You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2936 lines
119 KiB
2936 lines
119 KiB
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "intrinsics_x86_64.h"
|
|
|
|
#include <limits>
|
|
|
|
#include "arch/x86_64/instruction_set_features_x86_64.h"
|
|
#include "art_method.h"
|
|
#include "base/bit_utils.h"
|
|
#include "code_generator_x86_64.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "heap_poisoning.h"
|
|
#include "intrinsics.h"
|
|
#include "intrinsics_utils.h"
|
|
#include "lock_word.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/object_array-inl.h"
|
|
#include "mirror/reference.h"
|
|
#include "mirror/string.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "thread-current-inl.h"
|
|
#include "utils/x86_64/assembler_x86_64.h"
|
|
#include "utils/x86_64/constants_x86_64.h"
|
|
|
|
namespace art {
|
|
|
|
namespace x86_64 {
|
|
|
|
IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
|
|
: allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) {
|
|
}
|
|
|
|
X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
|
|
return down_cast<X86_64Assembler*>(codegen_->GetAssembler());
|
|
}
|
|
|
|
ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
|
|
return codegen_->GetGraph()->GetAllocator();
|
|
}
|
|
|
|
bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
|
|
Dispatch(invoke);
|
|
LocationSummary* res = invoke->GetLocations();
|
|
if (res == nullptr) {
|
|
return false;
|
|
}
|
|
return res->Intrinsified();
|
|
}
|
|
|
|
using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>;
|
|
|
|
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
|
|
#define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT
|
|
|
|
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
|
|
class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode {
|
|
public:
|
|
explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction)
|
|
: SlowPathCode(instruction) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) override {
|
|
CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(instruction_->IsInvokeStaticOrDirect())
|
|
<< "Unexpected instruction in read barrier arraycopy slow path: "
|
|
<< instruction_->DebugName();
|
|
DCHECK(instruction_->GetLocations()->Intrinsified());
|
|
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
|
|
|
|
int32_t element_size = DataType::Size(DataType::Type::kReference);
|
|
|
|
CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister<CpuRegister>();
|
|
CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister<CpuRegister>();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
NearLabel loop;
|
|
__ Bind(&loop);
|
|
__ movl(CpuRegister(TMP), Address(src_curr_addr, 0));
|
|
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
|
|
// TODO: Inline the mark bit check before calling the runtime?
|
|
// TMP = ReadBarrier::Mark(TMP);
|
|
// No need to save live registers; it's taken care of by the
|
|
// entrypoint. Also, there is no need to update the stack mask,
|
|
// as this runtime call will not trigger a garbage collection.
|
|
int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(TMP);
|
|
// This runtime call does not require a stack map.
|
|
x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
|
|
__ MaybePoisonHeapReference(CpuRegister(TMP));
|
|
__ movl(Address(dst_curr_addr, 0), CpuRegister(TMP));
|
|
__ addl(src_curr_addr, Immediate(element_size));
|
|
__ addl(dst_curr_addr, Immediate(element_size));
|
|
__ cmpl(src_curr_addr, src_stop_addr);
|
|
__ j(kNotEqual, &loop);
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86_64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64);
|
|
};
|
|
|
|
#undef __
|
|
|
|
#define __ assembler->
|
|
|
|
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
|
|
Location input = locations->InAt(0);
|
|
Location output = locations->Out();
|
|
__ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
|
|
}
|
|
|
|
static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
|
|
Location input = locations->InAt(0);
|
|
Location output = locations->Out();
|
|
__ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
|
|
CreateFPToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
|
|
CreateIntToFPLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
|
|
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
|
|
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
|
|
CreateFPToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
|
|
CreateIntToFPLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
|
|
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
|
|
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
|
|
}
|
|
|
|
static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
|
|
static void GenReverseBytes(LocationSummary* locations,
|
|
DataType::Type size,
|
|
X86_64Assembler* assembler) {
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
switch (size) {
|
|
case DataType::Type::kInt16:
|
|
// TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
|
|
__ bswapl(out);
|
|
__ sarl(out, Immediate(16));
|
|
break;
|
|
case DataType::Type::kInt32:
|
|
__ bswapl(out);
|
|
break;
|
|
case DataType::Type::kInt64:
|
|
__ bswapq(out);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
|
|
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
|
|
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
|
|
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
|
|
}
|
|
|
|
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
|
|
CreateFPToFPLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
|
|
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
|
|
|
|
GetAssembler()->sqrtsd(out, in);
|
|
}
|
|
|
|
static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator,
|
|
HInvoke* invoke,
|
|
CodeGeneratorX86_64* codegen) {
|
|
// Do we have instruction support?
|
|
if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) {
|
|
return;
|
|
}
|
|
|
|
CreateFPToFPLocations(allocator, invoke);
|
|
}
|
|
|
|
static void GenSSE41FPToFPIntrinsic(HInvoke* invoke, X86_64Assembler* assembler, int round_mode) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
DCHECK(!locations->WillCall());
|
|
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
|
|
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
|
|
__ roundsd(out, in, Immediate(round_mode));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
|
|
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
|
|
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 2);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
|
|
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
|
|
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 1);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
|
|
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
|
|
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 0);
|
|
}
|
|
|
|
static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator,
|
|
HInvoke* invoke,
|
|
CodeGeneratorX86_64* codegen) {
|
|
// Do we have instruction support?
|
|
if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) {
|
|
return;
|
|
}
|
|
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
|
|
CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
DCHECK(!locations->WillCall());
|
|
|
|
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
|
|
NearLabel skip_incr, done;
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
|
|
// Since no direct x86 rounding instruction matches the required semantics,
|
|
// this intrinsic is implemented as follows:
|
|
// result = floor(in);
|
|
// if (in - result >= 0.5f)
|
|
// result = result + 1.0f;
|
|
__ movss(t2, in);
|
|
__ roundss(t1, in, Immediate(1));
|
|
__ subss(t2, t1);
|
|
__ comiss(t2, codegen_->LiteralFloatAddress(0.5f));
|
|
__ j(kBelow, &skip_incr);
|
|
__ addss(t1, codegen_->LiteralFloatAddress(1.0f));
|
|
__ Bind(&skip_incr);
|
|
|
|
// Final conversion to an integer. Unfortunately this also does not have a
|
|
// direct x86 instruction, since NaN should map to 0 and large positive
|
|
// values need to be clipped to the extreme value.
|
|
codegen_->Load32BitValue(out, kPrimIntMax);
|
|
__ cvtsi2ss(t2, out);
|
|
__ comiss(t1, t2);
|
|
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
|
|
__ movl(out, Immediate(0)); // does not change flags
|
|
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
|
|
__ cvttss2si(out, t1);
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
|
|
CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
DCHECK(!locations->WillCall());
|
|
|
|
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
|
|
NearLabel skip_incr, done;
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
|
|
// Since no direct x86 rounding instruction matches the required semantics,
|
|
// this intrinsic is implemented as follows:
|
|
// result = floor(in);
|
|
// if (in - result >= 0.5)
|
|
// result = result + 1.0f;
|
|
__ movsd(t2, in);
|
|
__ roundsd(t1, in, Immediate(1));
|
|
__ subsd(t2, t1);
|
|
__ comisd(t2, codegen_->LiteralDoubleAddress(0.5));
|
|
__ j(kBelow, &skip_incr);
|
|
__ addsd(t1, codegen_->LiteralDoubleAddress(1.0f));
|
|
__ Bind(&skip_incr);
|
|
|
|
// Final conversion to an integer. Unfortunately this also does not have a
|
|
// direct x86 instruction, since NaN should map to 0 and large positive
|
|
// values need to be clipped to the extreme value.
|
|
codegen_->Load64BitValue(out, kPrimLongMax);
|
|
__ cvtsi2sd(t2, out, /* is64bit= */ true);
|
|
__ comisd(t1, t2);
|
|
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
|
|
__ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit
|
|
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
|
|
__ cvttsd2si(out, t1, /* is64bit= */ true);
|
|
__ Bind(&done);
|
|
}
|
|
|
|
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetOut(Location::FpuRegisterLocation(XMM0));
|
|
|
|
CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations);
|
|
}
|
|
|
|
static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen,
|
|
QuickEntrypointEnum entry) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
DCHECK(locations->WillCall());
|
|
DCHECK(invoke->IsInvokeStaticOrDirect());
|
|
|
|
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCos);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickSin);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAcos);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAsin);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAtan);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCosh);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickExp);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickLog);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickLog10);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickSinh);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickTan);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickTanh);
|
|
}
|
|
|
|
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
|
|
locations->SetOut(Location::FpuRegisterLocation(XMM0));
|
|
|
|
CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAtan2);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickPow);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickHypot);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
|
|
// Check to see if we have known failures that will cause us to have to bail out
|
|
// to the runtime, and just generate the runtime call directly.
|
|
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
|
|
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
|
|
|
|
// The positions must be non-negative.
|
|
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
|
|
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
|
|
// We will have to fail anyways.
|
|
return;
|
|
}
|
|
|
|
// The length must be > 0.
|
|
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
|
|
if (length != nullptr) {
|
|
int32_t len = length->GetValue();
|
|
if (len < 0) {
|
|
// Just call as normal.
|
|
return;
|
|
}
|
|
}
|
|
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
|
|
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
|
|
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
|
|
|
|
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
|
|
locations->AddTemp(Location::RegisterLocation(RSI));
|
|
locations->AddTemp(Location::RegisterLocation(RDI));
|
|
locations->AddTemp(Location::RegisterLocation(RCX));
|
|
}
|
|
|
|
static void CheckPosition(X86_64Assembler* assembler,
|
|
Location pos,
|
|
CpuRegister input,
|
|
Location length,
|
|
SlowPathCode* slow_path,
|
|
CpuRegister temp,
|
|
bool length_is_input_length = false) {
|
|
// Where is the length in the Array?
|
|
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
|
|
|
|
if (pos.IsConstant()) {
|
|
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (pos_const == 0) {
|
|
if (!length_is_input_length) {
|
|
// Check that length(input) >= length.
|
|
if (length.IsConstant()) {
|
|
__ cmpl(Address(input, length_offset),
|
|
Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
__ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>());
|
|
}
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
}
|
|
} else {
|
|
// Check that length(input) >= pos.
|
|
__ movl(temp, Address(input, length_offset));
|
|
__ subl(temp, Immediate(pos_const));
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
|
|
// Check that (length(input) - pos) >= length.
|
|
if (length.IsConstant()) {
|
|
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
__ cmpl(temp, length.AsRegister<CpuRegister>());
|
|
}
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
}
|
|
} else if (length_is_input_length) {
|
|
// The only way the copy can succeed is if pos is zero.
|
|
CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
|
|
__ testl(pos_reg, pos_reg);
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
} else {
|
|
// Check that pos >= 0.
|
|
CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
|
|
__ testl(pos_reg, pos_reg);
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
|
|
// Check that pos <= length(input).
|
|
__ cmpl(Address(input, length_offset), pos_reg);
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
|
|
// Check that (length(input) - pos) >= length.
|
|
__ movl(temp, Address(input, length_offset));
|
|
__ subl(temp, pos_reg);
|
|
if (length.IsConstant()) {
|
|
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
__ cmpl(temp, length.AsRegister<CpuRegister>());
|
|
}
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
|
|
Location src_pos = locations->InAt(1);
|
|
CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
|
|
Location dest_pos = locations->InAt(3);
|
|
Location length = locations->InAt(4);
|
|
|
|
// Temporaries that we need for MOVSW.
|
|
CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
DCHECK_EQ(src_base.AsRegister(), RSI);
|
|
CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>();
|
|
DCHECK_EQ(dest_base.AsRegister(), RDI);
|
|
CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>();
|
|
DCHECK_EQ(count.AsRegister(), RCX);
|
|
|
|
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
// Bail out if the source and destination are the same.
|
|
__ cmpl(src, dest);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
// Bail out if the source is null.
|
|
__ testl(src, src);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
// Bail out if the destination is null.
|
|
__ testl(dest, dest);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
// If the length is negative, bail out.
|
|
// We have already checked in the LocationsBuilder for the constant case.
|
|
if (!length.IsConstant()) {
|
|
__ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// Validity checks: source. Use src_base as a temporary register.
|
|
CheckPosition(assembler, src_pos, src, length, slow_path, src_base);
|
|
|
|
// Validity checks: dest. Use src_base as a temporary register.
|
|
CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base);
|
|
|
|
// We need the count in RCX.
|
|
if (length.IsConstant()) {
|
|
__ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
__ movl(count, length.AsRegister<CpuRegister>());
|
|
}
|
|
|
|
// Okay, everything checks out. Finally time to do the copy.
|
|
// Check assumption that sizeof(Char) is 2 (used in scaling below).
|
|
const size_t char_size = DataType::Size(DataType::Type::kUint16);
|
|
DCHECK_EQ(char_size, 2u);
|
|
|
|
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
|
|
|
|
if (src_pos.IsConstant()) {
|
|
int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ leal(src_base, Address(src, char_size * src_pos_const + data_offset));
|
|
} else {
|
|
__ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(),
|
|
ScaleFactor::TIMES_2, data_offset));
|
|
}
|
|
if (dest_pos.IsConstant()) {
|
|
int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset));
|
|
} else {
|
|
__ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(),
|
|
ScaleFactor::TIMES_2, data_offset));
|
|
}
|
|
|
|
// Do the move.
|
|
__ rep_movsw();
|
|
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// SystemArrayCopy intrinsic is the Baker-style read barriers.
|
|
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
|
|
return;
|
|
}
|
|
|
|
CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
|
|
}
|
|
|
|
// Compute base source address, base destination address, and end
|
|
// source address for the System.arraycopy intrinsic in `src_base`,
|
|
// `dst_base` and `src_end` respectively.
|
|
static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler,
|
|
DataType::Type type,
|
|
const CpuRegister& src,
|
|
const Location& src_pos,
|
|
const CpuRegister& dst,
|
|
const Location& dst_pos,
|
|
const Location& copy_length,
|
|
const CpuRegister& src_base,
|
|
const CpuRegister& dst_base,
|
|
const CpuRegister& src_end) {
|
|
// This routine is only used by the SystemArrayCopy intrinsic.
|
|
DCHECK_EQ(type, DataType::Type::kReference);
|
|
const int32_t element_size = DataType::Size(type);
|
|
const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type));
|
|
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
|
|
|
|
if (src_pos.IsConstant()) {
|
|
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ leal(src_base, Address(src, element_size * constant + data_offset));
|
|
} else {
|
|
__ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
|
|
}
|
|
|
|
if (dst_pos.IsConstant()) {
|
|
int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ leal(dst_base, Address(dst, element_size * constant + data_offset));
|
|
} else {
|
|
__ leal(dst_base, Address(dst, dst_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
|
|
}
|
|
|
|
if (copy_length.IsConstant()) {
|
|
int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
|
|
__ leal(src_end, Address(src_base, element_size * constant));
|
|
} else {
|
|
__ leal(src_end, Address(src_base, copy_length.AsRegister<CpuRegister>(), scale_factor, 0));
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// SystemArrayCopy intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
|
|
|
|
CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
|
|
Location src_pos = locations->InAt(1);
|
|
CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
|
|
Location dest_pos = locations->InAt(3);
|
|
Location length = locations->InAt(4);
|
|
Location temp1_loc = locations->GetTemp(0);
|
|
CpuRegister temp1 = temp1_loc.AsRegister<CpuRegister>();
|
|
Location temp2_loc = locations->GetTemp(1);
|
|
CpuRegister temp2 = temp2_loc.AsRegister<CpuRegister>();
|
|
Location temp3_loc = locations->GetTemp(2);
|
|
CpuRegister temp3 = temp3_loc.AsRegister<CpuRegister>();
|
|
Location TMP_loc = Location::RegisterLocation(TMP);
|
|
|
|
SlowPathCode* intrinsic_slow_path =
|
|
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(intrinsic_slow_path);
|
|
|
|
NearLabel conditions_on_positions_validated;
|
|
SystemArrayCopyOptimizations optimizations(invoke);
|
|
|
|
// If source and destination are the same, we go to slow path if we need to do
|
|
// forward copying.
|
|
if (src_pos.IsConstant()) {
|
|
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (dest_pos.IsConstant()) {
|
|
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (optimizations.GetDestinationIsSource()) {
|
|
// Checked when building locations.
|
|
DCHECK_GE(src_pos_constant, dest_pos_constant);
|
|
} else if (src_pos_constant < dest_pos_constant) {
|
|
__ cmpl(src, dest);
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
} else {
|
|
if (!optimizations.GetDestinationIsSource()) {
|
|
__ cmpl(src, dest);
|
|
__ j(kNotEqual, &conditions_on_positions_validated);
|
|
}
|
|
__ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant));
|
|
__ j(kGreater, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
} else {
|
|
if (!optimizations.GetDestinationIsSource()) {
|
|
__ cmpl(src, dest);
|
|
__ j(kNotEqual, &conditions_on_positions_validated);
|
|
}
|
|
if (dest_pos.IsConstant()) {
|
|
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant));
|
|
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
|
|
} else {
|
|
__ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>());
|
|
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
__ Bind(&conditions_on_positions_validated);
|
|
|
|
if (!optimizations.GetSourceIsNotNull()) {
|
|
// Bail out if the source is null.
|
|
__ testl(src, src);
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
|
|
// Bail out if the destination is null.
|
|
__ testl(dest, dest);
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// If the length is negative, bail out.
|
|
// We have already checked in the LocationsBuilder for the constant case.
|
|
if (!length.IsConstant() &&
|
|
!optimizations.GetCountIsSourceLength() &&
|
|
!optimizations.GetCountIsDestinationLength()) {
|
|
__ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
|
|
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// Validity checks: source.
|
|
CheckPosition(assembler,
|
|
src_pos,
|
|
src,
|
|
length,
|
|
intrinsic_slow_path,
|
|
temp1,
|
|
optimizations.GetCountIsSourceLength());
|
|
|
|
// Validity checks: dest.
|
|
CheckPosition(assembler,
|
|
dest_pos,
|
|
dest,
|
|
length,
|
|
intrinsic_slow_path,
|
|
temp1,
|
|
optimizations.GetCountIsDestinationLength());
|
|
|
|
if (!optimizations.GetDoesNotNeedTypeCheck()) {
|
|
// Check whether all elements of the source array are assignable to the component
|
|
// type of the destination array. We do two checks: the classes are the same,
|
|
// or the destination is Object[]. If none of these checks succeed, we go to the
|
|
// slow path.
|
|
|
|
bool did_unpoison = false;
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// /* HeapReference<Class> */ temp1 = dest->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false);
|
|
// Register `temp1` is not trashed by the read barrier emitted
|
|
// by GenerateFieldLoadWithBakerReadBarrier below, as that
|
|
// method produces a call to a ReadBarrierMarkRegX entry point,
|
|
// which saves all potentially live registers, including
|
|
// temporaries such a `temp1`.
|
|
// /* HeapReference<Class> */ temp2 = src->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false);
|
|
// If heap poisoning is enabled, `temp1` and `temp2` have been
|
|
// unpoisoned by the the previous calls to
|
|
// GenerateFieldLoadWithBakerReadBarrier.
|
|
} else {
|
|
// /* HeapReference<Class> */ temp1 = dest->klass_
|
|
__ movl(temp1, Address(dest, class_offset));
|
|
// /* HeapReference<Class> */ temp2 = src->klass_
|
|
__ movl(temp2, Address(src, class_offset));
|
|
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
|
|
!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
// One or two of the references need to be unpoisoned. Unpoison them
|
|
// both to make the identity check valid.
|
|
__ MaybeUnpoisonHeapReference(temp1);
|
|
__ MaybeUnpoisonHeapReference(temp2);
|
|
did_unpoison = true;
|
|
}
|
|
}
|
|
|
|
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
|
|
// Bail out if the destination is not a non primitive array.
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// /* HeapReference<Class> */ TMP = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false);
|
|
__ testl(CpuRegister(TMP), CpuRegister(TMP));
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
// If heap poisoning is enabled, `TMP` has been unpoisoned by
|
|
// the the previous call to GenerateFieldLoadWithBakerReadBarrier.
|
|
} else {
|
|
// /* HeapReference<Class> */ TMP = temp1->component_type_
|
|
__ movl(CpuRegister(TMP), Address(temp1, component_offset));
|
|
__ testl(CpuRegister(TMP), CpuRegister(TMP));
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
|
|
}
|
|
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
|
|
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
// Bail out if the source is not a non primitive array.
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// For the same reason given earlier, `temp1` is not trashed by the
|
|
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
|
|
// /* HeapReference<Class> */ TMP = temp2->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, TMP_loc, temp2, component_offset, /* needs_null_check= */ false);
|
|
__ testl(CpuRegister(TMP), CpuRegister(TMP));
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
// If heap poisoning is enabled, `TMP` has been unpoisoned by
|
|
// the the previous call to GenerateFieldLoadWithBakerReadBarrier.
|
|
} else {
|
|
// /* HeapReference<Class> */ TMP = temp2->component_type_
|
|
__ movl(CpuRegister(TMP), Address(temp2, component_offset));
|
|
__ testl(CpuRegister(TMP), CpuRegister(TMP));
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
|
|
}
|
|
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
|
|
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
__ cmpl(temp1, temp2);
|
|
|
|
if (optimizations.GetDestinationIsTypedObjectArray()) {
|
|
NearLabel do_copy;
|
|
__ j(kEqual, &do_copy);
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// /* HeapReference<Class> */ temp1 = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false);
|
|
// We do not need to emit a read barrier for the following
|
|
// heap reference load, as `temp1` is only used in a
|
|
// comparison with null below, and this reference is not
|
|
// kept afterwards.
|
|
__ cmpl(Address(temp1, super_offset), Immediate(0));
|
|
} else {
|
|
if (!did_unpoison) {
|
|
__ MaybeUnpoisonHeapReference(temp1);
|
|
}
|
|
// /* HeapReference<Class> */ temp1 = temp1->component_type_
|
|
__ movl(temp1, Address(temp1, component_offset));
|
|
__ MaybeUnpoisonHeapReference(temp1);
|
|
// No need to unpoison the following heap reference load, as
|
|
// we're comparing against null.
|
|
__ cmpl(Address(temp1, super_offset), Immediate(0));
|
|
}
|
|
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
|
|
__ Bind(&do_copy);
|
|
} else {
|
|
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
|
|
// Bail out if the source is not a non primitive array.
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// /* HeapReference<Class> */ temp1 = src->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false);
|
|
// /* HeapReference<Class> */ TMP = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false);
|
|
__ testl(CpuRegister(TMP), CpuRegister(TMP));
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
} else {
|
|
// /* HeapReference<Class> */ temp1 = src->klass_
|
|
__ movl(temp1, Address(src, class_offset));
|
|
__ MaybeUnpoisonHeapReference(temp1);
|
|
// /* HeapReference<Class> */ TMP = temp1->component_type_
|
|
__ movl(CpuRegister(TMP), Address(temp1, component_offset));
|
|
// No need to unpoison `TMP` now, as we're comparing against null.
|
|
__ testl(CpuRegister(TMP), CpuRegister(TMP));
|
|
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
|
|
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
|
|
}
|
|
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
|
|
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
const DataType::Type type = DataType::Type::kReference;
|
|
const int32_t element_size = DataType::Size(type);
|
|
|
|
// Compute base source address, base destination address, and end
|
|
// source address in `temp1`, `temp2` and `temp3` respectively.
|
|
GenSystemArrayCopyAddresses(
|
|
GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3);
|
|
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// SystemArrayCopy implementation for Baker read barriers (see
|
|
// also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier):
|
|
//
|
|
// if (src_ptr != end_ptr) {
|
|
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
|
|
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
|
|
// bool is_gray = (rb_state == ReadBarrier::GrayState());
|
|
// if (is_gray) {
|
|
// // Slow-path copy.
|
|
// do {
|
|
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
|
|
// } while (src_ptr != end_ptr)
|
|
// } else {
|
|
// // Fast-path copy.
|
|
// do {
|
|
// *dest_ptr++ = *src_ptr++;
|
|
// } while (src_ptr != end_ptr)
|
|
// }
|
|
// }
|
|
|
|
NearLabel loop, done;
|
|
|
|
// Don't enter copy loop if `length == 0`.
|
|
__ cmpl(temp1, temp3);
|
|
__ j(kEqual, &done);
|
|
|
|
// Given the numeric representation, it's enough to check the low bit of the rb_state.
|
|
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
|
|
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
|
|
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
|
|
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
|
|
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
|
|
|
|
// if (rb_state == ReadBarrier::GrayState())
|
|
// goto slow_path;
|
|
// At this point, just do the "if" and make sure that flags are preserved until the branch.
|
|
__ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
|
|
|
|
// Load fence to prevent load-load reordering.
|
|
// Note that this is a no-op, thanks to the x86-64 memory model.
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
|
|
// Slow path used to copy array when `src` is gray.
|
|
SlowPathCode* read_barrier_slow_path =
|
|
new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(read_barrier_slow_path);
|
|
|
|
// We have done the "if" of the gray bit check above, now branch based on the flags.
|
|
__ j(kNotZero, read_barrier_slow_path->GetEntryLabel());
|
|
|
|
// Fast-path copy.
|
|
// Iterate over the arrays and do a raw copy of the objects. We don't need to
|
|
// poison/unpoison.
|
|
__ Bind(&loop);
|
|
__ movl(CpuRegister(TMP), Address(temp1, 0));
|
|
__ movl(Address(temp2, 0), CpuRegister(TMP));
|
|
__ addl(temp1, Immediate(element_size));
|
|
__ addl(temp2, Immediate(element_size));
|
|
__ cmpl(temp1, temp3);
|
|
__ j(kNotEqual, &loop);
|
|
|
|
__ Bind(read_barrier_slow_path->GetExitLabel());
|
|
__ Bind(&done);
|
|
} else {
|
|
// Non read barrier code.
|
|
|
|
// Iterate over the arrays and do a raw copy of the objects. We don't need to
|
|
// poison/unpoison.
|
|
NearLabel loop, done;
|
|
__ cmpl(temp1, temp3);
|
|
__ j(kEqual, &done);
|
|
__ Bind(&loop);
|
|
__ movl(CpuRegister(TMP), Address(temp1, 0));
|
|
__ movl(Address(temp2, 0), CpuRegister(TMP));
|
|
__ addl(temp1, Immediate(element_size));
|
|
__ addl(temp2, Immediate(element_size));
|
|
__ cmpl(temp1, temp3);
|
|
__ j(kNotEqual, &loop);
|
|
__ Bind(&done);
|
|
}
|
|
|
|
// We only need one card marking on the destination array.
|
|
codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* value_can_be_null= */ false);
|
|
|
|
__ Bind(intrinsic_slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
|
|
LocationSummary* locations = new (allocator_) LocationSummary(
|
|
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetOut(Location::RegisterLocation(RAX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
|
|
__ testl(argument, argument);
|
|
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
|
|
// Request temporary registers, RCX and RDI needed for repe_cmpsq instruction.
|
|
locations->AddTemp(Location::RegisterLocation(RCX));
|
|
locations->AddTemp(Location::RegisterLocation(RDI));
|
|
|
|
// Set output, RSI needed for repe_cmpsq instruction anyways.
|
|
locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>();
|
|
CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>();
|
|
CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>();
|
|
CpuRegister rsi = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
NearLabel end, return_true, return_false;
|
|
|
|
// Get offsets of count, value, and class fields within a string object.
|
|
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
|
|
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
|
|
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
StringEqualsOptimizations optimizations(invoke);
|
|
if (!optimizations.GetArgumentNotNull()) {
|
|
// Check if input is null, return false if it is.
|
|
__ testl(arg, arg);
|
|
__ j(kEqual, &return_false);
|
|
}
|
|
|
|
if (!optimizations.GetArgumentIsString()) {
|
|
// Instanceof check for the argument by comparing class fields.
|
|
// All string objects must have the same type since String cannot be subclassed.
|
|
// Receiver must be a string object, so its class field is equal to all strings' class fields.
|
|
// If the argument is a string object, its class field must be equal to receiver's class field.
|
|
//
|
|
// As the String class is expected to be non-movable, we can read the class
|
|
// field from String.equals' arguments without read barriers.
|
|
AssertNonMovableStringClass();
|
|
// Also, because we use the loaded class references only to compare them, we
|
|
// don't need to unpoison them.
|
|
// /* HeapReference<Class> */ rcx = str->klass_
|
|
__ movl(rcx, Address(str, class_offset));
|
|
// if (rcx != /* HeapReference<Class> */ arg->klass_) return false
|
|
__ cmpl(rcx, Address(arg, class_offset));
|
|
__ j(kNotEqual, &return_false);
|
|
}
|
|
|
|
// Reference equality check, return true if same reference.
|
|
__ cmpl(str, arg);
|
|
__ j(kEqual, &return_true);
|
|
|
|
// Load length and compression flag of receiver string.
|
|
__ movl(rcx, Address(str, count_offset));
|
|
// Check if lengths and compressiond flags are equal, return false if they're not.
|
|
// Two identical strings will always have same compression style since
|
|
// compression style is decided on alloc.
|
|
__ cmpl(rcx, Address(arg, count_offset));
|
|
__ j(kNotEqual, &return_false);
|
|
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
|
|
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
|
|
"Expecting 0=compressed, 1=uncompressed");
|
|
__ jrcxz(&return_true);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
NearLabel string_uncompressed;
|
|
// Extract length and differentiate between both compressed or both uncompressed.
|
|
// Different compression style is cut above.
|
|
__ shrl(rcx, Immediate(1));
|
|
__ j(kCarrySet, &string_uncompressed);
|
|
// Divide string length by 2, rounding up, and continue as if uncompressed.
|
|
// Merge clearing the compression flag with +1 for rounding.
|
|
__ addl(rcx, Immediate(1));
|
|
__ shrl(rcx, Immediate(1));
|
|
__ Bind(&string_uncompressed);
|
|
}
|
|
// Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction.
|
|
__ leal(rsi, Address(str, value_offset));
|
|
__ leal(rdi, Address(arg, value_offset));
|
|
|
|
// Divide string length by 4 and adjust for lengths not divisible by 4.
|
|
__ addl(rcx, Immediate(3));
|
|
__ shrl(rcx, Immediate(2));
|
|
|
|
// Assertions that must hold in order to compare strings 4 characters (uncompressed)
|
|
// or 8 characters (compressed) at a time.
|
|
DCHECK_ALIGNED(value_offset, 8);
|
|
static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded");
|
|
|
|
// Loop to compare strings four characters at a time starting at the beginning of the string.
|
|
__ repe_cmpsq();
|
|
// If strings are not equal, zero flag will be cleared.
|
|
__ j(kNotEqual, &return_false);
|
|
|
|
// Return true and exit the function.
|
|
// If loop does not result in returning false, we return true.
|
|
__ Bind(&return_true);
|
|
__ movl(rsi, Immediate(1));
|
|
__ jmp(&end);
|
|
|
|
// Return false and exit the function.
|
|
__ Bind(&return_false);
|
|
__ xorl(rsi, rsi);
|
|
__ Bind(&end);
|
|
}
|
|
|
|
static void CreateStringIndexOfLocations(HInvoke* invoke,
|
|
ArenaAllocator* allocator,
|
|
bool start_at_zero) {
|
|
LocationSummary* locations = new (allocator) LocationSummary(invoke,
|
|
LocationSummary::kCallOnSlowPath,
|
|
kIntrinsified);
|
|
// The data needs to be in RDI for scasw. So request that the string is there, anyways.
|
|
locations->SetInAt(0, Location::RegisterLocation(RDI));
|
|
// If we look for a constant char, we'll still have to copy it into RAX. So just request the
|
|
// allocator to do that, anyways. We can still do the constant check by checking the parameter
|
|
// of the instruction explicitly.
|
|
// Note: This works as we don't clobber RAX anywhere.
|
|
locations->SetInAt(1, Location::RegisterLocation(RAX));
|
|
if (!start_at_zero) {
|
|
locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
|
|
}
|
|
// As we clobber RDI during execution anyways, also use it as the output.
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
|
|
// repne scasw uses RCX as the counter.
|
|
locations->AddTemp(Location::RegisterLocation(RCX));
|
|
// Need another temporary to be able to compute the result.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
static void GenerateStringIndexOf(HInvoke* invoke,
|
|
X86_64Assembler* assembler,
|
|
CodeGeneratorX86_64* codegen,
|
|
bool start_at_zero) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
|
|
CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
|
|
CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
// Check our assumptions for registers.
|
|
DCHECK_EQ(string_obj.AsRegister(), RDI);
|
|
DCHECK_EQ(search_value.AsRegister(), RAX);
|
|
DCHECK_EQ(counter.AsRegister(), RCX);
|
|
DCHECK_EQ(out.AsRegister(), RDI);
|
|
|
|
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
|
|
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
|
|
SlowPathCode* slow_path = nullptr;
|
|
HInstruction* code_point = invoke->InputAt(1);
|
|
if (code_point->IsIntConstant()) {
|
|
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
|
|
std::numeric_limits<uint16_t>::max()) {
|
|
// Always needs the slow-path. We could directly dispatch to it, but this case should be
|
|
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
|
|
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen->AddSlowPath(slow_path);
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
return;
|
|
}
|
|
} else if (code_point->GetType() != DataType::Type::kUint16) {
|
|
__ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
|
|
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen->AddSlowPath(slow_path);
|
|
__ j(kAbove, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// From here down, we know that we are looking for a char that fits in
|
|
// 16 bits (uncompressed) or 8 bits (compressed).
|
|
// Location of reference to data array within the String object.
|
|
int32_t value_offset = mirror::String::ValueOffset().Int32Value();
|
|
// Location of count within the String object.
|
|
int32_t count_offset = mirror::String::CountOffset().Int32Value();
|
|
|
|
// Load the count field of the string containing the length and compression flag.
|
|
__ movl(string_length, Address(string_obj, count_offset));
|
|
|
|
// Do a zero-length check. Even with string compression `count == 0` means empty.
|
|
// TODO: Support jecxz.
|
|
NearLabel not_found_label;
|
|
__ testl(string_length, string_length);
|
|
__ j(kEqual, ¬_found_label);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
// Use TMP to keep string_length_flagged.
|
|
__ movl(CpuRegister(TMP), string_length);
|
|
// Mask out first bit used as compression flag.
|
|
__ shrl(string_length, Immediate(1));
|
|
}
|
|
|
|
if (start_at_zero) {
|
|
// Number of chars to scan is the same as the string length.
|
|
__ movl(counter, string_length);
|
|
// Move to the start of the string.
|
|
__ addq(string_obj, Immediate(value_offset));
|
|
} else {
|
|
CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
|
|
|
|
// Do a start_index check.
|
|
__ cmpl(start_index, string_length);
|
|
__ j(kGreaterEqual, ¬_found_label);
|
|
|
|
// Ensure we have a start index >= 0;
|
|
__ xorl(counter, counter);
|
|
__ cmpl(start_index, Immediate(0));
|
|
__ cmov(kGreater, counter, start_index, /* is64bit= */ false); // 32-bit copy is enough.
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
NearLabel modify_counter, offset_uncompressed_label;
|
|
__ testl(CpuRegister(TMP), Immediate(1));
|
|
__ j(kNotZero, &offset_uncompressed_label);
|
|
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset));
|
|
__ jmp(&modify_counter);
|
|
// Move to the start of the string: string_obj + value_offset + 2 * start_index.
|
|
__ Bind(&offset_uncompressed_label);
|
|
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
|
|
__ Bind(&modify_counter);
|
|
} else {
|
|
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
|
|
}
|
|
// Now update ecx, the work counter: it's gonna be string.length - start_index.
|
|
__ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit.
|
|
__ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
|
|
}
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
NearLabel uncompressed_string_comparison;
|
|
NearLabel comparison_done;
|
|
__ testl(CpuRegister(TMP), Immediate(1));
|
|
__ j(kNotZero, &uncompressed_string_comparison);
|
|
// Check if RAX (search_value) is ASCII.
|
|
__ cmpl(search_value, Immediate(127));
|
|
__ j(kGreater, ¬_found_label);
|
|
// Comparing byte-per-byte.
|
|
__ repne_scasb();
|
|
__ jmp(&comparison_done);
|
|
// Everything is set up for repne scasw:
|
|
// * Comparison address in RDI.
|
|
// * Counter in ECX.
|
|
__ Bind(&uncompressed_string_comparison);
|
|
__ repne_scasw();
|
|
__ Bind(&comparison_done);
|
|
} else {
|
|
__ repne_scasw();
|
|
}
|
|
// Did we find a match?
|
|
__ j(kNotEqual, ¬_found_label);
|
|
|
|
// Yes, we matched. Compute the index of the result.
|
|
__ subl(string_length, counter);
|
|
__ leal(out, Address(string_length, -1));
|
|
|
|
NearLabel done;
|
|
__ jmp(&done);
|
|
|
|
// Failed to match; return -1.
|
|
__ Bind(¬_found_label);
|
|
__ movl(out, Immediate(-1));
|
|
|
|
// And join up at the end.
|
|
__ Bind(&done);
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
|
|
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
|
|
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
|
|
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
|
|
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
|
|
LocationSummary* locations = new (allocator_) LocationSummary(
|
|
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
|
|
locations->SetOut(Location::RegisterLocation(RAX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
|
|
__ testl(byte_array, byte_array);
|
|
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
locations->SetOut(Location::RegisterLocation(RAX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
|
|
// No need to emit code checking whether `locations->InAt(2)` is a null
|
|
// pointer, as callers of the native method
|
|
//
|
|
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
|
|
//
|
|
// all include a null check on `data` before calling that method.
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
|
|
LocationSummary* locations = new (allocator_) LocationSummary(
|
|
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetOut(Location::RegisterLocation(RAX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
|
|
__ testl(string_to_copy, string_to_copy);
|
|
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
|
|
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
locations->SetInAt(4, Location::RequiresRegister());
|
|
|
|
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
|
|
locations->AddTemp(Location::RegisterLocation(RSI));
|
|
locations->AddTemp(Location::RegisterLocation(RDI));
|
|
locations->AddTemp(Location::RegisterLocation(RCX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
size_t char_component_size = DataType::Size(DataType::Type::kUint16);
|
|
// Location of data in char array buffer.
|
|
const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
|
|
// Location of char array data in string.
|
|
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
|
|
|
|
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
|
|
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
|
|
Location srcBegin = locations->InAt(1);
|
|
int srcBegin_value =
|
|
srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
|
|
CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>();
|
|
CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>();
|
|
CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>();
|
|
|
|
// Check assumption that sizeof(Char) is 2 (used in scaling below).
|
|
const size_t char_size = DataType::Size(DataType::Type::kUint16);
|
|
DCHECK_EQ(char_size, 2u);
|
|
|
|
NearLabel done;
|
|
// Compute the number of chars (words) to move.
|
|
__ movl(CpuRegister(RCX), srcEnd);
|
|
if (srcBegin.IsConstant()) {
|
|
__ subl(CpuRegister(RCX), Immediate(srcBegin_value));
|
|
} else {
|
|
DCHECK(srcBegin.IsRegister());
|
|
__ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>());
|
|
}
|
|
if (mirror::kUseStringCompression) {
|
|
NearLabel copy_uncompressed, copy_loop;
|
|
const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
|
|
DCHECK_EQ(c_char_size, 1u);
|
|
// Location of count in string.
|
|
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
|
|
|
|
__ testl(Address(obj, count_offset), Immediate(1));
|
|
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
|
|
"Expecting 0=compressed, 1=uncompressed");
|
|
__ j(kNotZero, ©_uncompressed);
|
|
// Compute the address of the source string by adding the number of chars from
|
|
// the source beginning to the value offset of a string.
|
|
__ leaq(CpuRegister(RSI),
|
|
CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset));
|
|
// Start the loop to copy String's value to Array of Char.
|
|
__ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
|
|
|
|
__ Bind(©_loop);
|
|
__ jrcxz(&done);
|
|
// Use TMP as temporary (convert byte from RSI to word).
|
|
// TODO: Selecting RAX as the temporary and using LODSB/STOSW.
|
|
__ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0));
|
|
__ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP));
|
|
__ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size));
|
|
__ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size));
|
|
// TODO: Add support for LOOP to X86_64Assembler.
|
|
__ subl(CpuRegister(RCX), Immediate(1));
|
|
__ jmp(©_loop);
|
|
|
|
__ Bind(©_uncompressed);
|
|
}
|
|
|
|
__ leaq(CpuRegister(RSI),
|
|
CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset));
|
|
// Compute the address of the destination buffer.
|
|
__ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
|
|
// Do the move.
|
|
__ rep_movsw();
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
|
|
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity.
|
|
// x86 allows unaligned access. We do not have to check the input or use specific instructions
|
|
// to avoid a SIGBUS.
|
|
switch (size) {
|
|
case DataType::Type::kInt8:
|
|
__ movsxb(out, Address(address, 0));
|
|
break;
|
|
case DataType::Type::kInt16:
|
|
__ movsxw(out, Address(address, 0));
|
|
break;
|
|
case DataType::Type::kInt32:
|
|
__ movl(out, Address(address, 0));
|
|
break;
|
|
case DataType::Type::kInt64:
|
|
__ movq(out, Address(address, 0));
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Type not recognized for peek: " << size;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
|
|
GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
|
|
GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
|
|
GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
|
|
GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
|
|
}
|
|
|
|
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1)));
|
|
}
|
|
|
|
static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
|
|
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
|
|
Location value = locations->InAt(1);
|
|
// x86 allows unaligned access. We do not have to check the input or use specific instructions
|
|
// to avoid a SIGBUS.
|
|
switch (size) {
|
|
case DataType::Type::kInt8:
|
|
if (value.IsConstant()) {
|
|
__ movb(Address(address, 0),
|
|
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
|
|
} else {
|
|
__ movb(Address(address, 0), value.AsRegister<CpuRegister>());
|
|
}
|
|
break;
|
|
case DataType::Type::kInt16:
|
|
if (value.IsConstant()) {
|
|
__ movw(Address(address, 0),
|
|
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
|
|
} else {
|
|
__ movw(Address(address, 0), value.AsRegister<CpuRegister>());
|
|
}
|
|
break;
|
|
case DataType::Type::kInt32:
|
|
if (value.IsConstant()) {
|
|
__ movl(Address(address, 0),
|
|
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
|
|
} else {
|
|
__ movl(Address(address, 0), value.AsRegister<CpuRegister>());
|
|
}
|
|
break;
|
|
case DataType::Type::kInt64:
|
|
if (value.IsConstant()) {
|
|
int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
|
|
DCHECK(IsInt<32>(v));
|
|
int32_t v_32 = v;
|
|
__ movq(Address(address, 0), Immediate(v_32));
|
|
} else {
|
|
__ movq(Address(address, 0), value.AsRegister<CpuRegister>());
|
|
}
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Type not recognized for poke: " << size;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
|
|
GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
|
|
GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
|
|
GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
|
|
GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
|
|
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
|
|
GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64PointerSize>(),
|
|
/* no_rip= */ true));
|
|
}
|
|
|
|
static void GenUnsafeGet(HInvoke* invoke,
|
|
DataType::Type type,
|
|
bool is_volatile ATTRIBUTE_UNUSED,
|
|
CodeGeneratorX86_64* codegen) {
|
|
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Location base_loc = locations->InAt(1);
|
|
CpuRegister base = base_loc.AsRegister<CpuRegister>();
|
|
Location offset_loc = locations->InAt(2);
|
|
CpuRegister offset = offset_loc.AsRegister<CpuRegister>();
|
|
Location output_loc = locations->Out();
|
|
CpuRegister output = output_loc.AsRegister<CpuRegister>();
|
|
|
|
switch (type) {
|
|
case DataType::Type::kInt32:
|
|
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
|
|
break;
|
|
|
|
case DataType::Type::kReference: {
|
|
if (kEmitCompilerReadBarrier) {
|
|
if (kUseBakerReadBarrier) {
|
|
Address src(base, offset, ScaleFactor::TIMES_1, 0);
|
|
codegen->GenerateReferenceLoadWithBakerReadBarrier(
|
|
invoke, output_loc, base, src, /* needs_null_check= */ false);
|
|
} else {
|
|
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
|
|
codegen->GenerateReadBarrierSlow(
|
|
invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
|
|
}
|
|
} else {
|
|
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
|
|
__ MaybeUnpoisonHeapReference(output);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DataType::Type::kInt64:
|
|
__ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unsupported op size " << type;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
bool can_call = kEmitCompilerReadBarrier &&
|
|
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
|
|
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke,
|
|
can_call
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
if (can_call && kUseBakerReadBarrier) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
}
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(),
|
|
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(allocator_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(allocator_, invoke);
|
|
}
|
|
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_);
|
|
}
|
|
|
|
|
|
static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator,
|
|
DataType::Type type,
|
|
HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
if (type == DataType::Type::kReference) {
|
|
// Need temp registers for card-marking.
|
|
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
|
|
}
|
|
|
|
// We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
|
|
// memory model.
|
|
static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile,
|
|
CodeGeneratorX86_64* codegen) {
|
|
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
|
|
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
|
|
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
|
|
CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
|
|
|
|
if (type == DataType::Type::kInt64) {
|
|
__ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
|
|
} else if (kPoisonHeapReferences && type == DataType::Type::kReference) {
|
|
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
__ movl(temp, value);
|
|
__ PoisonHeapReference(temp);
|
|
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
|
|
} else {
|
|
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
|
|
}
|
|
|
|
if (is_volatile) {
|
|
codegen->MemoryFence();
|
|
}
|
|
|
|
if (type == DataType::Type::kReference) {
|
|
bool value_can_be_null = true; // TODO: Worth finding out this information?
|
|
codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
|
|
locations->GetTemp(1).AsRegister<CpuRegister>(),
|
|
base,
|
|
value,
|
|
value_can_be_null);
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
|
|
GenUnsafePut(
|
|
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(
|
|
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(
|
|
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ true, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
|
|
}
|
|
|
|
static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator,
|
|
DataType::Type type,
|
|
HInvoke* invoke) {
|
|
bool can_call = kEmitCompilerReadBarrier &&
|
|
kUseBakerReadBarrier &&
|
|
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke,
|
|
can_call
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
// expected value must be in EAX/RAX.
|
|
locations->SetInAt(3, Location::RegisterLocation(RAX));
|
|
locations->SetInAt(4, Location::RequiresRegister());
|
|
|
|
locations->SetOut(Location::RequiresRegister());
|
|
if (type == DataType::Type::kReference) {
|
|
// Need temporary registers for card-marking, and possibly for
|
|
// (Baker) read barrier.
|
|
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
|
|
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
|
|
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
|
|
return;
|
|
}
|
|
|
|
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke);
|
|
}
|
|
|
|
static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
|
|
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
|
|
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
|
|
CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>();
|
|
// Ensure `expected` is in RAX (required by the CMPXCHG instruction).
|
|
DCHECK_EQ(expected.AsRegister(), RAX);
|
|
CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>();
|
|
Location out_loc = locations->Out();
|
|
CpuRegister out = out_loc.AsRegister<CpuRegister>();
|
|
|
|
if (type == DataType::Type::kReference) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
|
|
|
|
// Mark card for object assuming new value is stored.
|
|
bool value_can_be_null = true; // TODO: Worth finding out this information?
|
|
codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null);
|
|
|
|
// The address of the field within the holding object.
|
|
Address field_addr(base, offset, ScaleFactor::TIMES_1, 0);
|
|
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// Need to make sure the reference stored in the field is a to-space
|
|
// one before attempting the CAS or the CAS could fail incorrectly.
|
|
codegen->GenerateReferenceLoadWithBakerReadBarrier(
|
|
invoke,
|
|
out_loc, // Unused, used only as a "temporary" within the read barrier.
|
|
base,
|
|
field_addr,
|
|
/* needs_null_check= */ false,
|
|
/* always_update_field= */ true,
|
|
&temp1,
|
|
&temp2);
|
|
}
|
|
|
|
bool base_equals_value = (base.AsRegister() == value.AsRegister());
|
|
Register value_reg = value.AsRegister();
|
|
if (kPoisonHeapReferences) {
|
|
if (base_equals_value) {
|
|
// If `base` and `value` are the same register location, move
|
|
// `value_reg` to a temporary register. This way, poisoning
|
|
// `value_reg` won't invalidate `base`.
|
|
value_reg = temp1.AsRegister();
|
|
__ movl(CpuRegister(value_reg), base);
|
|
}
|
|
|
|
// Check that the register allocator did not assign the location
|
|
// of `expected` (RAX) to `value` nor to `base`, so that heap
|
|
// poisoning (when enabled) works as intended below.
|
|
// - If `value` were equal to `expected`, both references would
|
|
// be poisoned twice, meaning they would not be poisoned at
|
|
// all, as heap poisoning uses address negation.
|
|
// - If `base` were equal to `expected`, poisoning `expected`
|
|
// would invalidate `base`.
|
|
DCHECK_NE(value_reg, expected.AsRegister());
|
|
DCHECK_NE(base.AsRegister(), expected.AsRegister());
|
|
|
|
__ PoisonHeapReference(expected);
|
|
__ PoisonHeapReference(CpuRegister(value_reg));
|
|
}
|
|
|
|
__ LockCmpxchgl(field_addr, CpuRegister(value_reg));
|
|
|
|
// LOCK CMPXCHG has full barrier semantics, and we don't need
|
|
// scheduling barriers at this time.
|
|
|
|
// Convert ZF into the Boolean result.
|
|
__ setcc(kZero, out);
|
|
__ movzxb(out, out);
|
|
|
|
// If heap poisoning is enabled, we need to unpoison the values
|
|
// that were poisoned earlier.
|
|
if (kPoisonHeapReferences) {
|
|
if (base_equals_value) {
|
|
// `value_reg` has been moved to a temporary register, no need
|
|
// to unpoison it.
|
|
} else {
|
|
// Ensure `value` is different from `out`, so that unpoisoning
|
|
// the former does not invalidate the latter.
|
|
DCHECK_NE(value_reg, out.AsRegister());
|
|
__ UnpoisonHeapReference(CpuRegister(value_reg));
|
|
}
|
|
// Ensure `expected` is different from `out`, so that unpoisoning
|
|
// the former does not invalidate the latter.
|
|
DCHECK_NE(expected.AsRegister(), out.AsRegister());
|
|
__ UnpoisonHeapReference(expected);
|
|
}
|
|
} else {
|
|
if (type == DataType::Type::kInt32) {
|
|
__ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
|
|
} else if (type == DataType::Type::kInt64) {
|
|
__ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value);
|
|
} else {
|
|
LOG(FATAL) << "Unexpected CAS type " << type;
|
|
}
|
|
|
|
// LOCK CMPXCHG has full barrier semantics, and we don't need
|
|
// scheduling barriers at this time.
|
|
|
|
// Convert ZF into the Boolean result.
|
|
__ setcc(kZero, out);
|
|
__ movzxb(out, out);
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
|
|
GenCAS(DataType::Type::kInt32, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
|
|
GenCAS(DataType::Type::kInt64, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
GenCAS(DataType::Type::kReference, invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
|
|
X86_64Assembler* assembler) {
|
|
Immediate imm_shift(shift);
|
|
Immediate imm_mask(mask);
|
|
__ movl(temp, reg);
|
|
__ shrl(reg, imm_shift);
|
|
__ andl(temp, imm_mask);
|
|
__ andl(reg, imm_mask);
|
|
__ shll(temp, imm_shift);
|
|
__ orl(reg, temp);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
|
|
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
|
|
/*
|
|
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
|
|
* swapping bits to reverse bits in a number x. Using bswap to save instructions
|
|
* compared to generic luni implementation which has 5 rounds of swapping bits.
|
|
* x = bswap x
|
|
* x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
|
|
* x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
|
|
* x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
|
|
*/
|
|
__ bswapl(reg);
|
|
SwapBits(reg, temp, 1, 0x55555555, assembler);
|
|
SwapBits(reg, temp, 2, 0x33333333, assembler);
|
|
SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
|
|
int32_t shift, int64_t mask, X86_64Assembler* assembler) {
|
|
Immediate imm_shift(shift);
|
|
__ movq(temp_mask, Immediate(mask));
|
|
__ movq(temp, reg);
|
|
__ shrq(reg, imm_shift);
|
|
__ andq(temp, temp_mask);
|
|
__ andq(reg, temp_mask);
|
|
__ shlq(temp, imm_shift);
|
|
__ orq(reg, temp);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
|
|
CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
|
|
|
|
/*
|
|
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
|
|
* swapping bits to reverse bits in a long number x. Using bswap to save instructions
|
|
* compared to generic luni implementation which has 5 rounds of swapping bits.
|
|
* x = bswap x
|
|
* x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
|
|
* x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
|
|
* x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
|
|
*/
|
|
__ bswapq(reg);
|
|
SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
|
|
SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
|
|
SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
|
|
}
|
|
|
|
static void CreateBitCountLocations(
|
|
ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) {
|
|
if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
|
|
// Do nothing if there is no popcnt support. This results in generating
|
|
// a call for the intrinsic rather than direct code.
|
|
return;
|
|
}
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
static void GenBitCount(X86_64Assembler* assembler,
|
|
CodeGeneratorX86_64* codegen,
|
|
HInvoke* invoke,
|
|
bool is_long) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Location src = locations->InAt(0);
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
if (invoke->InputAt(0)->IsConstant()) {
|
|
// Evaluate this at compile time.
|
|
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
|
|
int32_t result = is_long
|
|
? POPCOUNT(static_cast<uint64_t>(value))
|
|
: POPCOUNT(static_cast<uint32_t>(value));
|
|
codegen->Load32BitValue(out, result);
|
|
return;
|
|
}
|
|
|
|
if (src.IsRegister()) {
|
|
if (is_long) {
|
|
__ popcntq(out, src.AsRegister<CpuRegister>());
|
|
} else {
|
|
__ popcntl(out, src.AsRegister<CpuRegister>());
|
|
}
|
|
} else if (is_long) {
|
|
DCHECK(src.IsDoubleStackSlot());
|
|
__ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
} else {
|
|
DCHECK(src.IsStackSlot());
|
|
__ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) {
|
|
CreateBitCountLocations(allocator_, codegen_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) {
|
|
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) {
|
|
CreateBitCountLocations(allocator_, codegen_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) {
|
|
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true);
|
|
}
|
|
|
|
static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL
|
|
: Location::RequiresRegister()); // any will do
|
|
}
|
|
|
|
static void GenOneBit(X86_64Assembler* assembler,
|
|
CodeGeneratorX86_64* codegen,
|
|
HInvoke* invoke,
|
|
bool is_high, bool is_long) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Location src = locations->InAt(0);
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
if (invoke->InputAt(0)->IsConstant()) {
|
|
// Evaluate this at compile time.
|
|
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
|
|
if (value == 0) {
|
|
__ xorl(out, out); // Clears upper bits too.
|
|
return;
|
|
}
|
|
// Nonzero value.
|
|
if (is_high) {
|
|
value = is_long ? 63 - CLZ(static_cast<uint64_t>(value))
|
|
: 31 - CLZ(static_cast<uint32_t>(value));
|
|
} else {
|
|
value = is_long ? CTZ(static_cast<uint64_t>(value))
|
|
: CTZ(static_cast<uint32_t>(value));
|
|
}
|
|
if (is_long) {
|
|
codegen->Load64BitValue(out, 1ULL << value);
|
|
} else {
|
|
codegen->Load32BitValue(out, 1 << value);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle the non-constant cases.
|
|
if (!is_high && codegen->GetInstructionSetFeatures().HasAVX2() &&
|
|
src.IsRegister()) {
|
|
__ blsi(out, src.AsRegister<CpuRegister>());
|
|
} else {
|
|
CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
if (is_high) {
|
|
// Use architectural support: basically 1 << bsr.
|
|
if (src.IsRegister()) {
|
|
if (is_long) {
|
|
__ bsrq(tmp, src.AsRegister<CpuRegister>());
|
|
} else {
|
|
__ bsrl(tmp, src.AsRegister<CpuRegister>());
|
|
}
|
|
} else if (is_long) {
|
|
DCHECK(src.IsDoubleStackSlot());
|
|
__ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
} else {
|
|
DCHECK(src.IsStackSlot());
|
|
__ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
}
|
|
// BSR sets ZF if the input was zero.
|
|
NearLabel is_zero, done;
|
|
__ j(kEqual, &is_zero);
|
|
__ movl(out, Immediate(1)); // Clears upper bits too.
|
|
if (is_long) {
|
|
__ shlq(out, tmp);
|
|
} else {
|
|
__ shll(out, tmp);
|
|
}
|
|
__ jmp(&done);
|
|
__ Bind(&is_zero);
|
|
__ xorl(out, out); // Clears upper bits too.
|
|
__ Bind(&done);
|
|
} else {
|
|
// Copy input into temporary.
|
|
if (src.IsRegister()) {
|
|
if (is_long) {
|
|
__ movq(tmp, src.AsRegister<CpuRegister>());
|
|
} else {
|
|
__ movl(tmp, src.AsRegister<CpuRegister>());
|
|
}
|
|
} else if (is_long) {
|
|
DCHECK(src.IsDoubleStackSlot());
|
|
__ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
} else {
|
|
DCHECK(src.IsStackSlot());
|
|
__ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
}
|
|
// Do the bit twiddling: basically tmp & -tmp;
|
|
if (is_long) {
|
|
__ movq(out, tmp);
|
|
__ negq(tmp);
|
|
__ andq(out, tmp);
|
|
} else {
|
|
__ movl(out, tmp);
|
|
__ negl(tmp);
|
|
__ andl(out, tmp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
|
|
CreateOneBitLocations(allocator_, invoke, /* is_high= */ true);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
|
|
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
|
|
CreateOneBitLocations(allocator_, invoke, /* is_high= */ true);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
|
|
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ true);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
|
|
CreateOneBitLocations(allocator_, invoke, /* is_high= */ false);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
|
|
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
|
|
CreateOneBitLocations(allocator_, invoke, /* is_high= */ false);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
|
|
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ true);
|
|
}
|
|
|
|
static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
static void GenLeadingZeros(X86_64Assembler* assembler,
|
|
CodeGeneratorX86_64* codegen,
|
|
HInvoke* invoke, bool is_long) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Location src = locations->InAt(0);
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
int zero_value_result = is_long ? 64 : 32;
|
|
if (invoke->InputAt(0)->IsConstant()) {
|
|
// Evaluate this at compile time.
|
|
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
|
|
if (value == 0) {
|
|
value = zero_value_result;
|
|
} else {
|
|
value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
|
|
}
|
|
codegen->Load32BitValue(out, value);
|
|
return;
|
|
}
|
|
|
|
// Handle the non-constant cases.
|
|
if (src.IsRegister()) {
|
|
if (is_long) {
|
|
__ bsrq(out, src.AsRegister<CpuRegister>());
|
|
} else {
|
|
__ bsrl(out, src.AsRegister<CpuRegister>());
|
|
}
|
|
} else if (is_long) {
|
|
DCHECK(src.IsDoubleStackSlot());
|
|
__ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
} else {
|
|
DCHECK(src.IsStackSlot());
|
|
__ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
}
|
|
|
|
// BSR sets ZF if the input was zero, and the output is undefined.
|
|
NearLabel is_zero, done;
|
|
__ j(kEqual, &is_zero);
|
|
|
|
// Correct the result from BSR to get the CLZ result.
|
|
__ xorl(out, Immediate(zero_value_result - 1));
|
|
__ jmp(&done);
|
|
|
|
// Fix the zero case with the expected result.
|
|
__ Bind(&is_zero);
|
|
__ movl(out, Immediate(zero_value_result));
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
|
|
CreateLeadingZeroLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
|
|
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
|
|
CreateLeadingZeroLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
|
|
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
|
|
}
|
|
|
|
static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
static void GenTrailingZeros(X86_64Assembler* assembler,
|
|
CodeGeneratorX86_64* codegen,
|
|
HInvoke* invoke, bool is_long) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Location src = locations->InAt(0);
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
int zero_value_result = is_long ? 64 : 32;
|
|
if (invoke->InputAt(0)->IsConstant()) {
|
|
// Evaluate this at compile time.
|
|
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
|
|
if (value == 0) {
|
|
value = zero_value_result;
|
|
} else {
|
|
value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
|
|
}
|
|
codegen->Load32BitValue(out, value);
|
|
return;
|
|
}
|
|
|
|
// Handle the non-constant cases.
|
|
if (src.IsRegister()) {
|
|
if (is_long) {
|
|
__ bsfq(out, src.AsRegister<CpuRegister>());
|
|
} else {
|
|
__ bsfl(out, src.AsRegister<CpuRegister>());
|
|
}
|
|
} else if (is_long) {
|
|
DCHECK(src.IsDoubleStackSlot());
|
|
__ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
} else {
|
|
DCHECK(src.IsStackSlot());
|
|
__ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
|
|
}
|
|
|
|
// BSF sets ZF if the input was zero, and the output is undefined.
|
|
NearLabel done;
|
|
__ j(kNotEqual, &done);
|
|
|
|
// Fix the zero case with the expected result.
|
|
__ movl(out, Immediate(zero_value_result));
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
|
|
CreateTrailingZeroLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
|
|
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
|
|
CreateTrailingZeroLocations(allocator_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
|
|
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
IntrinsicVisitor::ComputeIntegerValueOfLocations(
|
|
invoke,
|
|
codegen_,
|
|
Location::RegisterLocation(RAX),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) {
|
|
IntrinsicVisitor::IntegerValueOfInfo info =
|
|
IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0));
|
|
auto allocate_instance = [&]() {
|
|
codegen_->LoadIntrinsicDeclaringClass(argument, invoke);
|
|
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
|
|
};
|
|
if (invoke->InputAt(0)->IsIntConstant()) {
|
|
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
|
|
if (static_cast<uint32_t>(value - info.low) < info.length) {
|
|
// Just embed the j.l.Integer in the code.
|
|
DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
|
|
codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
|
|
} else {
|
|
DCHECK(locations->CanCall());
|
|
// Allocate and initialize a new j.l.Integer.
|
|
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
|
|
// JIT object table.
|
|
allocate_instance();
|
|
__ movl(Address(out, info.value_offset), Immediate(value));
|
|
}
|
|
} else {
|
|
DCHECK(locations->CanCall());
|
|
CpuRegister in = locations->InAt(0).AsRegister<CpuRegister>();
|
|
// Check bounds of our cache.
|
|
__ leal(out, Address(in, -info.low));
|
|
__ cmpl(out, Immediate(info.length));
|
|
NearLabel allocate, done;
|
|
__ j(kAboveEqual, &allocate);
|
|
// If the value is within the bounds, load the j.l.Integer directly from the array.
|
|
DCHECK_NE(out.AsRegister(), argument.AsRegister());
|
|
codegen_->LoadBootImageAddress(argument, info.array_data_boot_image_reference);
|
|
static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>),
|
|
"Check heap reference size.");
|
|
__ movl(out, Address(argument, out, TIMES_4, 0));
|
|
__ MaybeUnpoisonHeapReference(out);
|
|
__ jmp(&done);
|
|
__ Bind(&allocate);
|
|
// Otherwise allocate and initialize a new j.l.Integer.
|
|
allocate_instance();
|
|
__ movl(Address(out, info.value_offset), in);
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitReferenceGetReferent(HInvoke* invoke) {
|
|
IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitReferenceGetReferent(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Location obj = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
|
|
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
if (kEmitCompilerReadBarrier) {
|
|
// Check self->GetWeakRefAccessEnabled().
|
|
ThreadOffset64 offset = Thread::WeakRefAccessEnabledOffset<kX86_64PointerSize>();
|
|
__ gs()->cmpl(Address::Absolute(offset, /* no_rip= */ true), Immediate(0));
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// Load the java.lang.ref.Reference class, use the output register as a temporary.
|
|
codegen_->LoadIntrinsicDeclaringClass(out.AsRegister<CpuRegister>(), invoke);
|
|
|
|
// Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together.
|
|
MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset();
|
|
DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u);
|
|
DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u,
|
|
IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value());
|
|
__ cmpw(Address(out.AsRegister<CpuRegister>(), disable_intrinsic_offset.Uint32Value()),
|
|
Immediate(0));
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
|
|
// Load the value from the field.
|
|
uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value();
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
out,
|
|
obj.AsRegister<CpuRegister>(),
|
|
referent_offset,
|
|
/*needs_null_check=*/ true);
|
|
// Note that the fence is a no-op, thanks to the x86-64 memory model.
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile.
|
|
} else {
|
|
__ movl(out.AsRegister<CpuRegister>(), Address(obj.AsRegister<CpuRegister>(), referent_offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(invoke);
|
|
// Note that the fence is a no-op, thanks to the x86-64 memory model.
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile.
|
|
codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset);
|
|
}
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitReferenceRefersTo(HInvoke* invoke) {
|
|
IntrinsicVisitor::CreateReferenceRefersToLocations(invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitReferenceRefersTo(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
|
|
CpuRegister other = locations->InAt(1).AsRegister<CpuRegister>();
|
|
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
|
|
|
|
uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value();
|
|
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
|
|
|
|
__ movl(out, Address(obj, referent_offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(invoke);
|
|
__ MaybeUnpoisonHeapReference(out);
|
|
// Note that the fence is a no-op, thanks to the x86-64 memory model.
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile.
|
|
|
|
__ cmpl(out, other);
|
|
|
|
if (kEmitCompilerReadBarrier) {
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
NearLabel calculate_result;
|
|
__ j(kEqual, &calculate_result); // ZF set if taken.
|
|
|
|
// Check if the loaded reference is null in a way that leaves ZF clear for null.
|
|
__ cmpl(out, Immediate(1));
|
|
__ j(kBelow, &calculate_result); // ZF clear if taken.
|
|
|
|
// For correct memory visibility, we need a barrier before loading the lock word
|
|
// but we already have the barrier emitted for volatile load above which is sufficient.
|
|
|
|
// Load the lockword and check if it is a forwarding address.
|
|
static_assert(LockWord::kStateShift == 30u);
|
|
static_assert(LockWord::kStateForwardingAddress == 3u);
|
|
__ movl(out, Address(out, monitor_offset));
|
|
__ cmpl(out, Immediate(static_cast<int32_t>(0xc0000000)));
|
|
__ j(kBelow, &calculate_result); // ZF clear if taken.
|
|
|
|
// Extract the forwarding address and compare with `other`.
|
|
__ shll(out, Immediate(LockWord::kForwardingAddressShift));
|
|
__ cmpl(out, other);
|
|
|
|
__ Bind(&calculate_result);
|
|
}
|
|
|
|
// Convert ZF into the Boolean result.
|
|
__ setcc(kEqual, out);
|
|
__ movzxb(out, out);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
|
|
Address address = Address::Absolute
|
|
(Thread::InterruptedOffset<kX86_64PointerSize>().Int32Value(), /* no_rip= */ true);
|
|
NearLabel done;
|
|
__ gs()->movl(out, address);
|
|
__ testl(out, out);
|
|
__ j(kEqual, &done);
|
|
__ gs()->movl(address, Immediate(0));
|
|
codegen_->MemoryFence();
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::Any());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
|
|
locations->SetInAt(0, Location::RegisterLocation(RAX));
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
// Intel uses edx:eax as the dividend.
|
|
locations->AddTemp(Location::RegisterLocation(RDX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Location out = locations->Out();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
CpuRegister rdx = locations->GetTemp(0).AsRegister<CpuRegister>();
|
|
CpuRegister second_reg = second.AsRegister<CpuRegister>();
|
|
|
|
DCHECK_EQ(RAX, first.AsRegister<Register>());
|
|
DCHECK_EQ(RAX, out.AsRegister<Register>());
|
|
DCHECK_EQ(RDX, rdx.AsRegister());
|
|
|
|
// Check if divisor is zero, bail to managed implementation to handle.
|
|
__ testl(second_reg, second_reg);
|
|
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
__ xorl(rdx, rdx);
|
|
__ divl(second_reg);
|
|
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderX86_64::VisitMathMultiplyHigh(HInvoke* invoke) {
|
|
LocationSummary* locations =
|
|
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
|
|
locations->SetInAt(0, Location::RegisterLocation(RAX));
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RegisterLocation(RDX));
|
|
locations->AddTemp(Location::RegisterLocation(RAX));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorX86_64::VisitMathMultiplyHigh(HInvoke* invoke) {
|
|
X86_64Assembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
CpuRegister y = locations->InAt(1).AsRegister<CpuRegister>();
|
|
|
|
DCHECK_EQ(locations->InAt(0).AsRegister<Register>(), RAX);
|
|
DCHECK_EQ(locations->Out().AsRegister<Register>(), RDX);
|
|
|
|
__ imulq(y);
|
|
}
|
|
|
|
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, CRC32Update)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, CRC32UpdateBytes)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, CRC32UpdateByteBuffer)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16ToFloat)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16ToHalf)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16Floor)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16Ceil)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16Rint)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16Greater)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16GreaterEquals)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16Less)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, FP16LessEquals)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, LongDivideUnsigned)
|
|
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOf);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOfAfter);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferAppend);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferLength);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferToString);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendObject);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendString);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendCharSequence);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendCharArray);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendBoolean);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendChar);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendInt);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendLong);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendFloat);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendDouble);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderLength);
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderToString);
|
|
|
|
// 1.8.
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject)
|
|
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, MethodHandleInvokeExact)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, MethodHandleInvoke)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleCompareAndExchange)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleCompareAndExchangeAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleCompareAndExchangeRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleCompareAndSet)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGet)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndAdd)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndAddAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndAddRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseAnd)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseAndAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseAndRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseOr)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseOrAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseOrRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseXor)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseXorAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndBitwiseXorRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndSet)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndSetAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetAndSetRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetOpaque)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleGetVolatile)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleSet)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleSetOpaque)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleSetRelease)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleSetVolatile)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleWeakCompareAndSet)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleWeakCompareAndSetAcquire)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleWeakCompareAndSetPlain)
|
|
UNIMPLEMENTED_INTRINSIC(X86_64, VarHandleWeakCompareAndSetRelease)
|
|
|
|
UNREACHABLE_INTRINSICS(X86_64)
|
|
|
|
#undef __
|
|
|
|
} // namespace x86_64
|
|
} // namespace art
|