You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
533 lines
19 KiB
533 lines
19 KiB
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dead_code_elimination.h"
|
|
|
|
#include "base/array_ref.h"
|
|
#include "base/bit_vector-inl.h"
|
|
#include "base/scoped_arena_allocator.h"
|
|
#include "base/scoped_arena_containers.h"
|
|
#include "base/stl_util.h"
|
|
#include "ssa_phi_elimination.h"
|
|
|
|
namespace art {
|
|
|
|
static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) {
|
|
// Use local allocator for allocating memory.
|
|
ScopedArenaAllocator allocator(graph->GetArenaStack());
|
|
|
|
ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocDCE));
|
|
constexpr size_t kDefaultWorlistSize = 8;
|
|
worklist.reserve(kDefaultWorlistSize);
|
|
visited->SetBit(graph->GetEntryBlock()->GetBlockId());
|
|
worklist.push_back(graph->GetEntryBlock());
|
|
|
|
while (!worklist.empty()) {
|
|
HBasicBlock* block = worklist.back();
|
|
worklist.pop_back();
|
|
int block_id = block->GetBlockId();
|
|
DCHECK(visited->IsBitSet(block_id));
|
|
|
|
ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors());
|
|
HInstruction* last_instruction = block->GetLastInstruction();
|
|
if (last_instruction->IsIf()) {
|
|
HIf* if_instruction = last_instruction->AsIf();
|
|
HInstruction* condition = if_instruction->InputAt(0);
|
|
if (condition->IsIntConstant()) {
|
|
if (condition->AsIntConstant()->IsTrue()) {
|
|
live_successors = live_successors.SubArray(0u, 1u);
|
|
DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor());
|
|
} else {
|
|
DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
|
|
live_successors = live_successors.SubArray(1u, 1u);
|
|
DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor());
|
|
}
|
|
}
|
|
} else if (last_instruction->IsPackedSwitch()) {
|
|
HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch();
|
|
HInstruction* switch_input = switch_instruction->InputAt(0);
|
|
if (switch_input->IsIntConstant()) {
|
|
int32_t switch_value = switch_input->AsIntConstant()->GetValue();
|
|
int32_t start_value = switch_instruction->GetStartValue();
|
|
// Note: Though the spec forbids packed-switch values to wrap around, we leave
|
|
// that task to the verifier and use unsigned arithmetic with it's "modulo 2^32"
|
|
// semantics to check if the value is in range, wrapped or not.
|
|
uint32_t switch_index =
|
|
static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value);
|
|
if (switch_index < switch_instruction->GetNumEntries()) {
|
|
live_successors = live_successors.SubArray(switch_index, 1u);
|
|
DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]);
|
|
} else {
|
|
live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u);
|
|
DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock());
|
|
}
|
|
}
|
|
}
|
|
|
|
for (HBasicBlock* successor : live_successors) {
|
|
// Add only those successors that have not been visited yet.
|
|
if (!visited->IsBitSet(successor->GetBlockId())) {
|
|
visited->SetBit(successor->GetBlockId());
|
|
worklist.push_back(successor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) {
|
|
if (stats_ != nullptr) {
|
|
stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction,
|
|
block->GetPhis().CountSize() + block->GetInstructions().CountSize());
|
|
}
|
|
}
|
|
|
|
void HDeadCodeElimination::MaybeRecordSimplifyIf() {
|
|
if (stats_ != nullptr) {
|
|
stats_->RecordStat(MethodCompilationStat::kSimplifyIf);
|
|
}
|
|
}
|
|
|
|
static bool HasInput(HCondition* instruction, HInstruction* input) {
|
|
return (instruction->InputAt(0) == input) ||
|
|
(instruction->InputAt(1) == input);
|
|
}
|
|
|
|
static bool HasEquality(IfCondition condition) {
|
|
switch (condition) {
|
|
case kCondEQ:
|
|
case kCondLE:
|
|
case kCondGE:
|
|
case kCondBE:
|
|
case kCondAE:
|
|
return true;
|
|
case kCondNE:
|
|
case kCondLT:
|
|
case kCondGT:
|
|
case kCondB:
|
|
case kCondA:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) {
|
|
if (left == right && !DataType::IsFloatingPointType(left->GetType())) {
|
|
return condition->GetBlock()->GetGraph()->GetIntConstant(
|
|
HasEquality(condition->GetCondition()) ? 1 : 0);
|
|
}
|
|
|
|
if (!left->IsConstant() || !right->IsConstant()) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (left->IsIntConstant()) {
|
|
return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant());
|
|
} else if (left->IsNullConstant()) {
|
|
return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant());
|
|
} else if (left->IsLongConstant()) {
|
|
return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant());
|
|
} else if (left->IsFloatConstant()) {
|
|
return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
|
|
} else {
|
|
DCHECK(left->IsDoubleConstant());
|
|
return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
|
|
}
|
|
}
|
|
|
|
static bool RemoveNonNullControlDependences(HBasicBlock* block, HBasicBlock* throws) {
|
|
// Test for an if as last statement.
|
|
if (!block->EndsWithIf()) {
|
|
return false;
|
|
}
|
|
HIf* ifs = block->GetLastInstruction()->AsIf();
|
|
// Find either:
|
|
// if obj == null
|
|
// throws
|
|
// else
|
|
// not_throws
|
|
// or:
|
|
// if obj != null
|
|
// not_throws
|
|
// else
|
|
// throws
|
|
HInstruction* cond = ifs->InputAt(0);
|
|
HBasicBlock* not_throws = nullptr;
|
|
if (throws == ifs->IfTrueSuccessor() && cond->IsEqual()) {
|
|
not_throws = ifs->IfFalseSuccessor();
|
|
} else if (throws == ifs->IfFalseSuccessor() && cond->IsNotEqual()) {
|
|
not_throws = ifs->IfTrueSuccessor();
|
|
} else {
|
|
return false;
|
|
}
|
|
DCHECK(cond->IsEqual() || cond->IsNotEqual());
|
|
HInstruction* obj = cond->InputAt(1);
|
|
if (obj->IsNullConstant()) {
|
|
obj = cond->InputAt(0);
|
|
} else if (!cond->InputAt(0)->IsNullConstant()) {
|
|
return false;
|
|
}
|
|
// Scan all uses of obj and find null check under control dependence.
|
|
HBoundType* bound = nullptr;
|
|
const HUseList<HInstruction*>& uses = obj->GetUses();
|
|
for (auto it = uses.begin(), end = uses.end(); it != end;) {
|
|
HInstruction* user = it->GetUser();
|
|
++it; // increment before possibly replacing
|
|
if (user->IsNullCheck()) {
|
|
HBasicBlock* user_block = user->GetBlock();
|
|
if (user_block != block &&
|
|
user_block != throws &&
|
|
block->Dominates(user_block)) {
|
|
if (bound == nullptr) {
|
|
ReferenceTypeInfo ti = obj->GetReferenceTypeInfo();
|
|
bound = new (obj->GetBlock()->GetGraph()->GetAllocator()) HBoundType(obj);
|
|
bound->SetUpperBound(ti, /*can_be_null*/ false);
|
|
bound->SetReferenceTypeInfo(ti);
|
|
bound->SetCanBeNull(false);
|
|
not_throws->InsertInstructionBefore(bound, not_throws->GetFirstInstruction());
|
|
}
|
|
user->ReplaceWith(bound);
|
|
user_block->RemoveInstruction(user);
|
|
}
|
|
}
|
|
}
|
|
return bound != nullptr;
|
|
}
|
|
|
|
// Simplify the pattern:
|
|
//
|
|
// B1
|
|
// / \
|
|
// | foo() // always throws
|
|
// \ goto B2
|
|
// \ /
|
|
// B2
|
|
//
|
|
// Into:
|
|
//
|
|
// B1
|
|
// / \
|
|
// | foo()
|
|
// | goto Exit
|
|
// | |
|
|
// B2 Exit
|
|
//
|
|
// Rationale:
|
|
// Removal of the never taken edge to B2 may expose
|
|
// other optimization opportunities, such as code sinking.
|
|
bool HDeadCodeElimination::SimplifyAlwaysThrows() {
|
|
// Make sure exceptions go to exit.
|
|
if (graph_->HasTryCatch()) {
|
|
return false;
|
|
}
|
|
HBasicBlock* exit = graph_->GetExitBlock();
|
|
if (exit == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
bool rerun_dominance_and_loop_analysis = false;
|
|
|
|
// Order does not matter, just pick one.
|
|
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
|
|
HInstruction* first = block->GetFirstInstruction();
|
|
HInstruction* last = block->GetLastInstruction();
|
|
// Ensure only one throwing instruction appears before goto.
|
|
if (first->AlwaysThrows() &&
|
|
first->GetNext() == last &&
|
|
last->IsGoto() &&
|
|
block->GetPhis().IsEmpty() &&
|
|
block->GetPredecessors().size() == 1u) {
|
|
DCHECK_EQ(block->GetSuccessors().size(), 1u);
|
|
HBasicBlock* pred = block->GetSinglePredecessor();
|
|
HBasicBlock* succ = block->GetSingleSuccessor();
|
|
// Ensure no computations are merged through throwing block.
|
|
// This does not prevent the optimization per se, but would
|
|
// require an elaborate clean up of the SSA graph.
|
|
if (succ != exit &&
|
|
!block->Dominates(pred) &&
|
|
pred->Dominates(succ) &&
|
|
succ->GetPredecessors().size() > 1u &&
|
|
succ->GetPhis().IsEmpty()) {
|
|
block->ReplaceSuccessor(succ, exit);
|
|
rerun_dominance_and_loop_analysis = true;
|
|
MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyThrowingInvoke);
|
|
// Perform a quick follow up optimization on object != null control dependences
|
|
// that is much cheaper to perform now than in a later phase.
|
|
if (RemoveNonNullControlDependences(pred, block)) {
|
|
MaybeRecordStat(stats_, MethodCompilationStat::kRemovedNullCheck);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We need to re-analyze the graph in order to run DCE afterwards.
|
|
if (rerun_dominance_and_loop_analysis) {
|
|
graph_->ClearLoopInformation();
|
|
graph_->ClearDominanceInformation();
|
|
graph_->BuildDominatorTree();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Simplify the pattern:
|
|
//
|
|
// B1 B2 ...
|
|
// goto goto goto
|
|
// \ | /
|
|
// \ | /
|
|
// B3
|
|
// i1 = phi(input, input)
|
|
// (i2 = condition on i1)
|
|
// if i1 (or i2)
|
|
// / \
|
|
// / \
|
|
// B4 B5
|
|
//
|
|
// Into:
|
|
//
|
|
// B1 B2 ...
|
|
// | | |
|
|
// B4 B5 B?
|
|
//
|
|
// Note that individual edges can be redirected (for example B2->B3
|
|
// can be redirected as B2->B5) without applying this optimization
|
|
// to other incoming edges.
|
|
//
|
|
// This simplification cannot be applied to catch blocks, because
|
|
// exception handler edges do not represent normal control flow.
|
|
// Though in theory this could still apply to normal control flow
|
|
// going directly to a catch block, we cannot support it at the
|
|
// moment because the catch Phi's inputs do not correspond to the
|
|
// catch block's predecessors, so we cannot identify which
|
|
// predecessor corresponds to a given statically evaluated input.
|
|
//
|
|
// We do not apply this optimization to loop headers as this could
|
|
// create irreducible loops. We rely on the suspend check in the
|
|
// loop header to prevent the pattern match.
|
|
//
|
|
// Note that we rely on the dead code elimination to get rid of B3.
|
|
bool HDeadCodeElimination::SimplifyIfs() {
|
|
bool simplified_one_or_more_ifs = false;
|
|
bool rerun_dominance_and_loop_analysis = false;
|
|
|
|
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
|
|
HInstruction* last = block->GetLastInstruction();
|
|
HInstruction* first = block->GetFirstInstruction();
|
|
if (!block->IsCatchBlock() &&
|
|
last->IsIf() &&
|
|
block->HasSinglePhi() &&
|
|
block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) {
|
|
bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi());
|
|
bool has_only_phi_condition_and_if =
|
|
!has_only_phi_and_if &&
|
|
first->IsCondition() &&
|
|
HasInput(first->AsCondition(), block->GetFirstPhi()) &&
|
|
(first->GetNext() == last) &&
|
|
(last->InputAt(0) == first) &&
|
|
first->HasOnlyOneNonEnvironmentUse();
|
|
|
|
if (has_only_phi_and_if || has_only_phi_condition_and_if) {
|
|
DCHECK(!block->IsLoopHeader());
|
|
HPhi* phi = block->GetFirstPhi()->AsPhi();
|
|
bool phi_input_is_left = (first->InputAt(0) == phi);
|
|
|
|
// Walk over all inputs of the phis and update the control flow of
|
|
// predecessors feeding constants to the phi.
|
|
// Note that phi->InputCount() may change inside the loop.
|
|
for (size_t i = 0; i < phi->InputCount();) {
|
|
HInstruction* input = phi->InputAt(i);
|
|
HInstruction* value_to_check = nullptr;
|
|
if (has_only_phi_and_if) {
|
|
if (input->IsIntConstant()) {
|
|
value_to_check = input;
|
|
}
|
|
} else {
|
|
DCHECK(has_only_phi_condition_and_if);
|
|
if (phi_input_is_left) {
|
|
value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1));
|
|
} else {
|
|
value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input);
|
|
}
|
|
}
|
|
if (value_to_check == nullptr) {
|
|
// Could not evaluate to a constant, continue iterating over the inputs.
|
|
++i;
|
|
} else {
|
|
HBasicBlock* predecessor_to_update = block->GetPredecessors()[i];
|
|
HBasicBlock* successor_to_update = nullptr;
|
|
if (value_to_check->AsIntConstant()->IsTrue()) {
|
|
successor_to_update = last->AsIf()->IfTrueSuccessor();
|
|
} else {
|
|
DCHECK(value_to_check->AsIntConstant()->IsFalse())
|
|
<< value_to_check->AsIntConstant()->GetValue();
|
|
successor_to_update = last->AsIf()->IfFalseSuccessor();
|
|
}
|
|
predecessor_to_update->ReplaceSuccessor(block, successor_to_update);
|
|
phi->RemoveInputAt(i);
|
|
simplified_one_or_more_ifs = true;
|
|
if (block->IsInLoop()) {
|
|
rerun_dominance_and_loop_analysis = true;
|
|
}
|
|
// For simplicity, don't create a dead block, let the dead code elimination
|
|
// pass deal with it.
|
|
if (phi->InputCount() == 1) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (block->GetPredecessors().size() == 1) {
|
|
phi->ReplaceWith(phi->InputAt(0));
|
|
block->RemovePhi(phi);
|
|
if (has_only_phi_condition_and_if) {
|
|
// Evaluate here (and not wait for a constant folding pass) to open
|
|
// more opportunities for DCE.
|
|
HInstruction* result = first->AsCondition()->TryStaticEvaluation();
|
|
if (result != nullptr) {
|
|
first->ReplaceWith(result);
|
|
block->RemoveInstruction(first);
|
|
}
|
|
}
|
|
}
|
|
if (simplified_one_or_more_ifs) {
|
|
MaybeRecordSimplifyIf();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// We need to re-analyze the graph in order to run DCE afterwards.
|
|
if (simplified_one_or_more_ifs) {
|
|
if (rerun_dominance_and_loop_analysis) {
|
|
graph_->ClearLoopInformation();
|
|
graph_->ClearDominanceInformation();
|
|
graph_->BuildDominatorTree();
|
|
} else {
|
|
graph_->ClearDominanceInformation();
|
|
// We have introduced critical edges, remove them.
|
|
graph_->SimplifyCFG();
|
|
graph_->ComputeDominanceInformation();
|
|
graph_->ComputeTryBlockInformation();
|
|
}
|
|
}
|
|
|
|
return simplified_one_or_more_ifs;
|
|
}
|
|
|
|
void HDeadCodeElimination::ConnectSuccessiveBlocks() {
|
|
// Order does not matter. Skip the entry block by starting at index 1 in reverse post order.
|
|
for (size_t i = 1u, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
|
|
HBasicBlock* block = graph_->GetReversePostOrder()[i];
|
|
DCHECK(!block->IsEntryBlock());
|
|
while (block->GetLastInstruction()->IsGoto()) {
|
|
HBasicBlock* successor = block->GetSingleSuccessor();
|
|
if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) {
|
|
break;
|
|
}
|
|
DCHECK_LT(i, IndexOfElement(graph_->GetReversePostOrder(), successor));
|
|
block->MergeWith(successor);
|
|
--size;
|
|
DCHECK_EQ(size, graph_->GetReversePostOrder().size());
|
|
DCHECK_EQ(block, graph_->GetReversePostOrder()[i]);
|
|
// Reiterate on this block in case it can be merged with its new successor.
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HDeadCodeElimination::RemoveDeadBlocks() {
|
|
// Use local allocator for allocating memory.
|
|
ScopedArenaAllocator allocator(graph_->GetArenaStack());
|
|
|
|
// Classify blocks as reachable/unreachable.
|
|
ArenaBitVector live_blocks(&allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE);
|
|
live_blocks.ClearAllBits();
|
|
|
|
MarkReachableBlocks(graph_, &live_blocks);
|
|
bool removed_one_or_more_blocks = false;
|
|
bool rerun_dominance_and_loop_analysis = false;
|
|
|
|
// Remove all dead blocks. Iterate in post order because removal needs the
|
|
// block's chain of dominators and nested loops need to be updated from the
|
|
// inside out.
|
|
for (HBasicBlock* block : graph_->GetPostOrder()) {
|
|
int id = block->GetBlockId();
|
|
if (!live_blocks.IsBitSet(id)) {
|
|
MaybeRecordDeadBlock(block);
|
|
block->DisconnectAndDelete();
|
|
removed_one_or_more_blocks = true;
|
|
if (block->IsInLoop()) {
|
|
rerun_dominance_and_loop_analysis = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we removed at least one block, we need to recompute the full
|
|
// dominator tree and try block membership.
|
|
if (removed_one_or_more_blocks) {
|
|
if (rerun_dominance_and_loop_analysis) {
|
|
graph_->ClearLoopInformation();
|
|
graph_->ClearDominanceInformation();
|
|
graph_->BuildDominatorTree();
|
|
} else {
|
|
graph_->ClearDominanceInformation();
|
|
graph_->ComputeDominanceInformation();
|
|
graph_->ComputeTryBlockInformation();
|
|
}
|
|
}
|
|
return removed_one_or_more_blocks;
|
|
}
|
|
|
|
void HDeadCodeElimination::RemoveDeadInstructions() {
|
|
// Process basic blocks in post-order in the dominator tree, so that
|
|
// a dead instruction depending on another dead instruction is removed.
|
|
for (HBasicBlock* block : graph_->GetPostOrder()) {
|
|
// Traverse this block's instructions in backward order and remove
|
|
// the unused ones.
|
|
HBackwardInstructionIterator i(block->GetInstructions());
|
|
// Skip the first iteration, as the last instruction of a block is
|
|
// a branching instruction.
|
|
DCHECK(i.Current()->IsControlFlow());
|
|
for (i.Advance(); !i.Done(); i.Advance()) {
|
|
HInstruction* inst = i.Current();
|
|
DCHECK(!inst->IsControlFlow());
|
|
if (inst->IsDeadAndRemovable()) {
|
|
block->RemoveInstruction(inst);
|
|
MaybeRecordStat(stats_, MethodCompilationStat::kRemovedDeadInstruction);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HDeadCodeElimination::Run() {
|
|
// Do not eliminate dead blocks if the graph has irreducible loops. We could
|
|
// support it, but that would require changes in our loop representation to handle
|
|
// multiple entry points. We decided it was not worth the complexity.
|
|
if (!graph_->HasIrreducibleLoops()) {
|
|
// Simplify graph to generate more dead block patterns.
|
|
ConnectSuccessiveBlocks();
|
|
bool did_any_simplification = false;
|
|
did_any_simplification |= SimplifyAlwaysThrows();
|
|
did_any_simplification |= SimplifyIfs();
|
|
did_any_simplification |= RemoveDeadBlocks();
|
|
if (did_any_simplification) {
|
|
// Connect successive blocks created by dead branches.
|
|
ConnectSuccessiveBlocks();
|
|
}
|
|
}
|
|
SsaRedundantPhiElimination(graph_).Run();
|
|
RemoveDeadInstructions();
|
|
return true;
|
|
}
|
|
|
|
} // namespace art
|