}
|
|
|
|
void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
|
|
bool connected) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
|
|
thread->onHotplugReceived(displayId, connected);
|
|
}
|
|
|
|
void Scheduler::onScreenAcquired(ConnectionHandle handle) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onScreenAcquired();
|
|
}
|
|
|
|
void Scheduler::onScreenReleased(ConnectionHandle handle) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onScreenReleased();
|
|
}
|
|
|
|
void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) {
|
|
std::vector<FrameRateOverride> overrides;
|
|
{
|
|
std::lock_guard lock(mFrameRateOverridesMutex);
|
|
for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) {
|
|
overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()});
|
|
}
|
|
for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) {
|
|
if (mFrameRateOverridesFromBackdoor.count(uid) == 0) {
|
|
overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()});
|
|
}
|
|
}
|
|
}
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onFrameRateOverridesChanged(displayId, std::move(overrides));
|
|
}
|
|
|
|
void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, PhysicalDisplayId displayId,
|
|
DisplayModeId modeId, nsecs_t vsyncPeriod) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mFeatureStateLock);
|
|
// Cache the last reported modes for primary display.
|
|
mFeatures.cachedModeChangedParams = {handle, displayId, modeId, vsyncPeriod};
|
|
|
|
// Invalidate content based refresh rate selection so it could be calculated
|
|
// again for the new refresh rate.
|
|
mFeatures.contentRequirements.clear();
|
|
}
|
|
onNonPrimaryDisplayModeChanged(handle, displayId, modeId, vsyncPeriod);
|
|
}
|
|
|
|
void Scheduler::dispatchCachedReportedMode() {
|
|
// Check optional fields first.
|
|
if (!mFeatures.modeId.has_value()) {
|
|
ALOGW("No mode ID found, not dispatching cached mode.");
|
|
return;
|
|
}
|
|
if (!mFeatures.cachedModeChangedParams.has_value()) {
|
|
ALOGW("No mode changed params found, not dispatching cached mode.");
|
|
return;
|
|
}
|
|
|
|
const auto modeId = *mFeatures.modeId;
|
|
const auto vsyncPeriod = mRefreshRateConfigs.getRefreshRateFromModeId(modeId).getVsyncPeriod();
|
|
|
|
// If there is no change from cached mode, there is no need to dispatch an event
|
|
if (modeId == mFeatures.cachedModeChangedParams->modeId &&
|
|
vsyncPeriod == mFeatures.cachedModeChangedParams->vsyncPeriod) {
|
|
return;
|
|
}
|
|
|
|
mFeatures.cachedModeChangedParams->modeId = modeId;
|
|
mFeatures.cachedModeChangedParams->vsyncPeriod = vsyncPeriod;
|
|
onNonPrimaryDisplayModeChanged(mFeatures.cachedModeChangedParams->handle,
|
|
mFeatures.cachedModeChangedParams->displayId,
|
|
mFeatures.cachedModeChangedParams->modeId,
|
|
mFeatures.cachedModeChangedParams->vsyncPeriod);
|
|
}
|
|
|
|
void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, PhysicalDisplayId displayId,
|
|
DisplayModeId modeId, nsecs_t vsyncPeriod) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onModeChanged(displayId, modeId, vsyncPeriod);
|
|
}
|
|
|
|
size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle, 0);
|
|
return mConnections[handle].thread->getEventThreadConnectionCount();
|
|
}
|
|
|
|
void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections.at(handle).thread.get();
|
|
}
|
|
thread->dump(result);
|
|
}
|
|
|
|
void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration,
|
|
std::chrono::nanoseconds readyDuration) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->setDuration(workDuration, readyDuration);
|
|
}
|
|
|
|
DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) {
|
|
const auto vsyncTime = mVsyncSchedule.tracker->nextAnticipatedVSyncTimeFrom(now);
|
|
const auto vsyncPeriod = mVsyncSchedule.tracker->currentPeriod();
|
|
return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod};
|
|
}
|
|
|
|
Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
|
|
if (mInjectVSyncs == enable) {
|
|
return {};
|
|
}
|
|
|
|
ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");
|
|
|
|
if (!mInjectorConnectionHandle) {
|
|
auto vsyncSource = std::make_unique<InjectVSyncSource>();
|
|
mVSyncInjector = vsyncSource.get();
|
|
|
|
auto eventThread =
|
|
std::make_unique<impl::EventThread>(std::move(vsyncSource),
|
|
/*tokenManager=*/nullptr,
|
|
impl::EventThread::InterceptVSyncsCallback(),
|
|
impl::EventThread::ThrottleVsyncCallback(),
|
|
impl::EventThread::GetVsyncPeriodFunction());
|
|
|
|
// EventThread does not dispatch VSYNC unless the display is connected and powered on.
|
|
eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true);
|
|
eventThread->onScreenAcquired();
|
|
|
|
mInjectorConnectionHandle = createConnection(std::move(eventThread));
|
|
}
|
|
|
|
mInjectVSyncs = enable;
|
|
return mInjectorConnectionHandle;
|
|
}
|
|
|
|
bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) {
|
|
if (!mInjectVSyncs || !mVSyncInjector) {
|
|
return false;
|
|
}
|
|
|
|
mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp);
|
|
return true;
|
|
}
|
|
|
|
void Scheduler::enableHardwareVsync() {
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
|
|
mVsyncSchedule.tracker->resetModel();
|
|
mSchedulerCallback.setVsyncEnabled(true);
|
|
mPrimaryHWVsyncEnabled = true;
|
|
}
|
|
}
|
|
|
|
void Scheduler::disableHardwareVsync(bool makeUnavailable) {
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (mPrimaryHWVsyncEnabled) {
|
|
mSchedulerCallback.setVsyncEnabled(false);
|
|
mPrimaryHWVsyncEnabled = false;
|
|
}
|
|
if (makeUnavailable) {
|
|
mHWVsyncAvailable = false;
|
|
}
|
|
}
|
|
|
|
void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (makeAvailable) {
|
|
mHWVsyncAvailable = makeAvailable;
|
|
} else if (!mHWVsyncAvailable) {
|
|
// Hardware vsync is not currently available, so abort the resync
|
|
// attempt for now
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (period <= 0) {
|
|
return;
|
|
}
|
|
|
|
setVsyncPeriod(period);
|
|
}
|
|
|
|
void Scheduler::resync() {
|
|
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
|
|
|
|
const nsecs_t now = systemTime();
|
|
const nsecs_t last = mLastResyncTime.exchange(now);
|
|
|
|
if (now - last > kIgnoreDelay) {
|
|
resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod());
|
|
}
|
|
}
|
|
|
|
void Scheduler::setVsyncPeriod(nsecs_t period) {
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
mVsyncSchedule.controller->startPeriodTransition(period);
|
|
|
|
if (!mPrimaryHWVsyncEnabled) {
|
|
mVsyncSchedule.tracker->resetModel();
|
|
mSchedulerCallback.setVsyncEnabled(true);
|
|
mPrimaryHWVsyncEnabled = true;
|
|
}
|
|
}
|
|
|
|
void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
|
|
bool* periodFlushed) {
|
|
bool needsHwVsync = false;
|
|
*periodFlushed = false;
|
|
{ // Scope for the lock
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (mPrimaryHWVsyncEnabled) {
|
|
needsHwVsync = mVsyncSchedule.controller->addHwVsyncTimestamp(timestamp, hwcVsyncPeriod,
|
|
periodFlushed);
|
|
}
|
|
}
|
|
|
|
if (needsHwVsync) {
|
|
enableHardwareVsync();
|
|
} else {
|
|
disableHardwareVsync(false);
|
|
}
|
|
}
|
|
|
|
void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
|
|
if (mVsyncSchedule.controller->addPresentFence(fenceTime)) {
|
|
enableHardwareVsync();
|
|
} else {
|
|
disableHardwareVsync(false);
|
|
}
|
|
}
|
|
|
|
void Scheduler::setIgnorePresentFences(bool ignore) {
|
|
mVsyncSchedule.controller->setIgnorePresentFences(ignore);
|
|
}
|
|
|
|
void Scheduler::registerLayer(Layer* layer) {
|
|
scheduler::LayerHistory::LayerVoteType voteType;
|
|
|
|
if (!mOptions.useContentDetection ||
|
|
layer->getWindowType() == InputWindowInfo::Type::STATUS_BAR) {
|
|
voteType = scheduler::LayerHistory::LayerVoteType::NoVote;
|
|
} else if (layer->getWindowType() == InputWindowInfo::Type::WALLPAPER) {
|
|
// Running Wallpaper at Min is considered as part of content detection.
|
|
voteType = scheduler::LayerHistory::LayerVoteType::Min;
|
|
} else {
|
|
voteType = scheduler::LayerHistory::LayerVoteType::Heuristic;
|
|
}
|
|
|
|
// If the content detection feature is off, we still keep the layer history,
|
|
// since we use it for other features (like Frame Rate API), so layers
|
|
// still need to be registered.
|
|
mLayerHistory->registerLayer(layer, voteType);
|
|
}
|
|
|
|
void Scheduler::deregisterLayer(Layer* layer) {
|
|
mLayerHistory->deregisterLayer(layer);
|
|
}
|
|
|
|
void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
|
|
LayerHistory::LayerUpdateType updateType) {
|
|
if (mRefreshRateConfigs.canSwitch()) {
|
|
mLayerHistory->record(layer, presentTime, systemTime(), updateType);
|
|
}
|
|
}
|
|
|
|
void Scheduler::setModeChangePending(bool pending) {
|
|
mLayerHistory->setModeChangePending(pending);
|
|
}
|
|
|
|
void Scheduler::chooseRefreshRateForContent() {
|
|
if (!mRefreshRateConfigs.canSwitch()) return;
|
|
|
|
ATRACE_CALL();
|
|
|
|
scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime());
|
|
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
|
|
DisplayModeId newModeId;
|
|
bool frameRateChanged;
|
|
bool frameRateOverridesChanged;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mFeatureStateLock);
|
|
mFeatures.contentRequirements = summary;
|
|
|
|
newModeId = calculateRefreshRateModeId(&consideredSignals);
|
|
auto newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId);
|
|
frameRateOverridesChanged =
|
|
updateFrameRateOverrides(consideredSignals, newRefreshRate.getFps());
|
|
|
|
if (mFeatures.modeId == newModeId) {
|
|
// We don't need to change the display mode, but we might need to send an event
|
|
// about a mode change, since it was suppressed due to a previous idleConsidered
|
|
if (!consideredSignals.idle) {
|
|
dispatchCachedReportedMode();
|
|
}
|
|
frameRateChanged = false;
|
|
} else {
|
|
mFeatures.modeId = newModeId;
|
|
frameRateChanged = true;
|
|
}
|
|
}
|
|
if (frameRateChanged) {
|
|
auto newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId);
|
|
mSchedulerCallback.changeRefreshRate(newRefreshRate,
|
|
consideredSignals.idle ? ModeEvent::None
|
|
: ModeEvent::Changed);
|
|
}
|
|
if (frameRateOverridesChanged) {
|
|
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
|
|
}
|
|
}
|
|
|
|
void Scheduler::resetIdleTimer() {
|
|
if (mIdleTimer) {
|
|
mIdleTimer->reset();
|
|
}
|
|
}
|
|
|
|
void Scheduler::notifyTouchEvent() {
|
|
if (mTouchTimer) {
|
|
mTouchTimer->reset();
|
|
|
|
if (mOptions.supportKernelTimer && mIdleTimer) {
|
|
mIdleTimer->reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Scheduler::setDisplayPowerState(bool normal) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mFeatureStateLock);
|
|
mFeatures.isDisplayPowerStateNormal = normal;
|
|
}
|
|
|
|
if (mDisplayPowerTimer) {
|
|
mDisplayPowerTimer->reset();
|
|
}
|
|
|
|
// Display Power event will boost the refresh rate to performance.
|
|
// Clear Layer History to get fresh FPS detection
|
|
mLayerHistory->clear();
|
|
}
|
|
|
|
void Scheduler::kernelIdleTimerCallback(TimerState state) {
|
|
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
|
|
|
|
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
|
|
// magic number
|
|
const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate();
|
|
constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER{65.0f};
|
|
if (state == TimerState::Reset &&
|
|
refreshRate.getFps().greaterThanWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) {
|
|
// If we're not in performance mode then the kernel timer shouldn't do
|
|
// anything, as the refresh rate during DPU power collapse will be the
|
|
// same.
|
|
resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod());
|
|
} else if (state == TimerState::Expired &&
|
|
refreshRate.getFps().lessThanOrEqualWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) {
|
|
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
|
|
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
|
|
// need to update the VsyncController model anyway.
|
|
disableHardwareVsync(false /* makeUnavailable */);
|
|
}
|
|
|
|
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
|
|
}
|
|
|
|
void Scheduler::idleTimerCallback(TimerState state) {
|
|
handleTimerStateChanged(&mFeatures.idleTimer, state);
|
|
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
|
|
}
|
|
|
|
void Scheduler::touchTimerCallback(TimerState state) {
|
|
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
|
|
// Touch event will boost the refresh rate to performance.
|
|
// Clear layer history to get fresh FPS detection.
|
|
// NOTE: Instead of checking all the layers, we should be checking the layer
|
|
// that is currently on top. b/142507166 will give us this capability.
|
|
if (handleTimerStateChanged(&mFeatures.touch, touch)) {
|
|
mLayerHistory->clear();
|
|
}
|
|
ATRACE_INT("TouchState", static_cast<int>(touch));
|
|
}
|
|
|
|
void Scheduler::displayPowerTimerCallback(TimerState state) {
|
|
handleTimerStateChanged(&mFeatures.displayPowerTimer, state);
|
|
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
|
|
}
|
|
|
|
void Scheduler::dump(std::string& result) const {
|
|
using base::StringAppendF;
|
|
|
|
StringAppendF(&result, "+ Idle timer: %s\n", mIdleTimer ? mIdleTimer->dump().c_str() : "off");
|
|
StringAppendF(&result, "+ Touch timer: %s\n",
|
|
mTouchTimer ? mTouchTimer->dump().c_str() : "off");
|
|
StringAppendF(&result, "+ Content detection: %s %s\n\n",
|
|
toContentDetectionString(mOptions.useContentDetection),
|
|
mLayerHistory ? mLayerHistory->dump().c_str() : "(no layer history)");
|
|
|
|
{
|
|
std::lock_guard lock(mFrameRateOverridesMutex);
|
|
StringAppendF(&result, "Frame Rate Overrides (backdoor): {");
|
|
for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) {
|
|
StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
|
|
}
|
|
StringAppendF(&result, "}\n");
|
|
|
|
StringAppendF(&result, "Frame Rate Overrides (setFrameRate): {");
|
|
for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) {
|
|
StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
|
|
}
|
|
StringAppendF(&result, "}\n");
|
|
}
|
|
}
|
|
|
|
void Scheduler::dumpVsync(std::string& s) const {
|
|
using base::StringAppendF;
|
|
|
|
StringAppendF(&s, "VSyncReactor:\n");
|
|
mVsyncSchedule.controller->dump(s);
|
|
StringAppendF(&s, "VSyncDispatch:\n");
|
|
mVsyncSchedule.dispatch->dump(s);
|
|
}
|
|
|
|
bool Scheduler::updateFrameRateOverrides(
|
|
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals, Fps displayRefreshRate) {
|
|
if (!mRefreshRateConfigs.supportsFrameRateOverride()) {
|
|
return false;
|
|
}
|
|
|
|
if (!consideredSignals.idle) {
|
|
const auto frameRateOverrides =
|
|
mRefreshRateConfigs.getFrameRateOverrides(mFeatures.contentRequirements,
|
|
displayRefreshRate,
|
|
consideredSignals.touch);
|
|
std::lock_guard lock(mFrameRateOverridesMutex);
|
|
if (!std::equal(mFrameRateOverridesByContent.begin(), mFrameRateOverridesByContent.end(),
|
|
frameRateOverrides.begin(), frameRateOverrides.end(),
|
|
[](const std::pair<uid_t, Fps>& a, const std::pair<uid_t, Fps>& b) {
|
|
return a.first == b.first && a.second.equalsWithMargin(b.second);
|
|
})) {
|
|
mFrameRateOverridesByContent = frameRateOverrides;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <class T>
|
|
bool Scheduler::handleTimerStateChanged(T* currentState, T newState) {
|
|
DisplayModeId newModeId;
|
|
bool refreshRateChanged = false;
|
|
bool frameRateOverridesChanged;
|
|
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mFeatureStateLock);
|
|
if (*currentState == newState) {
|
|
return false;
|
|
}
|
|
*currentState = newState;
|
|
newModeId = calculateRefreshRateModeId(&consideredSignals);
|
|
const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId);
|
|
frameRateOverridesChanged =
|
|
updateFrameRateOverrides(consideredSignals, newRefreshRate.getFps());
|
|
if (mFeatures.modeId == newModeId) {
|
|
// We don't need to change the display mode, but we might need to send an event
|
|
// about a mode change, since it was suppressed due to a previous idleConsidered
|
|
if (!consideredSignals.idle) {
|
|
dispatchCachedReportedMode();
|
|
}
|
|
} else {
|
|
mFeatures.modeId = newModeId;
|
|
refreshRateChanged = true;
|
|
}
|
|
}
|
|
if (refreshRateChanged) {
|
|
const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId);
|
|
|
|
mSchedulerCallback.changeRefreshRate(newRefreshRate,
|
|
consideredSignals.idle ? ModeEvent::None
|
|
: ModeEvent::Changed);
|
|
}
|
|
if (frameRateOverridesChanged) {
|
|
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
|
|
}
|
|
return consideredSignals.touch;
|
|
}
|
|
|
|
DisplayModeId Scheduler::calculateRefreshRateModeId(
|
|
scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) {
|
|
ATRACE_CALL();
|
|
if (consideredSignals) *consideredSignals = {};
|
|
|
|
// If Display Power is not in normal operation we want to be in performance mode. When coming
|
|
// back to normal mode, a grace period is given with DisplayPowerTimer.
|
|
if (mDisplayPowerTimer &&
|
|
(!mFeatures.isDisplayPowerStateNormal ||
|
|
mFeatures.displayPowerTimer == TimerState::Reset)) {
|
|
return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getModeId();
|
|
}
|
|
|
|
const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active;
|
|
const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired;
|
|
|
|
return mRefreshRateConfigs
|
|
.getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle},
|
|
consideredSignals)
|
|
.getModeId();
|
|
}
|
|
|
|
std::optional<DisplayModeId> Scheduler::getPreferredModeId() {
|
|
std::lock_guard<std::mutex> lock(mFeatureStateLock);
|
|
// Make sure that the default mode ID is first updated, before returned.
|
|
if (mFeatures.modeId.has_value()) {
|
|
mFeatures.modeId = calculateRefreshRateModeId();
|
|
}
|
|
return mFeatures.modeId;
|
|
}
|
|
|
|
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
|
|
if (timeline.refreshRequired) {
|
|
mSchedulerCallback.repaintEverythingForHWC();
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
|
|
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
|
|
|
|
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
|
|
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
|
|
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
|
|
}
|
|
}
|
|
|
|
void Scheduler::onDisplayRefreshed(nsecs_t timestamp) {
|
|
bool callRepaint = false;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
|
|
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
|
|
if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) {
|
|
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
|
|
} else {
|
|
// We need to send another refresh as refreshTimeNanos is still in the future
|
|
callRepaint = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (callRepaint) {
|
|
mSchedulerCallback.repaintEverythingForHWC();
|
|
}
|
|
}
|
|
|
|
void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) {
|
|
mLayerHistory->setDisplayArea(displayArea);
|
|
}
|
|
|
|
void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
|
|
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
|
|
return;
|
|
}
|
|
|
|
std::lock_guard lock(mFrameRateOverridesMutex);
|
|
if (frameRateOverride.frameRateHz != 0.f) {
|
|
mFrameRateOverridesFromBackdoor[frameRateOverride.uid] = Fps(frameRateOverride.frameRateHz);
|
|
} else {
|
|
mFrameRateOverridesFromBackdoor.erase(frameRateOverride.uid);
|
|
}
|
|
}
|
|
|
|
std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom(
|
|
nsecs_t expectedPresentTime) const {
|
|
const auto presentTime = std::chrono::nanoseconds(expectedPresentTime);
|
|
const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule.tracker->currentPeriod());
|
|
return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod);
|
|
}
|
|
|
|
} // namespace android
|