You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

334 lines
15 KiB

/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "CompositionTest"
#include <compositionengine/Display.h>
#include <compositionengine/mock/DisplaySurface.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <gui/SurfaceComposerClient.h>
#include <log/log.h>
#include <utils/String8.h>
#include "TestableScheduler.h"
#include "TestableSurfaceFlinger.h"
#include "mock/MockEventThread.h"
#include "mock/MockMessageQueue.h"
#include "mock/MockVsyncController.h"
namespace android {
using testing::_;
using testing::Return;
using FakeHwcDisplayInjector = TestableSurfaceFlinger::FakeHwcDisplayInjector;
class TransactionApplicationTest : public testing::Test {
public:
TransactionApplicationTest() {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGD("**** Setting up for %s.%s\n", test_info->test_case_name(), test_info->name());
mFlinger.mutableEventQueue().reset(mMessageQueue);
setupScheduler();
}
~TransactionApplicationTest() {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGD("**** Tearing down after %s.%s\n", test_info->test_case_name(), test_info->name());
}
void setupScheduler() {
auto eventThread = std::make_unique<mock::EventThread>();
auto sfEventThread = std::make_unique<mock::EventThread>();
EXPECT_CALL(*eventThread, registerDisplayEventConnection(_));
EXPECT_CALL(*eventThread, createEventConnection(_, _))
.WillOnce(Return(new EventThreadConnection(eventThread.get(), /*callingUid=*/0,
ResyncCallback())));
EXPECT_CALL(*sfEventThread, registerDisplayEventConnection(_));
EXPECT_CALL(*sfEventThread, createEventConnection(_, _))
.WillOnce(Return(new EventThreadConnection(sfEventThread.get(), /*callingUid=*/0,
ResyncCallback())));
EXPECT_CALL(*mVSyncTracker, nextAnticipatedVSyncTimeFrom(_)).WillRepeatedly(Return(0));
EXPECT_CALL(*mVSyncTracker, currentPeriod())
.WillRepeatedly(Return(FakeHwcDisplayInjector::DEFAULT_VSYNC_PERIOD));
mFlinger.setupScheduler(std::unique_ptr<mock::VsyncController>(mVsyncController),
std::unique_ptr<mock::VSyncTracker>(mVSyncTracker),
std::move(eventThread), std::move(sfEventThread));
}
TestableScheduler* mScheduler;
TestableSurfaceFlinger mFlinger;
std::unique_ptr<mock::EventThread> mEventThread = std::make_unique<mock::EventThread>();
mock::MessageQueue* mMessageQueue = new mock::MessageQueue();
mock::VsyncController* mVsyncController = new mock::VsyncController();
mock::VSyncTracker* mVSyncTracker = new mock::VSyncTracker();
struct TransactionInfo {
Vector<ComposerState> states;
Vector<DisplayState> displays;
uint32_t flags = 0;
sp<IBinder> applyToken = IInterface::asBinder(TransactionCompletedListener::getIInstance());
InputWindowCommands inputWindowCommands;
int64_t desiredPresentTime = 0;
bool isAutoTimestamp = true;
FrameTimelineInfo frameTimelineInfo;
client_cache_t uncacheBuffer;
uint64_t id = static_cast<uint64_t>(-1);
static_assert(0xffffffffffffffff == static_cast<uint64_t>(-1));
};
void checkEqual(TransactionInfo info, SurfaceFlinger::TransactionState state) {
EXPECT_EQ(0u, info.states.size());
EXPECT_EQ(0u, state.states.size());
EXPECT_EQ(0u, info.displays.size());
EXPECT_EQ(0u, state.displays.size());
EXPECT_EQ(info.flags, state.flags);
EXPECT_EQ(info.desiredPresentTime, state.desiredPresentTime);
}
void setupSingle(TransactionInfo& transaction, uint32_t flags, bool syncInputWindows,
int64_t desiredPresentTime, bool isAutoTimestamp,
const FrameTimelineInfo& frameTimelineInfo) {
mTransactionNumber++;
transaction.flags |= flags; // ISurfaceComposer::eSynchronous;
transaction.inputWindowCommands.syncInputWindows = syncInputWindows;
transaction.desiredPresentTime = desiredPresentTime;
transaction.isAutoTimestamp = isAutoTimestamp;
transaction.frameTimelineInfo = frameTimelineInfo;
}
void NotPlacedOnTransactionQueue(uint32_t flags, bool syncInputWindows) {
ASSERT_EQ(0u, mFlinger.getTransactionQueue().size());
// called in SurfaceFlinger::signalTransaction
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
TransactionInfo transaction;
setupSingle(transaction, flags, syncInputWindows,
/*desiredPresentTime*/ systemTime(), /*isAutoTimestamp*/ true,
FrameTimelineInfo{});
nsecs_t applicationTime = systemTime();
mFlinger.setTransactionState(transaction.frameTimelineInfo, transaction.states,
transaction.displays, transaction.flags,
transaction.applyToken, transaction.inputWindowCommands,
transaction.desiredPresentTime, transaction.isAutoTimestamp,
transaction.uncacheBuffer, mHasListenerCallbacks, mCallbacks,
transaction.id);
// If transaction is synchronous or syncs input windows, SF
// applyTransactionState should time out (5s) wating for SF to commit
// the transaction or to receive a signal that syncInputWindows has
// completed. If this is animation, it should not time out waiting.
nsecs_t returnedTime = systemTime();
if (flags & ISurfaceComposer::eSynchronous || syncInputWindows) {
EXPECT_GE(returnedTime, applicationTime + s2ns(5));
} else {
EXPECT_LE(returnedTime, applicationTime + s2ns(5));
}
// Each transaction should have been placed on the transaction queue
auto transactionQueue = mFlinger.getTransactionQueue();
EXPECT_EQ(1u, transactionQueue.size());
}
void PlaceOnTransactionQueue(uint32_t flags, bool syncInputWindows) {
ASSERT_EQ(0u, mFlinger.getTransactionQueue().size());
// called in SurfaceFlinger::signalTransaction
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
// first check will see desired present time has not passed,
// but afterwards it will look like the desired present time has passed
nsecs_t time = systemTime();
TransactionInfo transaction;
setupSingle(transaction, flags, syncInputWindows,
/*desiredPresentTime*/ time + s2ns(1), false, FrameTimelineInfo{});
nsecs_t applicationSentTime = systemTime();
mFlinger.setTransactionState(transaction.frameTimelineInfo, transaction.states,
transaction.displays, transaction.flags,
transaction.applyToken, transaction.inputWindowCommands,
transaction.desiredPresentTime, transaction.isAutoTimestamp,
transaction.uncacheBuffer, mHasListenerCallbacks, mCallbacks,
transaction.id);
nsecs_t returnedTime = systemTime();
if ((flags & ISurfaceComposer::eSynchronous) || syncInputWindows) {
EXPECT_GE(systemTime(), applicationSentTime + s2ns(5));
} else {
EXPECT_LE(returnedTime, applicationSentTime + s2ns(5));
}
// This transaction should have been placed on the transaction queue
auto transactionQueue = mFlinger.getTransactionQueue();
EXPECT_EQ(1u, transactionQueue.size());
}
void BlockedByPriorTransaction(uint32_t flags, bool syncInputWindows) {
ASSERT_EQ(0u, mFlinger.getTransactionQueue().size());
// called in SurfaceFlinger::signalTransaction
nsecs_t time = systemTime();
if (!syncInputWindows) {
EXPECT_CALL(*mMessageQueue, invalidate()).Times(2);
} else {
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
}
// transaction that should go on the pending thread
TransactionInfo transactionA;
setupSingle(transactionA, /*flags*/ 0, /*syncInputWindows*/ false,
/*desiredPresentTime*/ time + s2ns(1), false, FrameTimelineInfo{});
// transaction that would not have gone on the pending thread if not
// blocked
TransactionInfo transactionB;
setupSingle(transactionB, flags, syncInputWindows,
/*desiredPresentTime*/ systemTime(), /*isAutoTimestamp*/ true,
FrameTimelineInfo{});
nsecs_t applicationSentTime = systemTime();
mFlinger.setTransactionState(transactionA.frameTimelineInfo, transactionA.states,
transactionA.displays, transactionA.flags,
transactionA.applyToken, transactionA.inputWindowCommands,
transactionA.desiredPresentTime, transactionA.isAutoTimestamp,
transactionA.uncacheBuffer, mHasListenerCallbacks, mCallbacks,
transactionA.id);
// This thread should not have been blocked by the above transaction
// (5s is the timeout period that applyTransactionState waits for SF to
// commit the transaction)
EXPECT_LE(systemTime(), applicationSentTime + s2ns(5));
// transaction that would goes to pending transaciton queue.
mFlinger.flushTransactionQueues();
applicationSentTime = systemTime();
mFlinger.setTransactionState(transactionB.frameTimelineInfo, transactionB.states,
transactionB.displays, transactionB.flags,
transactionB.applyToken, transactionB.inputWindowCommands,
transactionB.desiredPresentTime, transactionB.isAutoTimestamp,
transactionB.uncacheBuffer, mHasListenerCallbacks, mCallbacks,
transactionB.id);
// this thread should have been blocked by the above transaction
// if this is an animation, this thread should be blocked for 5s
// in setTransactionState waiting for transactionA to flush. Otherwise,
// the transaction should be placed on the pending queue
if (flags & (ISurfaceComposer::eAnimation | ISurfaceComposer::eSynchronous) ||
syncInputWindows) {
EXPECT_GE(systemTime(), applicationSentTime + s2ns(5));
} else {
EXPECT_LE(systemTime(), applicationSentTime + s2ns(5));
}
// transaction that would goes to pending transaciton queue.
mFlinger.flushTransactionQueues();
// check that the transaction was applied.
auto transactionQueue = mFlinger.getPendingTransactionQueue();
EXPECT_EQ(0u, transactionQueue.size());
}
bool mHasListenerCallbacks = false;
std::vector<ListenerCallbacks> mCallbacks;
int mTransactionNumber = 0;
};
TEST_F(TransactionApplicationTest, Flush_RemovesFromQueue) {
ASSERT_EQ(0u, mFlinger.getTransactionQueue().size());
// called in SurfaceFlinger::signalTransaction
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
TransactionInfo transactionA; // transaction to go on pending queue
setupSingle(transactionA, /*flags*/ 0, /*syncInputWindows*/ false,
/*desiredPresentTime*/ s2ns(1), false, FrameTimelineInfo{});
mFlinger.setTransactionState(transactionA.frameTimelineInfo, transactionA.states,
transactionA.displays, transactionA.flags, transactionA.applyToken,
transactionA.inputWindowCommands, transactionA.desiredPresentTime,
transactionA.isAutoTimestamp, transactionA.uncacheBuffer,
mHasListenerCallbacks, mCallbacks, transactionA.id);
auto& transactionQueue = mFlinger.getTransactionQueue();
ASSERT_EQ(1u, transactionQueue.size());
auto& transactionState = transactionQueue.front();
checkEqual(transactionA, transactionState);
// because flushing uses the cached expected present time, we send an empty
// transaction here (sending a null applyToken to fake it as from a
// different process) to re-query and reset the cached expected present time
TransactionInfo empty;
empty.applyToken = sp<IBinder>();
mFlinger.setTransactionState(empty.frameTimelineInfo, empty.states, empty.displays, empty.flags,
empty.applyToken, empty.inputWindowCommands,
empty.desiredPresentTime, empty.isAutoTimestamp,
empty.uncacheBuffer, mHasListenerCallbacks, mCallbacks, empty.id);
// flush transaction queue should flush as desiredPresentTime has
// passed
mFlinger.flushTransactionQueues();
EXPECT_EQ(0u, transactionQueue.size());
}
TEST_F(TransactionApplicationTest, NotPlacedOnTransactionQueue_Synchronous) {
NotPlacedOnTransactionQueue(ISurfaceComposer::eSynchronous, /*syncInputWindows*/ false);
}
TEST_F(TransactionApplicationTest, NotPlacedOnTransactionQueue_Animation) {
NotPlacedOnTransactionQueue(ISurfaceComposer::eAnimation, /*syncInputWindows*/ false);
}
TEST_F(TransactionApplicationTest, NotPlacedOnTransactionQueue_SyncInputWindows) {
NotPlacedOnTransactionQueue(/*flags*/ 0, /*syncInputWindows*/ true);
}
TEST_F(TransactionApplicationTest, PlaceOnTransactionQueue_Synchronous) {
PlaceOnTransactionQueue(ISurfaceComposer::eSynchronous, /*syncInputWindows*/ false);
}
TEST_F(TransactionApplicationTest, PlaceOnTransactionQueue_Animation) {
PlaceOnTransactionQueue(ISurfaceComposer::eAnimation, /*syncInputWindows*/ false);
}
TEST_F(TransactionApplicationTest, PlaceOnTransactionQueue_SyncInputWindows) {
PlaceOnTransactionQueue(/*flags*/ 0, /*syncInputWindows*/ true);
}
TEST_F(TransactionApplicationTest, BlockWithPriorTransaction_Synchronous) {
BlockedByPriorTransaction(ISurfaceComposer::eSynchronous, /*syncInputWindows*/ false);
}
TEST_F(TransactionApplicationTest, BlockWithPriorTransaction_Animation) {
BlockedByPriorTransaction(ISurfaceComposer::eSynchronous, /*syncInputWindows*/ false);
}
TEST_F(TransactionApplicationTest, BlockWithPriorTransaction_SyncInputWindows) {
BlockedByPriorTransaction(/*flags*/ 0, /*syncInputWindows*/ true);
}
TEST_F(TransactionApplicationTest, FromHandle) {
sp<IBinder> badHandle;
auto ret = mFlinger.fromHandle(badHandle);
EXPECT_EQ(nullptr, ret.promote().get());
}
} // namespace android