You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
9.1 KiB
256 lines
9.1 KiB
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "code_generator_utils.h"
|
|
|
|
#include <android-base/logging.h>
|
|
|
|
#include "nodes.h"
|
|
|
|
namespace art {
|
|
|
|
void CalculateMagicAndShiftForDivRem(int64_t divisor, bool is_long,
|
|
int64_t* magic, int* shift) {
|
|
// It does not make sense to calculate magic and shift for zero divisor.
|
|
DCHECK_NE(divisor, 0);
|
|
|
|
/* Implementation according to H.S.Warren's "Hacker's Delight" (Addison Wesley, 2002)
|
|
* Chapter 10 and T.Grablund, P.L.Montogomery's "Division by Invariant Integers Using
|
|
* Multiplication" (PLDI 1994).
|
|
* The magic number M and shift S can be calculated in the following way:
|
|
* Let nc be the most positive value of numerator(n) such that nc = kd - 1,
|
|
* where divisor(d) >= 2.
|
|
* Let nc be the most negative value of numerator(n) such that nc = kd + 1,
|
|
* where divisor(d) <= -2.
|
|
* Thus nc can be calculated like:
|
|
* nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long
|
|
* nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long
|
|
*
|
|
* So the shift p is the smallest p satisfying
|
|
* 2^p > nc * (d - 2^p % d), where d >= 2
|
|
* 2^p > nc * (d + 2^p % d), where d <= -2.
|
|
*
|
|
* The magic number M is calculated by
|
|
* M = (2^p + d - 2^p % d) / d, where d >= 2
|
|
* M = (2^p - d - 2^p % d) / d, where d <= -2.
|
|
*
|
|
* Notice that p is always bigger than or equal to 32 (resp. 64), so we just return 32 - p
|
|
* (resp. 64 - p) as the shift number S.
|
|
*/
|
|
|
|
int64_t p = is_long ? 63 : 31;
|
|
const uint64_t exp = is_long ? (UINT64_C(1) << 63) : (UINT32_C(1) << 31);
|
|
|
|
// Initialize the computations.
|
|
uint64_t abs_d = (divisor >= 0) ? divisor : -divisor;
|
|
uint64_t sign_bit = is_long ? static_cast<uint64_t>(divisor) >> 63 :
|
|
static_cast<uint32_t>(divisor) >> 31;
|
|
uint64_t tmp = exp + sign_bit;
|
|
uint64_t abs_nc = tmp - 1 - (tmp % abs_d);
|
|
uint64_t quotient1 = exp / abs_nc;
|
|
uint64_t remainder1 = exp % abs_nc;
|
|
uint64_t quotient2 = exp / abs_d;
|
|
uint64_t remainder2 = exp % abs_d;
|
|
|
|
/*
|
|
* To avoid handling both positive and negative divisor, "Hacker's Delight"
|
|
* introduces a method to handle these 2 cases together to avoid duplication.
|
|
*/
|
|
uint64_t delta;
|
|
do {
|
|
p++;
|
|
quotient1 = 2 * quotient1;
|
|
remainder1 = 2 * remainder1;
|
|
if (remainder1 >= abs_nc) {
|
|
quotient1++;
|
|
remainder1 = remainder1 - abs_nc;
|
|
}
|
|
quotient2 = 2 * quotient2;
|
|
remainder2 = 2 * remainder2;
|
|
if (remainder2 >= abs_d) {
|
|
quotient2++;
|
|
remainder2 = remainder2 - abs_d;
|
|
}
|
|
delta = abs_d - remainder2;
|
|
} while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
|
|
|
|
*magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
|
|
|
|
if (!is_long) {
|
|
*magic = static_cast<int>(*magic);
|
|
}
|
|
|
|
*shift = is_long ? p - 64 : p - 32;
|
|
}
|
|
|
|
bool IsBooleanValueOrMaterializedCondition(HInstruction* cond_input) {
|
|
return !cond_input->IsCondition() || !cond_input->IsEmittedAtUseSite();
|
|
}
|
|
|
|
// A helper class to group functions analyzing if values are non-negative
|
|
// at the point of use. The class keeps some context used by the functions.
|
|
// The class is not supposed to be used directly or its instances to be kept.
|
|
// The main function using it is HasNonNegativeInputAt.
|
|
// If you want to use the class methods you need to become a friend of the class.
|
|
class UnsignedUseAnalyzer {
|
|
private:
|
|
explicit UnsignedUseAnalyzer(ArenaAllocator* allocator)
|
|
: seen_values_(allocator->Adapter(kArenaAllocCodeGenerator)) {
|
|
}
|
|
|
|
bool IsNonNegativeUse(HInstruction* target_user, HInstruction* value);
|
|
bool IsComparedValueNonNegativeInBlock(HInstruction* value,
|
|
HCondition* cond,
|
|
HBasicBlock* target_block);
|
|
|
|
ArenaSet<HInstruction*> seen_values_;
|
|
|
|
friend bool HasNonNegativeInputAt(HInstruction* instr, size_t i);
|
|
};
|
|
|
|
// Check that the value compared with a non-negavite value is
|
|
// non-negative in the specified basic block.
|
|
bool UnsignedUseAnalyzer::IsComparedValueNonNegativeInBlock(HInstruction* value,
|
|
HCondition* cond,
|
|
HBasicBlock* target_block) {
|
|
DCHECK(cond->HasInput(value));
|
|
|
|
// To simplify analysis, we require:
|
|
// 1. The condition basic block and target_block to be different.
|
|
// 2. The condition basic block to end with HIf.
|
|
// 3. HIf to use the condition.
|
|
if (cond->GetBlock() == target_block ||
|
|
!cond->GetBlock()->EndsWithIf() ||
|
|
cond->GetBlock()->GetLastInstruction()->InputAt(0) != cond) {
|
|
return false;
|
|
}
|
|
|
|
// We need to find a successor basic block of HIf for the case when instr is non-negative.
|
|
// If the successor dominates target_block, instructions in target_block see a non-negative value.
|
|
HIf* if_instr = cond->GetBlock()->GetLastInstruction()->AsIf();
|
|
HBasicBlock* successor = nullptr;
|
|
switch (cond->GetCondition()) {
|
|
case kCondGT:
|
|
case kCondGE: {
|
|
if (cond->GetLeft() == value) {
|
|
// The expression is v > A or v >= A.
|
|
// If A is non-negative, we need the true successor.
|
|
if (IsNonNegativeUse(cond, cond->GetRight())) {
|
|
successor = if_instr->IfTrueSuccessor();
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
DCHECK_EQ(cond->GetRight(), value);
|
|
// The expression is A > v or A >= v.
|
|
// If A is non-negative, we need the false successor.
|
|
if (IsNonNegativeUse(cond, cond->GetLeft())) {
|
|
successor = if_instr->IfFalseSuccessor();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kCondLT:
|
|
case kCondLE: {
|
|
if (cond->GetLeft() == value) {
|
|
// The expression is v < A or v <= A.
|
|
// If A is non-negative, we need the false successor.
|
|
if (IsNonNegativeUse(cond, cond->GetRight())) {
|
|
successor = if_instr->IfFalseSuccessor();
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
DCHECK_EQ(cond->GetRight(), value);
|
|
// The expression is A < v or A <= v.
|
|
// If A is non-negative, we need the true successor.
|
|
if (IsNonNegativeUse(cond, cond->GetLeft())) {
|
|
successor = if_instr->IfTrueSuccessor();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
DCHECK_NE(successor, nullptr);
|
|
|
|
return successor->Dominates(target_block);
|
|
}
|
|
|
|
// Check the value used by target_user is non-negative.
|
|
bool UnsignedUseAnalyzer::IsNonNegativeUse(HInstruction* target_user, HInstruction* value) {
|
|
DCHECK(target_user->HasInput(value));
|
|
|
|
// Prevent infinitive recursion which can happen when the value is an induction variable.
|
|
if (!seen_values_.insert(value).second) {
|
|
return false;
|
|
}
|
|
|
|
// Check if the value is always non-negative.
|
|
if (IsGEZero(value)) {
|
|
return true;
|
|
}
|
|
|
|
for (const HUseListNode<HInstruction*>& use : value->GetUses()) {
|
|
HInstruction* user = use.GetUser();
|
|
if (user == target_user) {
|
|
continue;
|
|
}
|
|
|
|
// If the value is compared with some non-negative value, this can guarantee the value to be
|
|
// non-negative at its use.
|
|
// JFYI: We're not using HTypeConversion to bind the new information because it would
|
|
// increase the complexity of optimizations: HTypeConversion can create a dependency
|
|
// which does not exist in the input program, for example:
|
|
// between two uses, 1st - cmp, 2nd - target_user.
|
|
if (user->IsCondition()) {
|
|
// The condition must dominate target_user to guarantee that the value is always checked
|
|
// before it is used by target_user.
|
|
if (user->GetBlock()->Dominates(target_user->GetBlock()) &&
|
|
IsComparedValueNonNegativeInBlock(value, user->AsCondition(), target_user->GetBlock())) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// TODO The value is non-negative if it is used as an array index before.
|
|
// TODO The value is non-negative if it is initialized by a positive number and all of its
|
|
// modifications keep the value non-negative, for example the division operation.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool HasNonNegativeInputAt(HInstruction* instr, size_t i) {
|
|
UnsignedUseAnalyzer analyzer(instr->GetBlock()->GetGraph()->GetAllocator());
|
|
return analyzer.IsNonNegativeUse(instr, instr->InputAt(i));
|
|
}
|
|
|
|
bool HasNonNegativeOrMinIntInputAt(HInstruction* instr, size_t i) {
|
|
HInstruction* input = instr->InputAt(i);
|
|
return input->IsAbs() ||
|
|
IsInt64Value(input, DataType::MinValueOfIntegralType(input->GetType())) ||
|
|
HasNonNegativeInputAt(instr, i);
|
|
}
|
|
|
|
} // namespace art
|