You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1649 lines
66 KiB
1649 lines
66 KiB
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
//#define LOG_NDEBUG 0
|
|
//#define LOG_NNDEBUG 0
|
|
#define LOG_TAG "EmulatedSensor"
|
|
#define ATRACE_TAG ATRACE_TAG_CAMERA
|
|
|
|
#ifdef LOG_NNDEBUG
|
|
#define ALOGVV(...) ALOGV(__VA_ARGS__)
|
|
#else
|
|
#define ALOGVV(...) ((void)0)
|
|
#endif
|
|
|
|
#include "EmulatedSensor.h"
|
|
|
|
#include <cutils/properties.h>
|
|
#include <inttypes.h>
|
|
#include <libyuv.h>
|
|
#include <system/camera_metadata.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
#include "utils/ExifUtils.h"
|
|
#include "utils/HWLUtils.h"
|
|
|
|
namespace android {
|
|
|
|
using google_camera_hal::HalCameraMetadata;
|
|
using google_camera_hal::MessageType;
|
|
using google_camera_hal::NotifyMessage;
|
|
|
|
const uint32_t EmulatedSensor::kRegularSceneHandshake = 1; // Scene handshake divider
|
|
const uint32_t EmulatedSensor::kReducedSceneHandshake = 2; // Scene handshake divider
|
|
|
|
// 1 us - 30 sec
|
|
const nsecs_t EmulatedSensor::kSupportedExposureTimeRange[2] = {1000LL,
|
|
30000000000LL};
|
|
|
|
// ~1/30 s - 30 sec
|
|
const nsecs_t EmulatedSensor::kSupportedFrameDurationRange[2] = {33331760LL,
|
|
30000000000LL};
|
|
|
|
const int32_t EmulatedSensor::kSupportedSensitivityRange[2] = {100, 1600};
|
|
const int32_t EmulatedSensor::kDefaultSensitivity = 100; // ISO
|
|
const nsecs_t EmulatedSensor::kDefaultExposureTime = ms2ns(15);
|
|
const nsecs_t EmulatedSensor::kDefaultFrameDuration = ms2ns(33);
|
|
// Deadline within we should return the results as soon as possible to
|
|
// avoid skewing the frame cycle due to external delays.
|
|
const nsecs_t EmulatedSensor::kReturnResultThreshod = 3 * kDefaultFrameDuration;
|
|
|
|
// Sensor defaults
|
|
const uint8_t EmulatedSensor::kSupportedColorFilterArrangement =
|
|
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_RGGB;
|
|
const uint32_t EmulatedSensor::kDefaultMaxRawValue = 4000;
|
|
const uint32_t EmulatedSensor::kDefaultBlackLevelPattern[4] = {1000, 1000, 1000,
|
|
1000};
|
|
|
|
const nsecs_t EmulatedSensor::kMinVerticalBlank = 10000L;
|
|
|
|
// Sensor sensitivity
|
|
const float EmulatedSensor::kSaturationVoltage = 0.520f;
|
|
const uint32_t EmulatedSensor::kSaturationElectrons = 2000;
|
|
const float EmulatedSensor::kVoltsPerLuxSecond = 0.100f;
|
|
|
|
const float EmulatedSensor::kElectronsPerLuxSecond =
|
|
EmulatedSensor::kSaturationElectrons / EmulatedSensor::kSaturationVoltage *
|
|
EmulatedSensor::kVoltsPerLuxSecond;
|
|
|
|
const float EmulatedSensor::kReadNoiseStddevBeforeGain = 1.177; // in electrons
|
|
const float EmulatedSensor::kReadNoiseStddevAfterGain =
|
|
2.100; // in digital counts
|
|
const float EmulatedSensor::kReadNoiseVarBeforeGain =
|
|
EmulatedSensor::kReadNoiseStddevBeforeGain *
|
|
EmulatedSensor::kReadNoiseStddevBeforeGain;
|
|
const float EmulatedSensor::kReadNoiseVarAfterGain =
|
|
EmulatedSensor::kReadNoiseStddevAfterGain *
|
|
EmulatedSensor::kReadNoiseStddevAfterGain;
|
|
|
|
const uint32_t EmulatedSensor::kMaxRAWStreams = 1;
|
|
const uint32_t EmulatedSensor::kMaxProcessedStreams = 3;
|
|
const uint32_t EmulatedSensor::kMaxStallingStreams = 2;
|
|
const uint32_t EmulatedSensor::kMaxInputStreams = 1;
|
|
|
|
const uint32_t EmulatedSensor::kMaxLensShadingMapSize[2]{64, 64};
|
|
const int32_t EmulatedSensor::kFixedBitPrecision = 64; // 6-bit
|
|
// In fixed-point math, saturation point of sensor after gain
|
|
const int32_t EmulatedSensor::kSaturationPoint = kFixedBitPrecision * 255;
|
|
const camera_metadata_rational EmulatedSensor::kNeutralColorPoint[3] = {
|
|
{255, 1}, {255, 1}, {255, 1}};
|
|
const float EmulatedSensor::kGreenSplit = 1.f; // No divergence
|
|
// Reduce memory usage by allowing only one buffer in sensor, one in jpeg
|
|
// compressor and one pending request to avoid stalls.
|
|
const uint8_t EmulatedSensor::kPipelineDepth = 3;
|
|
|
|
const camera_metadata_rational EmulatedSensor::kDefaultColorTransform[9] = {
|
|
{1, 1}, {0, 1}, {0, 1}, {0, 1}, {1, 1}, {0, 1}, {0, 1}, {0, 1}, {1, 1}};
|
|
const float EmulatedSensor::kDefaultColorCorrectionGains[4] = {1.0f, 1.0f, 1.0f,
|
|
1.0f};
|
|
|
|
const float EmulatedSensor::kDefaultToneMapCurveRed[4] = {.0f, .0f, 1.f, 1.f};
|
|
const float EmulatedSensor::kDefaultToneMapCurveGreen[4] = {.0f, .0f, 1.f, 1.f};
|
|
const float EmulatedSensor::kDefaultToneMapCurveBlue[4] = {.0f, .0f, 1.f, 1.f};
|
|
|
|
/** A few utility functions for math, normal distributions */
|
|
|
|
// Take advantage of IEEE floating-point format to calculate an approximate
|
|
// square root. Accurate to within +-3.6%
|
|
float sqrtf_approx(float r) {
|
|
// Modifier is based on IEEE floating-point representation; the
|
|
// manipulations boil down to finding approximate log2, dividing by two, and
|
|
// then inverting the log2. A bias is added to make the relative error
|
|
// symmetric about the real answer.
|
|
const int32_t modifier = 0x1FBB4000;
|
|
|
|
int32_t r_i = *(int32_t*)(&r);
|
|
r_i = (r_i >> 1) + modifier;
|
|
|
|
return *(float*)(&r_i);
|
|
}
|
|
|
|
EmulatedSensor::EmulatedSensor() : Thread(false), got_vsync_(false) {
|
|
gamma_table_.resize(kSaturationPoint + 1);
|
|
for (int32_t i = 0; i <= kSaturationPoint; i++) {
|
|
gamma_table_[i] = ApplysRGBGamma(i, kSaturationPoint);
|
|
}
|
|
}
|
|
|
|
EmulatedSensor::~EmulatedSensor() {
|
|
ShutDown();
|
|
}
|
|
|
|
bool EmulatedSensor::AreCharacteristicsSupported(
|
|
const SensorCharacteristics& characteristics) {
|
|
if ((characteristics.width == 0) || (characteristics.height == 0)) {
|
|
ALOGE("%s: Invalid sensor size %zux%zu", __FUNCTION__,
|
|
characteristics.width, characteristics.height);
|
|
return false;
|
|
}
|
|
|
|
if ((characteristics.full_res_width == 0) ||
|
|
(characteristics.full_res_height == 0)) {
|
|
ALOGE("%s: Invalid sensor full res size %zux%zu", __FUNCTION__,
|
|
characteristics.full_res_width, characteristics.full_res_height);
|
|
return false;
|
|
}
|
|
|
|
if ((characteristics.exposure_time_range[0] >=
|
|
characteristics.exposure_time_range[1]) ||
|
|
((characteristics.exposure_time_range[0] < kSupportedExposureTimeRange[0]) ||
|
|
(characteristics.exposure_time_range[1] >
|
|
kSupportedExposureTimeRange[1]))) {
|
|
ALOGE("%s: Unsupported exposure range", __FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
if ((characteristics.frame_duration_range[0] >=
|
|
characteristics.frame_duration_range[1]) ||
|
|
((characteristics.frame_duration_range[0] <
|
|
kSupportedFrameDurationRange[0]) ||
|
|
(characteristics.frame_duration_range[1] >
|
|
kSupportedFrameDurationRange[1]))) {
|
|
ALOGE("%s: Unsupported frame duration range", __FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
if ((characteristics.sensitivity_range[0] >=
|
|
characteristics.sensitivity_range[1]) ||
|
|
((characteristics.sensitivity_range[0] < kSupportedSensitivityRange[0]) ||
|
|
(characteristics.sensitivity_range[1] > kSupportedSensitivityRange[1])) ||
|
|
(!((kDefaultSensitivity >= characteristics.sensitivity_range[0]) &&
|
|
(kDefaultSensitivity <= characteristics.sensitivity_range[1])))) {
|
|
ALOGE("%s: Unsupported sensitivity range", __FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
if (characteristics.color_arangement != kSupportedColorFilterArrangement) {
|
|
ALOGE("%s: Unsupported color arrangement!", __FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
for (const auto& blackLevel : characteristics.black_level_pattern) {
|
|
if (blackLevel >= characteristics.max_raw_value) {
|
|
ALOGE("%s: Black level matches or exceeds max RAW value!", __FUNCTION__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if ((characteristics.frame_duration_range[0] / characteristics.height) == 0) {
|
|
ALOGE("%s: Zero row readout time!", __FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
if (characteristics.max_raw_streams > kMaxRAWStreams) {
|
|
ALOGE("%s: RAW streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, characteristics.max_raw_streams, kMaxRAWStreams);
|
|
return false;
|
|
}
|
|
|
|
if (characteristics.max_processed_streams > kMaxProcessedStreams) {
|
|
ALOGE("%s: Processed streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, characteristics.max_processed_streams,
|
|
kMaxProcessedStreams);
|
|
return false;
|
|
}
|
|
|
|
if (characteristics.max_stalling_streams > kMaxStallingStreams) {
|
|
ALOGE("%s: Stalling streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, characteristics.max_stalling_streams,
|
|
kMaxStallingStreams);
|
|
return false;
|
|
}
|
|
|
|
if (characteristics.max_input_streams > kMaxInputStreams) {
|
|
ALOGE("%s: Input streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, characteristics.max_input_streams, kMaxInputStreams);
|
|
return false;
|
|
}
|
|
|
|
if ((characteristics.lens_shading_map_size[0] > kMaxLensShadingMapSize[0]) ||
|
|
(characteristics.lens_shading_map_size[1] > kMaxLensShadingMapSize[1])) {
|
|
ALOGE("%s: Lens shading map [%dx%d] exceeds supprorted maximum [%dx%d]",
|
|
__FUNCTION__, characteristics.lens_shading_map_size[0],
|
|
characteristics.lens_shading_map_size[1], kMaxLensShadingMapSize[0],
|
|
kMaxLensShadingMapSize[1]);
|
|
return false;
|
|
}
|
|
|
|
if (characteristics.max_pipeline_depth < kPipelineDepth) {
|
|
ALOGE("%s: Pipeline depth %d smaller than supprorted minimum %d",
|
|
__FUNCTION__, characteristics.max_pipeline_depth, kPipelineDepth);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void SplitStreamCombination(
|
|
const StreamConfiguration& original_config,
|
|
StreamConfiguration* default_mode_config,
|
|
StreamConfiguration* max_resolution_mode_config,
|
|
StreamConfiguration* input_stream_config) {
|
|
// Go through the streams
|
|
if (default_mode_config == nullptr || max_resolution_mode_config == nullptr ||
|
|
input_stream_config == nullptr) {
|
|
ALOGE("%s: Input stream / output stream configs are nullptr", __FUNCTION__);
|
|
return;
|
|
}
|
|
for (const auto& stream : original_config.streams) {
|
|
if (stream.stream_type == google_camera_hal::StreamType::kInput) {
|
|
input_stream_config->streams.push_back(stream);
|
|
continue;
|
|
}
|
|
if (stream.used_in_default_resolution_mode) {
|
|
default_mode_config->streams.push_back(stream);
|
|
}
|
|
if (stream.used_in_max_resolution_mode) {
|
|
max_resolution_mode_config->streams.push_back(stream);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool EmulatedSensor::IsStreamCombinationSupported(
|
|
uint32_t logical_id, const StreamConfiguration& config,
|
|
StreamConfigurationMap& default_config_map,
|
|
StreamConfigurationMap& max_resolution_config_map,
|
|
const PhysicalStreamConfigurationMap& physical_map,
|
|
const PhysicalStreamConfigurationMap& physical_map_max_resolution,
|
|
const LogicalCharacteristics& sensor_chars) {
|
|
StreamConfiguration default_mode_config, max_resolution_mode_config,
|
|
input_stream_config;
|
|
SplitStreamCombination(config, &default_mode_config,
|
|
&max_resolution_mode_config, &input_stream_config);
|
|
|
|
return IsStreamCombinationSupported(logical_id, default_mode_config,
|
|
default_config_map, physical_map,
|
|
sensor_chars) &&
|
|
IsStreamCombinationSupported(
|
|
logical_id, max_resolution_mode_config, max_resolution_config_map,
|
|
physical_map_max_resolution, sensor_chars, /*is_max_res*/ true) &&
|
|
|
|
(IsStreamCombinationSupported(logical_id, input_stream_config,
|
|
default_config_map, physical_map,
|
|
sensor_chars) ||
|
|
IsStreamCombinationSupported(
|
|
logical_id, input_stream_config, max_resolution_config_map,
|
|
physical_map_max_resolution, sensor_chars, /*is_max_res*/ true));
|
|
}
|
|
|
|
bool EmulatedSensor::IsStreamCombinationSupported(
|
|
uint32_t logical_id, const StreamConfiguration& config,
|
|
StreamConfigurationMap& config_map,
|
|
const PhysicalStreamConfigurationMap& physical_map,
|
|
const LogicalCharacteristics& sensor_chars, bool is_max_res) {
|
|
uint32_t input_stream_count = 0;
|
|
// Map from physical camera id to number of streams for that physical camera
|
|
std::map<uint32_t, uint32_t> raw_stream_count;
|
|
std::map<uint32_t, uint32_t> processed_stream_count;
|
|
std::map<uint32_t, uint32_t> stalling_stream_count;
|
|
|
|
// Only allow the stream configurations specified in
|
|
// dynamicSizeStreamConfigurations.
|
|
for (const auto& stream : config.streams) {
|
|
bool is_dynamic_output =
|
|
(stream.is_physical_camera_stream && stream.group_id != -1);
|
|
if (stream.rotation != google_camera_hal::StreamRotation::kRotation0) {
|
|
ALOGE("%s: Stream rotation: 0x%x not supported!", __FUNCTION__,
|
|
stream.rotation);
|
|
return false;
|
|
}
|
|
|
|
if (stream.stream_type == google_camera_hal::StreamType::kInput) {
|
|
if (sensor_chars.at(logical_id).max_input_streams == 0) {
|
|
ALOGE("%s: Input streams are not supported on this device!",
|
|
__FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
auto const& supported_outputs =
|
|
config_map.GetValidOutputFormatsForInput(stream.format);
|
|
if (supported_outputs.empty()) {
|
|
ALOGE("%s: Input stream with format: 0x%x no supported on this device!",
|
|
__FUNCTION__, stream.format);
|
|
return false;
|
|
}
|
|
|
|
input_stream_count++;
|
|
} else {
|
|
if (stream.is_physical_camera_stream &&
|
|
physical_map.find(stream.physical_camera_id) == physical_map.end()) {
|
|
ALOGE("%s: Invalid physical camera id %d", __FUNCTION__,
|
|
stream.physical_camera_id);
|
|
return false;
|
|
}
|
|
|
|
if (is_dynamic_output) {
|
|
auto dynamic_physical_output_formats =
|
|
physical_map.at(stream.physical_camera_id)
|
|
->GetDynamicPhysicalStreamOutputFormats();
|
|
if (dynamic_physical_output_formats.find(stream.format) ==
|
|
dynamic_physical_output_formats.end()) {
|
|
ALOGE("%s: Unsupported physical stream format %d", __FUNCTION__,
|
|
stream.format);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
switch (stream.format) {
|
|
case HAL_PIXEL_FORMAT_BLOB:
|
|
if ((stream.data_space != HAL_DATASPACE_V0_JFIF) &&
|
|
(stream.data_space != HAL_DATASPACE_UNKNOWN)) {
|
|
ALOGE("%s: Unsupported Blob dataspace 0x%x", __FUNCTION__,
|
|
stream.data_space);
|
|
return false;
|
|
}
|
|
if (stream.is_physical_camera_stream) {
|
|
stalling_stream_count[stream.physical_camera_id]++;
|
|
} else {
|
|
for (const auto& p : physical_map) {
|
|
stalling_stream_count[p.first]++;
|
|
}
|
|
}
|
|
break;
|
|
case HAL_PIXEL_FORMAT_RAW16: {
|
|
const SensorCharacteristics& sensor_char =
|
|
stream.is_physical_camera_stream
|
|
? sensor_chars.at(stream.physical_camera_id)
|
|
: sensor_chars.at(logical_id);
|
|
auto sensor_height =
|
|
is_max_res ? sensor_char.full_res_height : sensor_char.height;
|
|
auto sensor_width =
|
|
is_max_res ? sensor_char.full_res_width : sensor_char.width;
|
|
if (stream.height != sensor_height || stream.width != sensor_width) {
|
|
ALOGE(
|
|
"%s, RAW16 buffer height %d and width %d must match sensor "
|
|
"height: %zu"
|
|
" and width: %zu",
|
|
__FUNCTION__, stream.height, stream.width, sensor_height,
|
|
sensor_width);
|
|
return false;
|
|
}
|
|
if (stream.is_physical_camera_stream) {
|
|
raw_stream_count[stream.physical_camera_id]++;
|
|
} else {
|
|
for (const auto& p : physical_map) {
|
|
raw_stream_count[p.first]++;
|
|
}
|
|
}
|
|
} break;
|
|
default:
|
|
if (stream.is_physical_camera_stream) {
|
|
processed_stream_count[stream.physical_camera_id]++;
|
|
} else {
|
|
for (const auto& p : physical_map) {
|
|
processed_stream_count[p.first]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto output_sizes =
|
|
is_dynamic_output
|
|
? physical_map.at(stream.physical_camera_id)
|
|
->GetDynamicPhysicalStreamOutputSizes(stream.format)
|
|
: stream.is_physical_camera_stream
|
|
? physical_map.at(stream.physical_camera_id)
|
|
->GetOutputSizes(stream.format)
|
|
: config_map.GetOutputSizes(stream.format);
|
|
|
|
auto stream_size = std::make_pair(stream.width, stream.height);
|
|
if (output_sizes.find(stream_size) == output_sizes.end()) {
|
|
ALOGE("%s: Stream with size %dx%d and format 0x%x is not supported!",
|
|
__FUNCTION__, stream.width, stream.height, stream.format);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto& raw_count : raw_stream_count) {
|
|
unsigned int max_raw_streams =
|
|
sensor_chars.at(raw_count.first).max_raw_streams +
|
|
(is_max_res
|
|
? 1
|
|
: 0); // The extra raw stream is allowed for remosaic reprocessing.
|
|
if (raw_count.second > max_raw_streams) {
|
|
ALOGE("%s: RAW streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, raw_count.second, max_raw_streams);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const auto& stalling_count : stalling_stream_count) {
|
|
if (stalling_count.second >
|
|
sensor_chars.at(stalling_count.first).max_stalling_streams) {
|
|
ALOGE("%s: Stalling streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, stalling_count.second,
|
|
sensor_chars.at(stalling_count.first).max_stalling_streams);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const auto& processed_count : processed_stream_count) {
|
|
if (processed_count.second >
|
|
sensor_chars.at(processed_count.first).max_processed_streams) {
|
|
ALOGE("%s: Processed streams maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, processed_count.second,
|
|
sensor_chars.at(processed_count.first).max_processed_streams);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (input_stream_count > sensor_chars.at(logical_id).max_input_streams) {
|
|
ALOGE("%s: Input stream maximum %u exceeds supported maximum %u",
|
|
__FUNCTION__, input_stream_count,
|
|
sensor_chars.at(logical_id).max_input_streams);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
status_t EmulatedSensor::StartUp(
|
|
uint32_t logical_camera_id,
|
|
std::unique_ptr<LogicalCharacteristics> logical_chars) {
|
|
if (isRunning()) {
|
|
return OK;
|
|
}
|
|
|
|
if (logical_chars.get() == nullptr) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
chars_ = std::move(logical_chars);
|
|
auto device_chars = chars_->find(logical_camera_id);
|
|
if (device_chars == chars_->end()) {
|
|
ALOGE(
|
|
"%s: Logical camera id: %u absent from logical camera characteristics!",
|
|
__FUNCTION__, logical_camera_id);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
for (const auto& it : *chars_) {
|
|
if (!AreCharacteristicsSupported(it.second)) {
|
|
ALOGE("%s: Sensor characteristics for camera id: %u not supported!",
|
|
__FUNCTION__, it.first);
|
|
return BAD_VALUE;
|
|
}
|
|
}
|
|
|
|
logical_camera_id_ = logical_camera_id;
|
|
scene_ = new EmulatedScene(
|
|
device_chars->second.full_res_width, device_chars->second.full_res_height,
|
|
kElectronsPerLuxSecond, device_chars->second.orientation,
|
|
device_chars->second.is_front_facing);
|
|
scene_->InitializeSensorQueue();
|
|
jpeg_compressor_ = std::make_unique<JpegCompressor>();
|
|
|
|
auto res = run(LOG_TAG, ANDROID_PRIORITY_URGENT_DISPLAY);
|
|
if (res != OK) {
|
|
ALOGE("Unable to start up sensor capture thread: %d", res);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
status_t EmulatedSensor::ShutDown() {
|
|
int res;
|
|
res = requestExitAndWait();
|
|
if (res != OK) {
|
|
ALOGE("Unable to shut down sensor capture thread: %d", res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void EmulatedSensor::SetCurrentRequest(
|
|
std::unique_ptr<LogicalCameraSettings> logical_settings,
|
|
std::unique_ptr<HwlPipelineResult> result,
|
|
std::unique_ptr<Buffers> input_buffers,
|
|
std::unique_ptr<Buffers> output_buffers) {
|
|
Mutex::Autolock lock(control_mutex_);
|
|
current_settings_ = std::move(logical_settings);
|
|
current_result_ = std::move(result);
|
|
current_input_buffers_ = std::move(input_buffers);
|
|
current_output_buffers_ = std::move(output_buffers);
|
|
}
|
|
|
|
bool EmulatedSensor::WaitForVSyncLocked(nsecs_t reltime) {
|
|
got_vsync_ = false;
|
|
while (!got_vsync_) {
|
|
auto res = vsync_.waitRelative(control_mutex_, reltime);
|
|
if (res != OK && res != TIMED_OUT) {
|
|
ALOGE("%s: Error waiting for VSync signal: %d", __FUNCTION__, res);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return got_vsync_;
|
|
}
|
|
|
|
bool EmulatedSensor::WaitForVSync(nsecs_t reltime) {
|
|
Mutex::Autolock lock(control_mutex_);
|
|
|
|
return WaitForVSyncLocked(reltime);
|
|
}
|
|
|
|
status_t EmulatedSensor::Flush() {
|
|
Mutex::Autolock lock(control_mutex_);
|
|
auto ret = WaitForVSyncLocked(kSupportedFrameDurationRange[1]);
|
|
|
|
// First recreate the jpeg compressor. This will abort any ongoing processing
|
|
// and flush any pending jobs.
|
|
jpeg_compressor_ = std::make_unique<JpegCompressor>();
|
|
|
|
// Then return any pending frames here
|
|
if ((current_input_buffers_.get() != nullptr) &&
|
|
(!current_input_buffers_->empty())) {
|
|
current_input_buffers_->clear();
|
|
}
|
|
if ((current_output_buffers_.get() != nullptr) &&
|
|
(!current_output_buffers_->empty())) {
|
|
for (const auto& buffer : *current_output_buffers_) {
|
|
buffer->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
|
|
if ((current_result_.get() != nullptr) &&
|
|
(current_result_->result_metadata.get() != nullptr)) {
|
|
if (current_output_buffers_->at(0)->callback.notify != nullptr) {
|
|
NotifyMessage msg{
|
|
.type = MessageType::kError,
|
|
.message.error = {
|
|
.frame_number = current_output_buffers_->at(0)->frame_number,
|
|
.error_stream_id = -1,
|
|
.error_code = ErrorCode::kErrorResult,
|
|
}};
|
|
|
|
current_output_buffers_->at(0)->callback.notify(
|
|
current_result_->pipeline_id, msg);
|
|
}
|
|
}
|
|
|
|
current_output_buffers_->clear();
|
|
}
|
|
|
|
return ret ? OK : TIMED_OUT;
|
|
}
|
|
|
|
bool EmulatedSensor::threadLoop() {
|
|
ATRACE_CALL();
|
|
/**
|
|
* Sensor capture operation main loop.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* Stage 1: Read in latest control parameters
|
|
*/
|
|
std::unique_ptr<Buffers> next_buffers;
|
|
std::unique_ptr<Buffers> next_input_buffer;
|
|
std::unique_ptr<HwlPipelineResult> next_result;
|
|
std::unique_ptr<LogicalCameraSettings> settings;
|
|
HwlPipelineCallback callback = {nullptr, nullptr};
|
|
{
|
|
Mutex::Autolock lock(control_mutex_);
|
|
std::swap(settings, current_settings_);
|
|
std::swap(next_buffers, current_output_buffers_);
|
|
std::swap(next_input_buffer, current_input_buffers_);
|
|
std::swap(next_result, current_result_);
|
|
|
|
// Signal VSync for start of readout
|
|
ALOGVV("Sensor VSync");
|
|
got_vsync_ = true;
|
|
vsync_.signal();
|
|
}
|
|
|
|
auto frame_duration = EmulatedSensor::kSupportedFrameDurationRange[0];
|
|
// Frame duration must always be the same among all physical devices
|
|
if ((settings.get() != nullptr) && (!settings->empty())) {
|
|
frame_duration = settings->begin()->second.frame_duration;
|
|
}
|
|
|
|
nsecs_t start_real_time = systemTime();
|
|
// Stagefright cares about system time for timestamps, so base simulated
|
|
// time on that.
|
|
nsecs_t frame_end_real_time = start_real_time + frame_duration;
|
|
|
|
/**
|
|
* Stage 2: Capture new image
|
|
*/
|
|
next_capture_time_ = frame_end_real_time;
|
|
|
|
sensor_binning_factor_info_.clear();
|
|
|
|
bool reprocess_request = false;
|
|
if ((next_input_buffer.get() != nullptr) && (!next_input_buffer->empty())) {
|
|
if (next_input_buffer->size() > 1) {
|
|
ALOGW("%s: Reprocess supports only single input!", __FUNCTION__);
|
|
}
|
|
|
|
camera_metadata_ro_entry_t entry;
|
|
auto ret =
|
|
next_result->result_metadata->Get(ANDROID_SENSOR_TIMESTAMP, &entry);
|
|
if ((ret == OK) && (entry.count == 1)) {
|
|
next_capture_time_ = entry.data.i64[0];
|
|
} else {
|
|
ALOGW("%s: Reprocess timestamp absent!", __FUNCTION__);
|
|
}
|
|
|
|
reprocess_request = true;
|
|
}
|
|
|
|
if ((next_buffers != nullptr) && (settings != nullptr)) {
|
|
callback = next_buffers->at(0)->callback;
|
|
if (callback.notify != nullptr) {
|
|
NotifyMessage msg{
|
|
.type = MessageType::kShutter,
|
|
.message.shutter = {
|
|
.frame_number = next_buffers->at(0)->frame_number,
|
|
.timestamp_ns = static_cast<uint64_t>(next_capture_time_)}};
|
|
callback.notify(next_result->pipeline_id, msg);
|
|
}
|
|
auto b = next_buffers->begin();
|
|
while (b != next_buffers->end()) {
|
|
auto device_settings = settings->find((*b)->camera_id);
|
|
if (device_settings == settings->end()) {
|
|
ALOGE("%s: Sensor settings absent for device: %d", __func__,
|
|
(*b)->camera_id);
|
|
b = next_buffers->erase(b);
|
|
continue;
|
|
}
|
|
|
|
auto device_chars = chars_->find((*b)->camera_id);
|
|
if (device_chars == chars_->end()) {
|
|
ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
|
|
(*b)->camera_id);
|
|
b = next_buffers->erase(b);
|
|
continue;
|
|
}
|
|
|
|
sensor_binning_factor_info_[(*b)->camera_id].quad_bayer_sensor =
|
|
device_chars->second.quad_bayer_sensor;
|
|
|
|
ALOGVV("Starting next capture: Exposure: %" PRIu64 " ms, gain: %d",
|
|
ns2ms(device_settings->second.exposure_time),
|
|
device_settings->second.gain);
|
|
|
|
scene_->Initialize(device_chars->second.full_res_width,
|
|
device_chars->second.full_res_height,
|
|
kElectronsPerLuxSecond);
|
|
scene_->SetExposureDuration((float)device_settings->second.exposure_time /
|
|
1e9);
|
|
scene_->SetColorFilterXYZ(device_chars->second.color_filter.rX,
|
|
device_chars->second.color_filter.rY,
|
|
device_chars->second.color_filter.rZ,
|
|
device_chars->second.color_filter.grX,
|
|
device_chars->second.color_filter.grY,
|
|
device_chars->second.color_filter.grZ,
|
|
device_chars->second.color_filter.gbX,
|
|
device_chars->second.color_filter.gbY,
|
|
device_chars->second.color_filter.gbZ,
|
|
device_chars->second.color_filter.bX,
|
|
device_chars->second.color_filter.bY,
|
|
device_chars->second.color_filter.bZ);
|
|
scene_->SetTestPattern(device_settings->second.test_pattern_mode ==
|
|
ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
|
|
scene_->SetTestPatternData(device_settings->second.test_pattern_data);
|
|
|
|
uint32_t handshake_divider =
|
|
(device_settings->second.video_stab == ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_ON) ?
|
|
kReducedSceneHandshake : kRegularSceneHandshake;
|
|
scene_->CalculateScene(next_capture_time_, handshake_divider);
|
|
|
|
(*b)->stream_buffer.status = BufferStatus::kOk;
|
|
bool max_res_mode = device_settings->second.sensor_pixel_mode;
|
|
sensor_binning_factor_info_[(*b)->camera_id].max_res_request =
|
|
max_res_mode;
|
|
switch ((*b)->format) {
|
|
case PixelFormat::RAW16:
|
|
sensor_binning_factor_info_[(*b)->camera_id].has_raw_stream = true;
|
|
break;
|
|
default:
|
|
sensor_binning_factor_info_[(*b)->camera_id].has_non_raw_stream = true;
|
|
}
|
|
|
|
// TODO: remove hack. Implement RAW -> YUV / JPEG reprocessing http://b/192382904
|
|
bool treat_as_reprocess =
|
|
(device_chars->second.quad_bayer_sensor && reprocess_request &&
|
|
(*next_input_buffer->begin())->format == PixelFormat::RAW16)
|
|
? false
|
|
: reprocess_request;
|
|
|
|
switch ((*b)->format) {
|
|
case PixelFormat::RAW16:
|
|
if (!reprocess_request) {
|
|
uint64_t min_full_res_raw_size =
|
|
2 * device_chars->second.full_res_width *
|
|
device_chars->second.full_res_height;
|
|
uint64_t min_default_raw_size =
|
|
2 * device_chars->second.width * device_chars->second.height;
|
|
bool default_mode_for_qb =
|
|
device_chars->second.quad_bayer_sensor && !max_res_mode;
|
|
size_t buffer_size = (*b)->plane.img.buffer_size;
|
|
if (default_mode_for_qb) {
|
|
if (buffer_size < min_default_raw_size) {
|
|
ALOGE(
|
|
"%s: Output buffer size too small for RAW capture in "
|
|
"default "
|
|
"mode, "
|
|
"expected %" PRIu64 ", got %zu, for camera id %d",
|
|
__FUNCTION__, min_default_raw_size, buffer_size,
|
|
(*b)->camera_id);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
break;
|
|
}
|
|
} else if (buffer_size < min_full_res_raw_size) {
|
|
ALOGE(
|
|
"%s: Output buffer size too small for RAW capture in max res "
|
|
"mode, "
|
|
"expected %" PRIu64 ", got %zu, for camera id %d",
|
|
__FUNCTION__, min_full_res_raw_size, buffer_size,
|
|
(*b)->camera_id);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
break;
|
|
}
|
|
if (default_mode_for_qb) {
|
|
CaptureRawBinned(
|
|
(*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
|
|
device_settings->second.gain, device_chars->second);
|
|
} else {
|
|
CaptureRawFullRes(
|
|
(*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
|
|
device_settings->second.gain, device_chars->second);
|
|
}
|
|
} else {
|
|
if (!device_chars->second.quad_bayer_sensor) {
|
|
ALOGE(
|
|
"%s: Reprocess requests with output format %x no supported!",
|
|
__FUNCTION__, (*b)->format);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
break;
|
|
}
|
|
// Remosaic the RAW input buffer
|
|
if ((*next_input_buffer->begin())->width != (*b)->width ||
|
|
(*next_input_buffer->begin())->height != (*b)->height) {
|
|
ALOGE(
|
|
"%s: RAW16 input dimensions %dx%d don't match output buffer "
|
|
"dimensions %dx%d",
|
|
__FUNCTION__, (*next_input_buffer->begin())->width,
|
|
(*next_input_buffer->begin())->height, (*b)->width,
|
|
(*b)->height);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
break;
|
|
}
|
|
ALOGV("%s remosaic Raw16 Image", __FUNCTION__);
|
|
RemosaicRAW16Image(
|
|
(uint16_t*)(*next_input_buffer->begin())->plane.img.img,
|
|
(uint16_t*)(*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
|
|
device_chars->second);
|
|
}
|
|
break;
|
|
case PixelFormat::RGB_888:
|
|
if (!reprocess_request) {
|
|
CaptureRGB((*b)->plane.img.img, (*b)->width, (*b)->height,
|
|
(*b)->plane.img.stride_in_bytes, RGBLayout::RGB,
|
|
device_settings->second.gain, device_chars->second);
|
|
} else {
|
|
ALOGE("%s: Reprocess requests with output format %x no supported!",
|
|
__FUNCTION__, (*b)->format);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
break;
|
|
case PixelFormat::RGBA_8888:
|
|
if (!reprocess_request) {
|
|
CaptureRGB((*b)->plane.img.img, (*b)->width, (*b)->height,
|
|
(*b)->plane.img.stride_in_bytes, RGBLayout::RGBA,
|
|
device_settings->second.gain, device_chars->second);
|
|
} else {
|
|
ALOGE("%s: Reprocess requests with output format %x no supported!",
|
|
__FUNCTION__, (*b)->format);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
break;
|
|
case PixelFormat::BLOB:
|
|
if ((*b)->dataSpace == HAL_DATASPACE_V0_JFIF) {
|
|
YUV420Frame yuv_input{
|
|
.width = treat_as_reprocess
|
|
? (*next_input_buffer->begin())->width
|
|
: 0,
|
|
.height = treat_as_reprocess
|
|
? (*next_input_buffer->begin())->height
|
|
: 0,
|
|
.planes = treat_as_reprocess
|
|
? (*next_input_buffer->begin())->plane.img_y_crcb
|
|
: YCbCrPlanes{}};
|
|
auto jpeg_input = std::make_unique<JpegYUV420Input>();
|
|
jpeg_input->width = (*b)->width;
|
|
jpeg_input->height = (*b)->height;
|
|
auto img =
|
|
new uint8_t[(jpeg_input->width * jpeg_input->height * 3) / 2];
|
|
jpeg_input->yuv_planes = {
|
|
.img_y = img,
|
|
.img_cb = img + jpeg_input->width * jpeg_input->height,
|
|
.img_cr = img + (jpeg_input->width * jpeg_input->height * 5) / 4,
|
|
.y_stride = jpeg_input->width,
|
|
.cbcr_stride = jpeg_input->width / 2,
|
|
.cbcr_step = 1};
|
|
jpeg_input->buffer_owner = true;
|
|
YUV420Frame yuv_output{.width = jpeg_input->width,
|
|
.height = jpeg_input->height,
|
|
.planes = jpeg_input->yuv_planes};
|
|
|
|
bool rotate =
|
|
device_settings->second.rotate_and_crop == ANDROID_SCALER_ROTATE_AND_CROP_90;
|
|
ProcessType process_type =
|
|
treat_as_reprocess ? REPROCESS
|
|
: (device_settings->second.edge_mode ==
|
|
ANDROID_EDGE_MODE_HIGH_QUALITY)
|
|
? HIGH_QUALITY
|
|
: REGULAR;
|
|
auto ret = ProcessYUV420(
|
|
yuv_input, yuv_output, device_settings->second.gain,
|
|
process_type, device_settings->second.zoom_ratio,
|
|
rotate, device_chars->second);
|
|
if (ret != 0) {
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
break;
|
|
}
|
|
|
|
auto jpeg_job = std::make_unique<JpegYUV420Job>();
|
|
jpeg_job->exif_utils = std::unique_ptr<ExifUtils>(
|
|
ExifUtils::Create(device_chars->second));
|
|
jpeg_job->input = std::move(jpeg_input);
|
|
// If jpeg compression is successful, then the jpeg compressor
|
|
// must set the corresponding status.
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
std::swap(jpeg_job->output, *b);
|
|
jpeg_job->result_metadata =
|
|
HalCameraMetadata::Clone(next_result->result_metadata.get());
|
|
|
|
Mutex::Autolock lock(control_mutex_);
|
|
jpeg_compressor_->QueueYUV420(std::move(jpeg_job));
|
|
} else {
|
|
ALOGE("%s: Format %x with dataspace %x is TODO", __FUNCTION__,
|
|
(*b)->format, (*b)->dataSpace);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
break;
|
|
case PixelFormat::YCRCB_420_SP:
|
|
case PixelFormat::YCBCR_420_888: {
|
|
YUV420Frame yuv_input{
|
|
.width =
|
|
treat_as_reprocess ? (*next_input_buffer->begin())->width : 0,
|
|
.height =
|
|
treat_as_reprocess ? (*next_input_buffer->begin())->height : 0,
|
|
.planes = treat_as_reprocess
|
|
? (*next_input_buffer->begin())->plane.img_y_crcb
|
|
: YCbCrPlanes{}};
|
|
YUV420Frame yuv_output{.width = (*b)->width,
|
|
.height = (*b)->height,
|
|
.planes = (*b)->plane.img_y_crcb};
|
|
bool rotate =
|
|
device_settings->second.rotate_and_crop == ANDROID_SCALER_ROTATE_AND_CROP_90;
|
|
ProcessType process_type = treat_as_reprocess
|
|
? REPROCESS
|
|
: (device_settings->second.edge_mode ==
|
|
ANDROID_EDGE_MODE_HIGH_QUALITY)
|
|
? HIGH_QUALITY
|
|
: REGULAR;
|
|
auto ret = ProcessYUV420(
|
|
yuv_input, yuv_output, device_settings->second.gain,
|
|
process_type, device_settings->second.zoom_ratio,
|
|
rotate, device_chars->second);
|
|
if (ret != 0) {
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
} break;
|
|
case PixelFormat::Y16:
|
|
if (!reprocess_request) {
|
|
if ((*b)->dataSpace == HAL_DATASPACE_DEPTH) {
|
|
CaptureDepth((*b)->plane.img.img, device_settings->second.gain,
|
|
(*b)->width, (*b)->height,
|
|
(*b)->plane.img.stride_in_bytes,
|
|
device_chars->second);
|
|
} else {
|
|
ALOGE("%s: Format %x with dataspace %x is TODO", __FUNCTION__,
|
|
(*b)->format, (*b)->dataSpace);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
} else {
|
|
ALOGE("%s: Reprocess requests with output format %x no supported!",
|
|
__FUNCTION__, (*b)->format);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
break;
|
|
case PixelFormat::YCBCR_P010:
|
|
if (!reprocess_request) {
|
|
bool rotate = device_settings->second.rotate_and_crop ==
|
|
ANDROID_SCALER_ROTATE_AND_CROP_90;
|
|
CaptureYUV420((*b)->plane.img_y_crcb, (*b)->width, (*b)->height,
|
|
device_settings->second.gain,
|
|
device_settings->second.zoom_ratio, rotate,
|
|
device_chars->second);
|
|
} else {
|
|
ALOGE(
|
|
"%s: Reprocess requests with output format %x no supported!",
|
|
__FUNCTION__, (*b)->format);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
}
|
|
break;
|
|
default:
|
|
ALOGE("%s: Unknown format %x, no output", __FUNCTION__, (*b)->format);
|
|
(*b)->stream_buffer.status = BufferStatus::kError;
|
|
break;
|
|
}
|
|
|
|
b = next_buffers->erase(b);
|
|
}
|
|
}
|
|
|
|
if (reprocess_request) {
|
|
auto input_buffer = next_input_buffer->begin();
|
|
while (input_buffer != next_input_buffer->end()) {
|
|
(*input_buffer++)->stream_buffer.status = BufferStatus::kOk;
|
|
}
|
|
next_input_buffer->clear();
|
|
}
|
|
|
|
nsecs_t work_done_real_time = systemTime();
|
|
// Returning the results at this point is not entirely correct from timing
|
|
// perspective. Under ideal conditions where 'ReturnResults' completes
|
|
// in less than 'time_accuracy' we need to return the results after the
|
|
// frame cycle expires. However under real conditions various system
|
|
// components like SurfaceFlinger, Encoder, LMK etc. could be consuming most
|
|
// of the resources and the duration of "ReturnResults" can get comparable to
|
|
// 'kDefaultFrameDuration'. This will skew the frame cycle and can result in
|
|
// potential frame drops. To avoid this scenario when we are running under
|
|
// tight deadlines (less than 'kReturnResultThreshod') try to return the
|
|
// results immediately. In all other cases with more relaxed deadlines
|
|
// the occasional bump during 'ReturnResults' should not have any
|
|
// noticeable effect.
|
|
if ((work_done_real_time + kReturnResultThreshod) > frame_end_real_time) {
|
|
ReturnResults(callback, std::move(settings), std::move(next_result),
|
|
reprocess_request);
|
|
}
|
|
|
|
work_done_real_time = systemTime();
|
|
ALOGVV("Sensor vertical blanking interval");
|
|
const nsecs_t time_accuracy = 2e6; // 2 ms of imprecision is ok
|
|
if (work_done_real_time < frame_end_real_time - time_accuracy) {
|
|
timespec t;
|
|
t.tv_sec = (frame_end_real_time - work_done_real_time) / 1000000000L;
|
|
t.tv_nsec = (frame_end_real_time - work_done_real_time) % 1000000000L;
|
|
|
|
int ret;
|
|
do {
|
|
ret = nanosleep(&t, &t);
|
|
} while (ret != 0);
|
|
}
|
|
nsecs_t end_real_time __unused = systemTime();
|
|
ALOGVV("Frame cycle took %" PRIu64 " ms, target %" PRIu64 " ms",
|
|
ns2ms(end_real_time - start_real_time), ns2ms(frame_duration));
|
|
|
|
ReturnResults(callback, std::move(settings), std::move(next_result),
|
|
reprocess_request);
|
|
|
|
return true;
|
|
};
|
|
|
|
void EmulatedSensor::ReturnResults(
|
|
HwlPipelineCallback callback,
|
|
std::unique_ptr<LogicalCameraSettings> settings,
|
|
std::unique_ptr<HwlPipelineResult> result, bool reprocess_request) {
|
|
if ((callback.process_pipeline_result != nullptr) &&
|
|
(result.get() != nullptr) && (result->result_metadata.get() != nullptr)) {
|
|
auto logical_settings = settings->find(logical_camera_id_);
|
|
if (logical_settings == settings->end()) {
|
|
ALOGE("%s: Logical camera id: %u not found in settings!", __FUNCTION__,
|
|
logical_camera_id_);
|
|
return;
|
|
}
|
|
auto device_chars = chars_->find(logical_camera_id_);
|
|
if (device_chars == chars_->end()) {
|
|
ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
|
|
logical_camera_id_);
|
|
return;
|
|
}
|
|
result->result_metadata->Set(ANDROID_SENSOR_TIMESTAMP, &next_capture_time_,
|
|
1);
|
|
uint8_t raw_binned_factor_used = false;
|
|
if (sensor_binning_factor_info_.find(logical_camera_id_) !=
|
|
sensor_binning_factor_info_.end()) {
|
|
auto& info = sensor_binning_factor_info_[logical_camera_id_];
|
|
// Logical stream was included in the request
|
|
if (!reprocess_request && info.quad_bayer_sensor && info.max_res_request &&
|
|
info.has_raw_stream && !info.has_non_raw_stream) {
|
|
raw_binned_factor_used = true;
|
|
}
|
|
result->result_metadata->Set(ANDROID_SENSOR_RAW_BINNING_FACTOR_USED,
|
|
&raw_binned_factor_used, 1);
|
|
}
|
|
if (logical_settings->second.lens_shading_map_mode ==
|
|
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_ON) {
|
|
if ((device_chars->second.lens_shading_map_size[0] > 0) &&
|
|
(device_chars->second.lens_shading_map_size[1] > 0)) {
|
|
// Perfect lens, no actual shading needed.
|
|
std::vector<float> lens_shading_map(
|
|
device_chars->second.lens_shading_map_size[0] *
|
|
device_chars->second.lens_shading_map_size[1] * 4,
|
|
1.f);
|
|
|
|
result->result_metadata->Set(ANDROID_STATISTICS_LENS_SHADING_MAP,
|
|
lens_shading_map.data(),
|
|
lens_shading_map.size());
|
|
}
|
|
}
|
|
if (logical_settings->second.report_video_stab) {
|
|
result->result_metadata->Set(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
|
|
&logical_settings->second.video_stab, 1);
|
|
}
|
|
if (logical_settings->second.report_edge_mode) {
|
|
result->result_metadata->Set(ANDROID_EDGE_MODE,
|
|
&logical_settings->second.edge_mode, 1);
|
|
}
|
|
if (logical_settings->second.report_neutral_color_point) {
|
|
result->result_metadata->Set(ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
|
|
kNeutralColorPoint,
|
|
ARRAY_SIZE(kNeutralColorPoint));
|
|
}
|
|
if (logical_settings->second.report_green_split) {
|
|
result->result_metadata->Set(ANDROID_SENSOR_GREEN_SPLIT, &kGreenSplit, 1);
|
|
}
|
|
if (logical_settings->second.report_noise_profile) {
|
|
CalculateAndAppendNoiseProfile(
|
|
logical_settings->second.gain,
|
|
GetBaseGainFactor(device_chars->second.max_raw_value),
|
|
result->result_metadata.get());
|
|
}
|
|
if (logical_settings->second.report_rotate_and_crop) {
|
|
result->result_metadata->Set(ANDROID_SCALER_ROTATE_AND_CROP,
|
|
&logical_settings->second.rotate_and_crop, 1);
|
|
}
|
|
|
|
if (!result->physical_camera_results.empty()) {
|
|
for (auto& it : result->physical_camera_results) {
|
|
auto physical_settings = settings->find(it.first);
|
|
if (physical_settings == settings->end()) {
|
|
ALOGE("%s: Physical settings for camera id: %u are absent!",
|
|
__FUNCTION__, it.first);
|
|
continue;
|
|
}
|
|
uint8_t raw_binned_factor_used = false;
|
|
if (sensor_binning_factor_info_.find(it.first) !=
|
|
sensor_binning_factor_info_.end()) {
|
|
auto& info = sensor_binning_factor_info_[it.first];
|
|
// physical stream was included in the request
|
|
if (!reprocess_request && info.quad_bayer_sensor &&
|
|
info.max_res_request && info.has_raw_stream &&
|
|
!info.has_non_raw_stream) {
|
|
raw_binned_factor_used = true;
|
|
}
|
|
it.second->Set(ANDROID_SENSOR_RAW_BINNING_FACTOR_USED,
|
|
&raw_binned_factor_used, 1);
|
|
}
|
|
// Sensor timestamp for all physical devices must be the same.
|
|
it.second->Set(ANDROID_SENSOR_TIMESTAMP, &next_capture_time_, 1);
|
|
if (physical_settings->second.report_neutral_color_point) {
|
|
it.second->Set(ANDROID_SENSOR_NEUTRAL_COLOR_POINT, kNeutralColorPoint,
|
|
ARRAY_SIZE(kNeutralColorPoint));
|
|
}
|
|
if (physical_settings->second.report_green_split) {
|
|
it.second->Set(ANDROID_SENSOR_GREEN_SPLIT, &kGreenSplit, 1);
|
|
}
|
|
if (physical_settings->second.report_noise_profile) {
|
|
auto device_chars = chars_->find(it.first);
|
|
if (device_chars == chars_->end()) {
|
|
ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
|
|
it.first);
|
|
}
|
|
CalculateAndAppendNoiseProfile(
|
|
physical_settings->second.gain,
|
|
GetBaseGainFactor(device_chars->second.max_raw_value),
|
|
it.second.get());
|
|
}
|
|
}
|
|
}
|
|
|
|
callback.process_pipeline_result(std::move(result));
|
|
}
|
|
}
|
|
|
|
void EmulatedSensor::CalculateAndAppendNoiseProfile(
|
|
float gain /*in ISO*/, float base_gain_factor,
|
|
HalCameraMetadata* result /*out*/) {
|
|
if (result != nullptr) {
|
|
float total_gain = gain / 100.0 * base_gain_factor;
|
|
float noise_var_gain = total_gain * total_gain;
|
|
float read_noise_var =
|
|
kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
|
|
// Noise profile is the same across all 4 CFA channels
|
|
double noise_profile[2 * 4] = {
|
|
noise_var_gain, read_noise_var, noise_var_gain, read_noise_var,
|
|
noise_var_gain, read_noise_var, noise_var_gain, read_noise_var};
|
|
result->Set(ANDROID_SENSOR_NOISE_PROFILE, noise_profile,
|
|
ARRAY_SIZE(noise_profile));
|
|
}
|
|
}
|
|
|
|
EmulatedScene::ColorChannels EmulatedSensor::GetQuadBayerColor(uint32_t x,
|
|
uint32_t y) {
|
|
// Row within larger set of quad bayer filter
|
|
uint32_t row_mod = y % 4;
|
|
// Column within larger set of quad bayer filter
|
|
uint32_t col_mod = x % 4;
|
|
|
|
// Row is within the left quadrants of a quad bayer sensor
|
|
if (row_mod < 2) {
|
|
if (col_mod < 2) {
|
|
return EmulatedScene::ColorChannels::R;
|
|
}
|
|
return EmulatedScene::ColorChannels::Gr;
|
|
} else {
|
|
if (col_mod < 2) {
|
|
return EmulatedScene::ColorChannels::Gb;
|
|
}
|
|
return EmulatedScene::ColorChannels::B;
|
|
}
|
|
}
|
|
|
|
void EmulatedSensor::RemosaicQuadBayerBlock(uint16_t* img_in, uint16_t* img_out,
|
|
int xstart, int ystart,
|
|
int row_stride_in_bytes) {
|
|
uint32_t quad_block_copy_idx_map[16] = {0, 2, 1, 3, 8, 10, 6, 11,
|
|
4, 9, 5, 7, 12, 14, 13, 15};
|
|
uint16_t quad_block_copy[16];
|
|
uint32_t i = 0;
|
|
for (uint32_t row = 0; row < 4; row++) {
|
|
uint16_t* quad_bayer_row =
|
|
img_in + (ystart + row) * (row_stride_in_bytes / 2) + xstart;
|
|
for (uint32_t j = 0; j < 4; j++, i++) {
|
|
quad_block_copy[i] = quad_bayer_row[j];
|
|
}
|
|
}
|
|
|
|
for (uint32_t row = 0; row < 4; row++) {
|
|
uint16_t* regular_bayer_row =
|
|
img_out + (ystart + row) * (row_stride_in_bytes / 2) + xstart;
|
|
for (uint32_t j = 0; j < 4; j++, i++) {
|
|
uint32_t idx = quad_block_copy_idx_map[row + 4 * j];
|
|
regular_bayer_row[j] = quad_block_copy[idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
status_t EmulatedSensor::RemosaicRAW16Image(uint16_t* img_in, uint16_t* img_out,
|
|
size_t row_stride_in_bytes,
|
|
const SensorCharacteristics& chars) {
|
|
if (chars.full_res_width % 2 != 0 || chars.full_res_height % 2 != 0) {
|
|
ALOGE(
|
|
"%s RAW16 Image with quad CFA, height %zu and width %zu, not multiples "
|
|
"of 4",
|
|
__FUNCTION__, chars.full_res_height, chars.full_res_width);
|
|
return BAD_VALUE;
|
|
}
|
|
for (uint32_t i = 0; i < chars.full_res_width; i += 4) {
|
|
for (uint32_t j = 0; j < chars.full_res_height; j += 4) {
|
|
RemosaicQuadBayerBlock(img_in, img_out, i, j, row_stride_in_bytes);
|
|
}
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
void EmulatedSensor::CaptureRawBinned(uint8_t* img, size_t row_stride_in_bytes,
|
|
uint32_t gain,
|
|
const SensorCharacteristics& chars) {
|
|
ATRACE_CALL();
|
|
// inc = how many pixels to skip while reading every next pixel
|
|
float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
|
|
float noise_var_gain = total_gain * total_gain;
|
|
float read_noise_var =
|
|
kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
|
|
int bayer_select[4] = {EmulatedScene::R, EmulatedScene::Gr, EmulatedScene::Gb,
|
|
EmulatedScene::B};
|
|
scene_->SetReadoutPixel(0, 0);
|
|
for (unsigned int out_y = 0; out_y < chars.height; out_y++) {
|
|
// Stride still stays width since the buffer is binned size.
|
|
int* bayer_row = bayer_select + (out_y & 0x1) * 2;
|
|
uint16_t* px = (uint16_t*)img + out_y * (row_stride_in_bytes / 2);
|
|
for (unsigned int out_x = 0; out_x < chars.width; out_x++) {
|
|
int color_idx = bayer_row[out_x & 0x1];
|
|
uint16_t raw_count = 0;
|
|
// Color filter will be the same for each quad.
|
|
uint32_t electron_count = 0;
|
|
int x, y;
|
|
float norm_x = (float)out_x / chars.width;
|
|
float norm_y = (float)out_y / chars.height;
|
|
x = static_cast<int>(chars.full_res_width * norm_x);
|
|
y = static_cast<int>(chars.full_res_height * norm_y);
|
|
|
|
x = std::min(std::max(x, 0), (int)chars.full_res_width - 1);
|
|
y = std::min(std::max(y, 0), (int)chars.full_res_height - 1);
|
|
|
|
scene_->SetReadoutPixel(x, y);
|
|
|
|
const uint32_t* pixel = scene_->GetPixelElectrons();
|
|
electron_count = pixel[color_idx];
|
|
// TODO: Better pixel saturation curve?
|
|
electron_count = (electron_count < kSaturationElectrons)
|
|
? electron_count
|
|
: kSaturationElectrons;
|
|
|
|
// TODO: Better A/D saturation curve?
|
|
raw_count = electron_count * total_gain;
|
|
raw_count =
|
|
(raw_count < chars.max_raw_value) ? raw_count : chars.max_raw_value;
|
|
|
|
// Calculate noise value
|
|
// TODO: Use more-correct Gaussian instead of uniform noise
|
|
float photon_noise_var = electron_count * noise_var_gain;
|
|
float noise_stddev = sqrtf_approx(read_noise_var + photon_noise_var);
|
|
// Scaled to roughly match gaussian/uniform noise stddev
|
|
float noise_sample = rand_r(&rand_seed_) * (2.5 / (1.0 + RAND_MAX)) - 1.25;
|
|
|
|
raw_count += chars.black_level_pattern[color_idx];
|
|
raw_count += noise_stddev * noise_sample;
|
|
*px++ = raw_count;
|
|
}
|
|
}
|
|
ALOGVV("Binned RAW sensor image captured");
|
|
}
|
|
|
|
void EmulatedSensor::CaptureRawFullRes(uint8_t* img, size_t row_stride_in_bytes,
|
|
uint32_t gain,
|
|
const SensorCharacteristics& chars) {
|
|
ATRACE_CALL();
|
|
float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
|
|
float noise_var_gain = total_gain * total_gain;
|
|
float read_noise_var =
|
|
kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
|
|
|
|
scene_->SetReadoutPixel(0, 0);
|
|
// RGGB
|
|
int bayer_select[4] = {EmulatedScene::R, EmulatedScene::Gr, EmulatedScene::Gb,
|
|
EmulatedScene::B};
|
|
|
|
for (unsigned int y = 0; y < chars.full_res_height; y++) {
|
|
int* bayer_row = bayer_select + (y & 0x1) * 2;
|
|
uint16_t* px = (uint16_t*)img + y * (row_stride_in_bytes / 2);
|
|
for (unsigned int x = 0; x < chars.full_res_width; x++) {
|
|
int color_idx = chars.quad_bayer_sensor ? GetQuadBayerColor(x, y)
|
|
: bayer_row[x & 0x1];
|
|
uint32_t electron_count;
|
|
electron_count = scene_->GetPixelElectrons()[color_idx];
|
|
|
|
// TODO: Better pixel saturation curve?
|
|
electron_count = (electron_count < kSaturationElectrons)
|
|
? electron_count
|
|
: kSaturationElectrons;
|
|
|
|
// TODO: Better A/D saturation curve?
|
|
uint16_t raw_count = electron_count * total_gain;
|
|
raw_count =
|
|
(raw_count < chars.max_raw_value) ? raw_count : chars.max_raw_value;
|
|
|
|
// Calculate noise value
|
|
// TODO: Use more-correct Gaussian instead of uniform noise
|
|
float photon_noise_var = electron_count * noise_var_gain;
|
|
float noise_stddev = sqrtf_approx(read_noise_var + photon_noise_var);
|
|
// Scaled to roughly match gaussian/uniform noise stddev
|
|
float noise_sample = rand_r(&rand_seed_) * (2.5 / (1.0 + RAND_MAX)) - 1.25;
|
|
|
|
raw_count += chars.black_level_pattern[color_idx];
|
|
raw_count += noise_stddev * noise_sample;
|
|
|
|
*px++ = raw_count;
|
|
}
|
|
// TODO: Handle this better
|
|
// simulatedTime += mRowReadoutTime;
|
|
}
|
|
ALOGVV("Raw sensor image captured");
|
|
}
|
|
|
|
void EmulatedSensor::CaptureRGB(uint8_t* img, uint32_t width, uint32_t height,
|
|
uint32_t stride, RGBLayout layout, uint32_t gain,
|
|
const SensorCharacteristics& chars) {
|
|
ATRACE_CALL();
|
|
float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
|
|
// In fixed-point math, calculate total scaling from electrons to 8bpp
|
|
int scale64x = 64 * total_gain * 255 / chars.max_raw_value;
|
|
uint32_t inc_h = ceil((float)chars.full_res_width / width);
|
|
uint32_t inc_v = ceil((float)chars.full_res_height / height);
|
|
|
|
for (unsigned int y = 0, outy = 0; y < chars.full_res_height;
|
|
y += inc_v, outy++) {
|
|
scene_->SetReadoutPixel(0, y);
|
|
uint8_t* px = img + outy * stride;
|
|
for (unsigned int x = 0; x < chars.full_res_width; x += inc_h) {
|
|
uint32_t r_count, g_count, b_count;
|
|
// TODO: Perfect demosaicing is a cheat
|
|
const uint32_t* pixel = scene_->GetPixelElectrons();
|
|
r_count = pixel[EmulatedScene::R] * scale64x;
|
|
g_count = pixel[EmulatedScene::Gr] * scale64x;
|
|
b_count = pixel[EmulatedScene::B] * scale64x;
|
|
|
|
uint8_t r = r_count < 255 * 64 ? r_count / 64 : 255;
|
|
uint8_t g = g_count < 255 * 64 ? g_count / 64 : 255;
|
|
uint8_t b = b_count < 255 * 64 ? b_count / 64 : 255;
|
|
switch (layout) {
|
|
case RGB:
|
|
*px++ = r;
|
|
*px++ = g;
|
|
*px++ = b;
|
|
break;
|
|
case RGBA:
|
|
*px++ = r;
|
|
*px++ = g;
|
|
*px++ = b;
|
|
*px++ = 255;
|
|
break;
|
|
case ARGB:
|
|
*px++ = 255;
|
|
*px++ = r;
|
|
*px++ = g;
|
|
*px++ = b;
|
|
break;
|
|
default:
|
|
ALOGE("%s: RGB layout: %d not supported", __FUNCTION__, layout);
|
|
return;
|
|
}
|
|
for (unsigned int j = 1; j < inc_h; j++) scene_->GetPixelElectrons();
|
|
}
|
|
}
|
|
ALOGVV("RGB sensor image captured");
|
|
}
|
|
|
|
void EmulatedSensor::CaptureYUV420(YCbCrPlanes yuv_layout, uint32_t width,
|
|
uint32_t height, uint32_t gain,
|
|
float zoom_ratio, bool rotate,
|
|
const SensorCharacteristics& chars) {
|
|
ATRACE_CALL();
|
|
float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
|
|
// Using fixed-point math with 6 bits of fractional precision.
|
|
// In fixed-point math, calculate total scaling from electrons to 8bpp
|
|
const int scale64x =
|
|
kFixedBitPrecision * total_gain * 255 / chars.max_raw_value;
|
|
// Fixed-point coefficients for RGB-YUV transform
|
|
// Based on JFIF RGB->YUV transform.
|
|
// Cb/Cr offset scaled by 64x twice since they're applied post-multiply
|
|
const int rgb_to_y[] = {19, 37, 7};
|
|
const int rgb_to_cb[] = {-10, -21, 32, 524288};
|
|
const int rgb_to_cr[] = {32, -26, -5, 524288};
|
|
// Scale back to 8bpp non-fixed-point
|
|
const int scale_out = 64;
|
|
const int scale_out_sq = scale_out * scale_out; // after multiplies
|
|
|
|
// inc = how many pixels to skip while reading every next pixel
|
|
const float aspect_ratio = static_cast<float>(width) / height;
|
|
|
|
// precalculate normalized coordinates and dimensions
|
|
const float norm_left_top = 0.5f - 0.5f / zoom_ratio;
|
|
const float norm_rot_top = norm_left_top;
|
|
const float norm_width = 1 / zoom_ratio;
|
|
const float norm_rot_width = norm_width / aspect_ratio;
|
|
const float norm_rot_height = norm_width;
|
|
const float norm_rot_left =
|
|
norm_left_top + (norm_width + norm_rot_width) * 0.5f;
|
|
|
|
for (unsigned int out_y = 0; out_y < height; out_y++) {
|
|
uint8_t* px_y = yuv_layout.img_y + out_y * yuv_layout.y_stride;
|
|
uint8_t* px_cb = yuv_layout.img_cb + (out_y / 2) * yuv_layout.cbcr_stride;
|
|
uint8_t* px_cr = yuv_layout.img_cr + (out_y / 2) * yuv_layout.cbcr_stride;
|
|
|
|
for (unsigned int out_x = 0; out_x < width; out_x++) {
|
|
int x, y;
|
|
float norm_x = out_x / (width * zoom_ratio);
|
|
float norm_y = out_y / (height * zoom_ratio);
|
|
if (rotate) {
|
|
x = static_cast<int>(chars.full_res_width *
|
|
(norm_rot_left - norm_y * norm_rot_width));
|
|
y = static_cast<int>(chars.full_res_height *
|
|
(norm_rot_top + norm_x * norm_rot_height));
|
|
} else {
|
|
x = static_cast<int>(chars.full_res_width * (norm_left_top + norm_x));
|
|
y = static_cast<int>(chars.full_res_height * (norm_left_top + norm_y));
|
|
}
|
|
x = std::min(std::max(x, 0), (int)chars.full_res_width - 1);
|
|
y = std::min(std::max(y, 0), (int)chars.full_res_height - 1);
|
|
scene_->SetReadoutPixel(x, y);
|
|
|
|
int32_t r_count, g_count, b_count;
|
|
// TODO: Perfect demosaicing is a cheat
|
|
const uint32_t* pixel = rotate ? scene_->GetPixelElectronsColumn()
|
|
: scene_->GetPixelElectrons();
|
|
r_count = pixel[EmulatedScene::R] * scale64x;
|
|
r_count = r_count < kSaturationPoint ? r_count : kSaturationPoint;
|
|
g_count = pixel[EmulatedScene::Gr] * scale64x;
|
|
g_count = g_count < kSaturationPoint ? g_count : kSaturationPoint;
|
|
b_count = pixel[EmulatedScene::B] * scale64x;
|
|
b_count = b_count < kSaturationPoint ? b_count : kSaturationPoint;
|
|
|
|
// Gamma correction
|
|
r_count = gamma_table_[r_count];
|
|
g_count = gamma_table_[g_count];
|
|
b_count = gamma_table_[b_count];
|
|
|
|
uint8_t y8 = (rgb_to_y[0] * r_count + rgb_to_y[1] * g_count +
|
|
rgb_to_y[2] * b_count) /
|
|
scale_out_sq;
|
|
if (yuv_layout.bytesPerPixel == 1) {
|
|
*px_y = y8;
|
|
} else if (yuv_layout.bytesPerPixel == 2) {
|
|
*(reinterpret_cast<uint16_t*>(px_y)) = htole16(y8 << 8);
|
|
} else {
|
|
ALOGE("%s: Unsupported bytes per pixel value: %zu", __func__,
|
|
yuv_layout.bytesPerPixel);
|
|
return;
|
|
}
|
|
px_y += yuv_layout.bytesPerPixel;
|
|
|
|
if (out_y % 2 == 0 && out_x % 2 == 0) {
|
|
uint8_t cb8 = (rgb_to_cb[0] * r_count + rgb_to_cb[1] * g_count +
|
|
rgb_to_cb[2] * b_count + rgb_to_cb[3]) /
|
|
scale_out_sq;
|
|
uint8_t cr8 = (rgb_to_cr[0] * r_count + rgb_to_cr[1] * g_count +
|
|
rgb_to_cr[2] * b_count + rgb_to_cr[3]) /
|
|
scale_out_sq;
|
|
if (yuv_layout.bytesPerPixel == 1) {
|
|
*px_cb = cb8;
|
|
*px_cr = cr8;
|
|
} else if (yuv_layout.bytesPerPixel == 2) {
|
|
*(reinterpret_cast<uint16_t*>(px_cb)) = htole16(cb8 << 8);
|
|
*(reinterpret_cast<uint16_t*>(px_cr)) = htole16(cr8 << 8);
|
|
} else {
|
|
ALOGE("%s: Unsupported bytes per pixel value: %zu", __func__,
|
|
yuv_layout.bytesPerPixel);
|
|
return;
|
|
}
|
|
px_cr += yuv_layout.cbcr_step;
|
|
px_cb += yuv_layout.cbcr_step;
|
|
}
|
|
}
|
|
}
|
|
ALOGVV("YUV420 sensor image captured");
|
|
}
|
|
|
|
void EmulatedSensor::CaptureDepth(uint8_t* img, uint32_t gain, uint32_t width,
|
|
uint32_t height, uint32_t stride,
|
|
const SensorCharacteristics& chars) {
|
|
ATRACE_CALL();
|
|
float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
|
|
// In fixed-point math, calculate scaling factor to 13bpp millimeters
|
|
int scale64x = 64 * total_gain * 8191 / chars.max_raw_value;
|
|
uint32_t inc_h = ceil((float)chars.full_res_width / width);
|
|
uint32_t inc_v = ceil((float)chars.full_res_height / height);
|
|
|
|
for (unsigned int y = 0, out_y = 0; y < chars.full_res_height;
|
|
y += inc_v, out_y++) {
|
|
scene_->SetReadoutPixel(0, y);
|
|
uint16_t* px = (uint16_t*)(img + (out_y * stride));
|
|
for (unsigned int x = 0; x < chars.full_res_width; x += inc_h) {
|
|
uint32_t depth_count;
|
|
// TODO: Make up real depth scene instead of using green channel
|
|
// as depth
|
|
const uint32_t* pixel = scene_->GetPixelElectrons();
|
|
depth_count = pixel[EmulatedScene::Gr] * scale64x;
|
|
|
|
*px++ = depth_count < 8191 * 64 ? depth_count / 64 : 0;
|
|
for (unsigned int j = 1; j < inc_h; j++) scene_->GetPixelElectrons();
|
|
}
|
|
// TODO: Handle this better
|
|
// simulatedTime += mRowReadoutTime;
|
|
}
|
|
ALOGVV("Depth sensor image captured");
|
|
}
|
|
|
|
status_t EmulatedSensor::ProcessYUV420(const YUV420Frame& input,
|
|
const YUV420Frame& output, uint32_t gain,
|
|
ProcessType process_type, float zoom_ratio,
|
|
bool rotate_and_crop,
|
|
const SensorCharacteristics& chars) {
|
|
ATRACE_CALL();
|
|
size_t input_width, input_height;
|
|
YCbCrPlanes input_planes, output_planes;
|
|
std::vector<uint8_t> temp_yuv, temp_output_uv, temp_input_uv;
|
|
|
|
// Overwrite HIGH_QUALITY to REGULAR for Emulator if property
|
|
// ro.boot.qemu.camera_hq_edge_processing is false;
|
|
if (process_type == HIGH_QUALITY &&
|
|
!property_get_bool("ro.boot.qemu.camera_hq_edge_processing", true)) {
|
|
process_type = REGULAR;
|
|
}
|
|
|
|
switch (process_type) {
|
|
case HIGH_QUALITY:
|
|
CaptureYUV420(output.planes, output.width, output.height, gain, zoom_ratio,
|
|
rotate_and_crop, chars);
|
|
return OK;
|
|
case REPROCESS:
|
|
input_width = input.width;
|
|
input_height = input.height;
|
|
input_planes = input.planes;
|
|
|
|
// libyuv only supports planar YUV420 during scaling.
|
|
// Split the input U/V plane in separate planes if needed.
|
|
if (input_planes.cbcr_step == 2) {
|
|
temp_input_uv.resize(input_width * input_height / 2);
|
|
auto temp_uv_buffer = temp_input_uv.data();
|
|
input_planes.img_cb = temp_uv_buffer;
|
|
input_planes.img_cr = temp_uv_buffer + (input_width * input_height) / 4;
|
|
input_planes.cbcr_stride = input_width / 2;
|
|
if (input.planes.img_cb < input.planes.img_cr) {
|
|
libyuv::SplitUVPlane(input.planes.img_cb, input.planes.cbcr_stride,
|
|
input_planes.img_cb, input_planes.cbcr_stride,
|
|
input_planes.img_cr, input_planes.cbcr_stride,
|
|
input_width / 2, input_height / 2);
|
|
} else {
|
|
libyuv::SplitUVPlane(input.planes.img_cr, input.planes.cbcr_stride,
|
|
input_planes.img_cr, input_planes.cbcr_stride,
|
|
input_planes.img_cb, input_planes.cbcr_stride,
|
|
input_width / 2, input_height / 2);
|
|
}
|
|
}
|
|
break;
|
|
case REGULAR:
|
|
default:
|
|
// Generate the smallest possible frame with the expected AR and
|
|
// then scale using libyuv.
|
|
float aspect_ratio = static_cast<float>(output.width) / output.height;
|
|
zoom_ratio = std::max(1.f, zoom_ratio);
|
|
input_width = EmulatedScene::kSceneWidth * aspect_ratio;
|
|
input_height = EmulatedScene::kSceneHeight;
|
|
temp_yuv.reserve((input_width * input_height * 3) / 2);
|
|
auto temp_yuv_buffer = temp_yuv.data();
|
|
input_planes = {
|
|
.img_y = temp_yuv_buffer,
|
|
.img_cb = temp_yuv_buffer + input_width * input_height,
|
|
.img_cr = temp_yuv_buffer + (input_width * input_height * 5) / 4,
|
|
.y_stride = static_cast<uint32_t>(input_width),
|
|
.cbcr_stride = static_cast<uint32_t>(input_width) / 2,
|
|
.cbcr_step = 1};
|
|
CaptureYUV420(input_planes, input_width, input_height, gain, zoom_ratio,
|
|
rotate_and_crop, chars);
|
|
}
|
|
|
|
output_planes = output.planes;
|
|
// libyuv only supports planar YUV420 during scaling.
|
|
// Treat the output UV space as planar first and then
|
|
// interleave in the second step.
|
|
if (output_planes.cbcr_step == 2) {
|
|
temp_output_uv.resize(output.width * output.height / 2);
|
|
auto temp_uv_buffer = temp_output_uv.data();
|
|
output_planes.img_cb = temp_uv_buffer;
|
|
output_planes.img_cr = temp_uv_buffer + output.width * output.height / 4;
|
|
output_planes.cbcr_stride = output.width / 2;
|
|
}
|
|
|
|
auto ret = I420Scale(
|
|
input_planes.img_y, input_planes.y_stride, input_planes.img_cb,
|
|
input_planes.cbcr_stride, input_planes.img_cr, input_planes.cbcr_stride,
|
|
input_width, input_height, output_planes.img_y, output_planes.y_stride,
|
|
output_planes.img_cb, output_planes.cbcr_stride, output_planes.img_cr,
|
|
output_planes.cbcr_stride, output.width, output.height,
|
|
libyuv::kFilterNone);
|
|
if (ret != 0) {
|
|
ALOGE("%s: Failed during YUV scaling: %d", __FUNCTION__, ret);
|
|
return ret;
|
|
}
|
|
|
|
// Merge U/V Planes for the interleaved case
|
|
if (output_planes.cbcr_step == 2) {
|
|
if (output.planes.img_cb < output.planes.img_cr) {
|
|
libyuv::MergeUVPlane(output_planes.img_cb, output_planes.cbcr_stride,
|
|
output_planes.img_cr, output_planes.cbcr_stride,
|
|
output.planes.img_cb, output.planes.cbcr_stride,
|
|
output.width / 2, output.height / 2);
|
|
} else {
|
|
libyuv::MergeUVPlane(output_planes.img_cr, output_planes.cbcr_stride,
|
|
output_planes.img_cb, output_planes.cbcr_stride,
|
|
output.planes.img_cr, output.planes.cbcr_stride,
|
|
output.width / 2, output.height / 2);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int32_t EmulatedSensor::ApplysRGBGamma(int32_t value, int32_t saturation) {
|
|
float n_value = (static_cast<float>(value) / saturation);
|
|
n_value = (n_value <= 0.0031308f)
|
|
? n_value * 12.92f
|
|
: 1.055f * pow(n_value, 0.4166667f) - 0.055f;
|
|
return n_value * saturation;
|
|
}
|
|
|
|
} // namespace android
|